Home | History | Annotate | Line # | Download | only in ic
      1 /*	$NetBSD: hme.c,v 1.110 2024/06/29 12:11:11 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * HME Ethernet module driver.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.110 2024/06/29 12:11:11 riastradh Exp $");
     38 
     39 /* #define HMEDEBUG */
     40 
     41 #include "opt_inet.h"
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/kernel.h>
     46 #include <sys/mbuf.h>
     47 #include <sys/syslog.h>
     48 #include <sys/socket.h>
     49 #include <sys/device.h>
     50 #include <sys/malloc.h>
     51 #include <sys/ioctl.h>
     52 #include <sys/errno.h>
     53 #include <sys/rndsource.h>
     54 
     55 #include <net/if.h>
     56 #include <net/if_dl.h>
     57 #include <net/if_ether.h>
     58 #include <net/if_media.h>
     59 #include <net/bpf.h>
     60 
     61 #ifdef INET
     62 #include <net/if_vlanvar.h>
     63 #include <netinet/in.h>
     64 #include <netinet/if_inarp.h>
     65 #include <netinet/in_systm.h>
     66 #include <netinet/in_var.h>
     67 #include <netinet/ip.h>
     68 #include <netinet/tcp.h>
     69 #include <netinet/udp.h>
     70 #endif
     71 
     72 #include <dev/mii/mii.h>
     73 #include <dev/mii/miivar.h>
     74 
     75 #include <sys/bus.h>
     76 
     77 #include <dev/ic/hmereg.h>
     78 #include <dev/ic/hmevar.h>
     79 
     80 static void	hme_start(struct ifnet *);
     81 static void	hme_stop(struct ifnet *, int);
     82 static int	hme_ioctl(struct ifnet *, u_long, void *);
     83 static void	hme_tick(void *);
     84 static void	hme_watchdog(struct ifnet *);
     85 static bool	hme_shutdown(device_t, int);
     86 static int	hme_init(struct ifnet *);
     87 static void	hme_meminit(struct hme_softc *);
     88 static void	hme_mifinit(struct hme_softc *);
     89 static void	hme_reset(struct hme_softc *);
     90 static void	hme_chipreset(struct hme_softc *);
     91 static void	hme_setladrf(struct hme_softc *);
     92 
     93 /* MII methods & callbacks */
     94 static int	hme_mii_readreg(device_t, int, int, uint16_t *);
     95 static int	hme_mii_writereg(device_t, int, int, uint16_t);
     96 static void	hme_mii_statchg(struct ifnet *);
     97 
     98 static int	hme_mediachange(struct ifnet *);
     99 
    100 static struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
    101 static int	hme_put(struct hme_softc *, int, struct mbuf *);
    102 static void	hme_read(struct hme_softc *, int, uint32_t);
    103 static int	hme_eint(struct hme_softc *, u_int);
    104 static int	hme_rint(struct hme_softc *);
    105 static int	hme_tint(struct hme_softc *);
    106 
    107 #if 0
    108 /* Default buffer copy routines */
    109 static void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
    110 static void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
    111 #endif
    112 
    113 void
    114 hme_config(struct hme_softc *sc)
    115 {
    116 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    117 	struct mii_data *mii = &sc->sc_mii;
    118 	struct mii_softc *child;
    119 	bus_dma_tag_t dmatag = sc->sc_dmatag;
    120 	bus_dma_segment_t seg;
    121 	bus_size_t size;
    122 	int rseg, error;
    123 
    124 	/*
    125 	 * HME common initialization.
    126 	 *
    127 	 * hme_softc fields that must be initialized by the front-end:
    128 	 *
    129 	 * the bus tag:
    130 	 *	sc_bustag
    131 	 *
    132 	 * the DMA bus tag:
    133 	 *	sc_dmatag
    134 	 *
    135 	 * the bus handles:
    136 	 *	sc_seb		(Shared Ethernet Block registers)
    137 	 *	sc_erx		(Receiver Unit registers)
    138 	 *	sc_etx		(Transmitter Unit registers)
    139 	 *	sc_mac		(MAC registers)
    140 	 *	sc_mif		(Management Interface registers)
    141 	 *
    142 	 * the maximum bus burst size:
    143 	 *	sc_burst
    144 	 *
    145 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
    146 	 *	rb_membase, rb_dmabase)
    147 	 *
    148 	 * the local Ethernet address:
    149 	 *	sc_enaddr
    150 	 *
    151 	 */
    152 
    153 	/* Make sure the chip is stopped. */
    154 	hme_chipreset(sc);
    155 
    156 	/*
    157 	 * Allocate descriptors and buffers
    158 	 * XXX - do all this differently.. and more configurably,
    159 	 * eg. use things as `dma_load_mbuf()' on transmit,
    160 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
    161 	 *     all the time) on the receiver side.
    162 	 *
    163 	 * Note: receive buffers must be 64-byte aligned.
    164 	 * Also, apparently, the buffers must extend to a DMA burst
    165 	 * boundary beyond the maximum packet size.
    166 	 */
    167 #define _HME_NDESC	128
    168 #define _HME_BUFSZ	1600
    169 
    170 	/* Note: the # of descriptors must be a multiple of 16 */
    171 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
    172 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
    173 
    174 	/*
    175 	 * Allocate DMA capable memory
    176 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
    177 	 * take this into account when calculating the size. Note that
    178 	 * the maximum number of descriptors (256) occupies 2048 bytes,
    179 	 * so we allocate that much regardless of _HME_NDESC.
    180 	 */
    181 	size =	2048 +					/* TX descriptors */
    182 		2048 +					/* RX descriptors */
    183 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
    184 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* RX buffers */
    185 
    186 	/* Allocate DMA buffer */
    187 	if ((error = bus_dmamem_alloc(dmatag, size,
    188 				      2048, 0,
    189 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    190 		aprint_error_dev(sc->sc_dev, "DMA buffer alloc error %d\n",
    191 			error);
    192 		return;
    193 	}
    194 
    195 	/* Map DMA memory in CPU addressable space */
    196 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
    197 				    &sc->sc_rb.rb_membase,
    198 				    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
    199 		aprint_error_dev(sc->sc_dev, "DMA buffer map error %d\n",
    200 			error);
    201 		goto bad_free;
    202 	}
    203 
    204 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
    205 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
    206 		aprint_error_dev(sc->sc_dev, "DMA map create error %d\n",
    207 			error);
    208 		goto bad_unmap;
    209 	}
    210 
    211 	/* Load the buffer */
    212 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
    213 	    sc->sc_rb.rb_membase, size, NULL,
    214 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
    215 		aprint_error_dev(sc->sc_dev, "DMA buffer map load error %d\n",
    216 			error);
    217 		goto bad_destroy;
    218 	}
    219 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
    220 
    221 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
    222 	    ether_sprintf(sc->sc_enaddr));
    223 
    224 	/* Initialize ifnet structure. */
    225 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    226 	ifp->if_softc = sc;
    227 	ifp->if_start = hme_start;
    228 	ifp->if_stop = hme_stop;
    229 	ifp->if_ioctl = hme_ioctl;
    230 	ifp->if_init = hme_init;
    231 	ifp->if_watchdog = hme_watchdog;
    232 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    233 	sc->sc_if_flags = ifp->if_flags;
    234 	ifp->if_capabilities |=
    235 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    236 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    237 	IFQ_SET_READY(&ifp->if_snd);
    238 
    239 	/* Initialize ifmedia structures and MII info */
    240 	mii->mii_ifp = ifp;
    241 	mii->mii_readreg = hme_mii_readreg;
    242 	mii->mii_writereg = hme_mii_writereg;
    243 	mii->mii_statchg = hme_mii_statchg;
    244 
    245 	sc->sc_ethercom.ec_mii = mii;
    246 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
    247 
    248 	hme_mifinit(sc);
    249 
    250 	mii_attach(sc->sc_dev, mii, 0xffffffff,
    251 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
    252 
    253 	child = LIST_FIRST(&mii->mii_phys);
    254 	if (child == NULL) {
    255 		/* No PHY attached */
    256 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
    257 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
    258 	} else {
    259 		/*
    260 		 * Walk along the list of attached MII devices and
    261 		 * establish an `MII instance' to `phy number'
    262 		 * mapping. We'll use this mapping in media change
    263 		 * requests to determine which phy to use to program
    264 		 * the MIF configuration register.
    265 		 */
    266 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
    267 			/*
    268 			 * Note: we support just two PHYs: the built-in
    269 			 * internal device and an external on the MII
    270 			 * connector.
    271 			 */
    272 			if (child->mii_phy > 1 || child->mii_inst > 1) {
    273 				aprint_error_dev(sc->sc_dev,
    274 				    "cannot accommodate MII device %s"
    275 				       " at phy %d, instance %d\n",
    276 				       device_xname(child->mii_dev),
    277 				       child->mii_phy, child->mii_inst);
    278 				continue;
    279 			}
    280 
    281 			sc->sc_phys[child->mii_inst] = child->mii_phy;
    282 		}
    283 
    284 		/*
    285 		 * Set the default media to auto negotiation if the phy has
    286 		 * the auto negotiation capability.
    287 		 * XXX; What to do otherwise?
    288 		 */
    289 		if (ifmedia_match(&mii->mii_media, IFM_ETHER | IFM_AUTO, 0))
    290 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    291 /*
    292 		else
    293 			ifmedia_set(&sc->sc_mii.mii_media, sc->sc_defaultmedia);
    294 */
    295 	}
    296 
    297 	/* claim 802.1q capability */
    298 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    299 
    300 	/* Attach the interface. */
    301 	if_attach(ifp);
    302 	if_deferred_start_init(ifp, NULL);
    303 	ether_ifattach(ifp, sc->sc_enaddr);
    304 
    305 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, hme_shutdown))
    306 		pmf_class_network_register(sc->sc_dev, ifp);
    307 	else
    308 		aprint_error_dev(sc->sc_dev,
    309 		    "couldn't establish power handler\n");
    310 
    311 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    312 			  RND_TYPE_NET, RND_FLAG_DEFAULT);
    313 
    314 	callout_init(&sc->sc_tick_ch, 0);
    315 	callout_setfunc(&sc->sc_tick_ch, hme_tick, sc);
    316 
    317 	return;
    318 
    319  bad_destroy:
    320 	bus_dmamap_destroy(dmatag, sc->sc_dmamap);
    321  bad_unmap:
    322 	bus_dmamem_unmap(dmatag, sc->sc_rb.rb_membase, size);
    323  bad_free:
    324 	bus_dmamem_free(dmatag, &seg, rseg);
    325 }
    326 
    327 void
    328 hme_tick(void *arg)
    329 {
    330 	struct hme_softc *sc = arg;
    331 	int s;
    332 
    333 	s = splnet();
    334 	mii_tick(&sc->sc_mii);
    335 	splx(s);
    336 
    337 	callout_schedule(&sc->sc_tick_ch, hz);
    338 }
    339 
    340 void
    341 hme_reset(struct hme_softc *sc)
    342 {
    343 	int s;
    344 
    345 	s = splnet();
    346 	(void)hme_init(&sc->sc_ethercom.ec_if);
    347 	splx(s);
    348 }
    349 
    350 void
    351 hme_chipreset(struct hme_softc *sc)
    352 {
    353 	bus_space_tag_t t = sc->sc_bustag;
    354 	bus_space_handle_t seb = sc->sc_seb;
    355 	int n;
    356 
    357 	/* Mask all interrupts */
    358 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
    359 
    360 	/* Reset transmitter and receiver */
    361 	bus_space_write_4(t, seb, HME_SEBI_RESET,
    362 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
    363 
    364 	for (n = 0; n < 20; n++) {
    365 		uint32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
    366 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
    367 			return;
    368 		DELAY(20);
    369 	}
    370 
    371 	printf("%s: %s: reset failed\n", device_xname(sc->sc_dev), __func__);
    372 }
    373 
    374 void
    375 hme_stop(struct ifnet *ifp, int disable)
    376 {
    377 	struct hme_softc *sc;
    378 
    379 	sc = ifp->if_softc;
    380 
    381 	ifp->if_timer = 0;
    382 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    383 
    384 	callout_stop(&sc->sc_tick_ch);
    385 	mii_down(&sc->sc_mii);
    386 
    387 	hme_chipreset(sc);
    388 }
    389 
    390 void
    391 hme_meminit(struct hme_softc *sc)
    392 {
    393 	bus_addr_t txbufdma, rxbufdma;
    394 	bus_addr_t dma;
    395 	char *p;
    396 	unsigned int ntbuf, nrbuf, i;
    397 	struct hme_ring *hr = &sc->sc_rb;
    398 
    399 	p = hr->rb_membase;
    400 	dma = hr->rb_dmabase;
    401 
    402 	ntbuf = hr->rb_ntbuf;
    403 	nrbuf = hr->rb_nrbuf;
    404 
    405 	/*
    406 	 * Allocate transmit descriptors
    407 	 */
    408 	hr->rb_txd = p;
    409 	hr->rb_txddma = dma;
    410 	p += ntbuf * HME_XD_SIZE;
    411 	dma += ntbuf * HME_XD_SIZE;
    412 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
    413 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    414 	p = (void *)roundup((u_long)p, 2048);
    415 
    416 	/*
    417 	 * Allocate receive descriptors
    418 	 */
    419 	hr->rb_rxd = p;
    420 	hr->rb_rxddma = dma;
    421 	p += nrbuf * HME_XD_SIZE;
    422 	dma += nrbuf * HME_XD_SIZE;
    423 	/* Again move forward to the next 2048 byte boundary.*/
    424 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    425 	p = (void *)roundup((u_long)p, 2048);
    426 
    427 
    428 	/*
    429 	 * Allocate transmit buffers
    430 	 */
    431 	hr->rb_txbuf = p;
    432 	txbufdma = dma;
    433 	p += ntbuf * _HME_BUFSZ;
    434 	dma += ntbuf * _HME_BUFSZ;
    435 
    436 	/*
    437 	 * Allocate receive buffers
    438 	 */
    439 	hr->rb_rxbuf = p;
    440 	rxbufdma = dma;
    441 	p += nrbuf * _HME_BUFSZ;
    442 	dma += nrbuf * _HME_BUFSZ;
    443 
    444 	/*
    445 	 * Initialize transmit buffer descriptors
    446 	 */
    447 	for (i = 0; i < ntbuf; i++) {
    448 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
    449 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
    450 	}
    451 
    452 	/*
    453 	 * Initialize receive buffer descriptors
    454 	 */
    455 	for (i = 0; i < nrbuf; i++) {
    456 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
    457 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
    458 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
    459 	}
    460 
    461 	hr->rb_tdhead = hr->rb_tdtail = 0;
    462 	hr->rb_td_nbusy = 0;
    463 	hr->rb_rdtail = 0;
    464 }
    465 
    466 /*
    467  * Initialization of interface; set up initialization block
    468  * and transmit/receive descriptor rings.
    469  */
    470 int
    471 hme_init(struct ifnet *ifp)
    472 {
    473 	struct hme_softc *sc = ifp->if_softc;
    474 	bus_space_tag_t t = sc->sc_bustag;
    475 	bus_space_handle_t seb = sc->sc_seb;
    476 	bus_space_handle_t etx = sc->sc_etx;
    477 	bus_space_handle_t erx = sc->sc_erx;
    478 	bus_space_handle_t mac = sc->sc_mac;
    479 	uint8_t *ea;
    480 	uint32_t v;
    481 	int rc;
    482 
    483 	/*
    484 	 * Initialization sequence. The numbered steps below correspond
    485 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
    486 	 * Channel Engine manual (part of the PCIO manual).
    487 	 * See also the STP2002-STQ document from Sun Microsystems.
    488 	 */
    489 
    490 	/* step 1 & 2. Reset the Ethernet Channel */
    491 	hme_stop(ifp, 0);
    492 
    493 	/* Re-initialize the MIF */
    494 	hme_mifinit(sc);
    495 
    496 	/* Call MI reset function if any */
    497 	if (sc->sc_hwreset)
    498 		(*sc->sc_hwreset)(sc);
    499 
    500 #if 0
    501 	/* Mask all MIF interrupts, just in case */
    502 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
    503 #endif
    504 
    505 	/* step 3. Setup data structures in host memory */
    506 	hme_meminit(sc);
    507 
    508 	/* step 4. TX MAC registers & counters */
    509 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    510 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    511 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    512 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    513 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
    514 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    515 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    516 	sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
    517 
    518 	/* Load station MAC address */
    519 	ea = sc->sc_enaddr;
    520 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
    521 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
    522 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
    523 
    524 	/*
    525 	 * Init seed for backoff
    526 	 * (source suggested by manual: low 10 bits of MAC address)
    527 	 */
    528 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
    529 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
    530 
    531 
    532 	/* Note: Accepting power-on default for other MAC registers here.. */
    533 
    534 
    535 	/* step 5. RX MAC registers & counters */
    536 	hme_setladrf(sc);
    537 
    538 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
    539 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
    540 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
    541 
    542 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
    543 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
    544 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    545 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    546 
    547 	/* step 8. Global Configuration & Interrupt Mask */
    548 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
    549 			~(
    550 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
    551 			  HME_SEB_STAT_HOSTTOTX |
    552 			  HME_SEB_STAT_RXTOHOST |
    553 			  HME_SEB_STAT_TXALL |
    554 			  HME_SEB_STAT_TXPERR |
    555 			  HME_SEB_STAT_RCNTEXP |
    556 			  HME_SEB_STAT_MIFIRQ |
    557 			  HME_SEB_STAT_ALL_ERRORS ));
    558 
    559 	switch (sc->sc_burst) {
    560 	default:
    561 		v = 0;
    562 		break;
    563 	case 16:
    564 		v = HME_SEB_CFG_BURST16;
    565 		break;
    566 	case 32:
    567 		v = HME_SEB_CFG_BURST32;
    568 		break;
    569 	case 64:
    570 		v = HME_SEB_CFG_BURST64;
    571 		break;
    572 	}
    573 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
    574 
    575 	/* step 9. ETX Configuration: use mostly default values */
    576 
    577 	/* Enable DMA */
    578 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
    579 	v |= HME_ETX_CFG_DMAENABLE;
    580 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
    581 
    582 	/* Transmit Descriptor ring size: in increments of 16 */
    583 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
    584 
    585 
    586 	/* step 10. ERX Configuration */
    587 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
    588 
    589 	/* Encode Receive Descriptor ring size: four possible values */
    590 	switch (_HME_NDESC /*XXX*/) {
    591 	case 32:
    592 		v |= HME_ERX_CFG_RINGSIZE32;
    593 		break;
    594 	case 64:
    595 		v |= HME_ERX_CFG_RINGSIZE64;
    596 		break;
    597 	case 128:
    598 		v |= HME_ERX_CFG_RINGSIZE128;
    599 		break;
    600 	case 256:
    601 		v |= HME_ERX_CFG_RINGSIZE256;
    602 		break;
    603 	default:
    604 		printf("hme: invalid Receive Descriptor ring size\n");
    605 		break;
    606 	}
    607 
    608 	/* Enable DMA */
    609 	v |= HME_ERX_CFG_DMAENABLE;
    610 
    611 	/* set h/w rx checksum start offset (# of half-words) */
    612 #ifdef INET
    613 	v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t))
    614 		<< HME_ERX_CFG_CSUMSHIFT) &
    615 		HME_ERX_CFG_CSUMSTART;
    616 #endif
    617 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
    618 
    619 	/* step 11. XIF Configuration */
    620 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
    621 	v |= HME_MAC_XIF_OE;
    622 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
    623 
    624 	/* step 12. RX_MAC Configuration Register */
    625 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
    626 	v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
    627 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
    628 
    629 	/* step 13. TX_MAC Configuration Register */
    630 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
    631 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
    632 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
    633 
    634 	/* step 14. Issue Transmit Pending command */
    635 
    636 	/* Call MI initialization function if any */
    637 	if (sc->sc_hwinit)
    638 		(*sc->sc_hwinit)(sc);
    639 
    640 	/* Set the current media. */
    641 	if ((rc = hme_mediachange(ifp)) != 0)
    642 		return rc;
    643 
    644 	/* Start the one second timer. */
    645 	callout_schedule(&sc->sc_tick_ch, hz);
    646 
    647 	ifp->if_flags |= IFF_RUNNING;
    648 	ifp->if_flags &= ~IFF_OACTIVE;
    649 	sc->sc_if_flags = ifp->if_flags;
    650 	ifp->if_timer = 0;
    651 	hme_start(ifp);
    652 	return 0;
    653 }
    654 
    655 /*
    656  * Routine to copy from mbuf chain to transmit buffer in
    657  * network buffer memory.
    658  * Returns the amount of data copied.
    659  */
    660 int
    661 hme_put(struct hme_softc *sc, int ri, struct mbuf *m)
    662 	/* ri:			 Ring index */
    663 {
    664 	struct mbuf *n;
    665 	int len, tlen = 0;
    666 	char *bp;
    667 
    668 	bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
    669 	for (; m; m = n) {
    670 		len = m->m_len;
    671 		if (len == 0) {
    672 			n = m_free(m);
    673 			continue;
    674 		}
    675 		memcpy(bp, mtod(m, void *), len);
    676 		bp += len;
    677 		tlen += len;
    678 		n = m_free(m);
    679 	}
    680 	return (tlen);
    681 }
    682 
    683 /*
    684  * Pull data off an interface.
    685  * Len is length of data, with local net header stripped.
    686  * We copy the data into mbufs.  When full cluster sized units are present
    687  * we copy into clusters.
    688  */
    689 struct mbuf *
    690 hme_get(struct hme_softc *sc, int ri, uint32_t flags)
    691 {
    692 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    693 	struct mbuf *m, *m0, *newm;
    694 	char *bp;
    695 	int len, totlen;
    696 #ifdef INET
    697 	int csum_flags;
    698 #endif
    699 
    700 	totlen = HME_XD_DECODE_RSIZE(flags);
    701 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    702 	if (m0 == 0)
    703 		return (0);
    704 	MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
    705 	m_set_rcvif(m0, ifp);
    706 	m0->m_pkthdr.len = totlen;
    707 	len = MHLEN;
    708 	m = m0;
    709 
    710 	bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
    711 
    712 	while (totlen > 0) {
    713 		if (totlen >= MINCLSIZE) {
    714 			MCLGET(m, M_DONTWAIT);
    715 			if ((m->m_flags & M_EXT) == 0)
    716 				goto bad;
    717 			len = MCLBYTES;
    718 		}
    719 
    720 		if (m == m0) {
    721 			char *newdata = (char *)
    722 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
    723 			    sizeof(struct ether_header);
    724 			len -= newdata - m->m_data;
    725 			m->m_data = newdata;
    726 		}
    727 
    728 		m->m_len = len = uimin(totlen, len);
    729 		memcpy(mtod(m, void *), bp, len);
    730 		bp += len;
    731 
    732 		totlen -= len;
    733 		if (totlen > 0) {
    734 			MGET(newm, M_DONTWAIT, MT_DATA);
    735 			if (newm == 0)
    736 				goto bad;
    737 			len = MLEN;
    738 			m = m->m_next = newm;
    739 		}
    740 	}
    741 
    742 #ifdef INET
    743 	/* hardware checksum */
    744 	csum_flags = 0;
    745 	if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    746 		struct ether_header *eh;
    747 		struct ether_vlan_header *evh;
    748 		struct ip *ip;
    749 		struct udphdr *uh;
    750 		uint16_t *opts;
    751 		int32_t hlen, pktlen;
    752 		uint32_t csum_data;
    753 
    754 		eh = mtod(m0, struct ether_header *);
    755 		if (ntohs(eh->ether_type) == ETHERTYPE_IP) {
    756 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN);
    757 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
    758 		} else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
    759 			evh = (struct ether_vlan_header *)eh;
    760 			if (ntohs(evh->evl_proto) != ETHERTYPE_IP)
    761 				goto swcsum;
    762 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN +
    763 			    ETHER_VLAN_ENCAP_LEN);
    764 			pktlen = m0->m_pkthdr.len -
    765 			    ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN;
    766 		} else
    767 			goto swcsum;
    768 
    769 		/* IPv4 only */
    770 		if (ip->ip_v != IPVERSION)
    771 			goto swcsum;
    772 
    773 		hlen = ip->ip_hl << 2;
    774 		if (hlen < sizeof(struct ip))
    775 			goto swcsum;
    776 
    777 		/*
    778 		 * bail if too short, has random trailing garbage, truncated,
    779 		 * fragment, or has ethernet pad.
    780 		 */
    781 		if (ntohs(ip->ip_len) < hlen ||
    782 		    ntohs(ip->ip_len) != pktlen ||
    783 		    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
    784 			goto swcsum;
    785 
    786 		switch (ip->ip_p) {
    787 		case IPPROTO_TCP:
    788 			if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0)
    789 				goto swcsum;
    790 			if (pktlen < (hlen + sizeof(struct tcphdr)))
    791 				goto swcsum;
    792 			csum_flags =
    793 			    M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
    794 			break;
    795 		case IPPROTO_UDP:
    796 			if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0)
    797 				goto swcsum;
    798 			if (pktlen < (hlen + sizeof(struct udphdr)))
    799 				goto swcsum;
    800 			uh = (struct udphdr *)((char *)ip + hlen);
    801 			/* no checksum */
    802 			if (uh->uh_sum == 0)
    803 				goto swcsum;
    804 			csum_flags =
    805 			    M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
    806 			break;
    807 		default:
    808 			goto swcsum;
    809 		}
    810 
    811 		/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
    812 		csum_data = ~flags & HME_XD_RXCKSUM;
    813 
    814 		/*
    815 		 * If data offset is different from RX cksum start offset,
    816 		 * we have to deduct them.
    817 		 */
    818 		hlen = ((char *)ip + hlen) -
    819 		    ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip));
    820 		if (hlen > 1) {
    821 			uint32_t optsum;
    822 
    823 			optsum = 0;
    824 			opts = (uint16_t *)((char *)eh +
    825 			    ETHER_HDR_LEN + sizeof(struct ip));
    826 
    827 			while (hlen > 1) {
    828 				optsum += ntohs(*opts++);
    829 				hlen -= 2;
    830 			}
    831 			while (optsum >> 16)
    832 				optsum = (optsum >> 16) + (optsum & 0xffff);
    833 
    834 			/* Deduct the ip opts sum from the hwsum. */
    835 			csum_data += (uint16_t)~optsum;
    836 
    837 			while (csum_data >> 16)
    838 				csum_data =
    839 				    (csum_data >> 16) + (csum_data & 0xffff);
    840 		}
    841 		m0->m_pkthdr.csum_data = csum_data;
    842 	}
    843 swcsum:
    844 	m0->m_pkthdr.csum_flags = csum_flags;
    845 #endif
    846 
    847 	return (m0);
    848 
    849 bad:
    850 	m_freem(m0);
    851 	return (0);
    852 }
    853 
    854 /*
    855  * Pass a packet to the higher levels.
    856  */
    857 void
    858 hme_read(struct hme_softc *sc, int ix, uint32_t flags)
    859 {
    860 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    861 	struct mbuf *m;
    862 	int len;
    863 
    864 	len = HME_XD_DECODE_RSIZE(flags);
    865 	if (len <= sizeof(struct ether_header) ||
    866 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    867 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
    868 	    ETHERMTU + sizeof(struct ether_header))) {
    869 #ifdef HMEDEBUG
    870 		printf("%s: invalid packet size %d; dropping\n",
    871 		    device_xname(sc->sc_dev), len);
    872 #endif
    873 		if_statinc(ifp, if_ierrors);
    874 		return;
    875 	}
    876 
    877 	/* Pull packet off interface. */
    878 	m = hme_get(sc, ix, flags);
    879 	if (m == 0) {
    880 		if_statinc(ifp, if_ierrors);
    881 		return;
    882 	}
    883 
    884 	/* Pass the packet up. */
    885 	if_percpuq_enqueue(ifp->if_percpuq, m);
    886 }
    887 
    888 void
    889 hme_start(struct ifnet *ifp)
    890 {
    891 	struct hme_softc *sc = ifp->if_softc;
    892 	void *txd = sc->sc_rb.rb_txd;
    893 	struct mbuf *m;
    894 	unsigned int txflags;
    895 	unsigned int ri, len, obusy;
    896 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
    897 
    898 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    899 		return;
    900 
    901 	ri = sc->sc_rb.rb_tdhead;
    902 	obusy = sc->sc_rb.rb_td_nbusy;
    903 
    904 	for (;;) {
    905 		IFQ_DEQUEUE(&ifp->if_snd, m);
    906 		if (m == 0)
    907 			break;
    908 
    909 		/*
    910 		 * If BPF is listening on this interface, let it see the
    911 		 * packet before we commit it to the wire.
    912 		 */
    913 		bpf_mtap(ifp, m, BPF_D_OUT);
    914 
    915 #ifdef INET
    916 		/* collect bits for h/w csum, before hme_put frees the mbuf */
    917 		if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
    918 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    919 			struct ether_header *eh;
    920 			uint16_t offset, start;
    921 
    922 			eh = mtod(m, struct ether_header *);
    923 			switch (ntohs(eh->ether_type)) {
    924 			case ETHERTYPE_IP:
    925 				start = ETHER_HDR_LEN;
    926 				break;
    927 			case ETHERTYPE_VLAN:
    928 				start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
    929 				break;
    930 			default:
    931 				/* unsupported, drop it */
    932 				m_free(m);
    933 				continue;
    934 			}
    935 			start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
    936 			offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
    937 			    + start;
    938 			txflags = HME_XD_TXCKSUM |
    939 				  (offset << HME_XD_TXCSSTUFFSHIFT) |
    940 				  (start << HME_XD_TXCSSTARTSHIFT);
    941 		} else
    942 #endif
    943 			txflags = 0;
    944 
    945 		/*
    946 		 * Copy the mbuf chain into the transmit buffer.
    947 		 */
    948 		len = hme_put(sc, ri, m);
    949 
    950 		/*
    951 		 * Initialize transmit registers and start transmission
    952 		 */
    953 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
    954 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
    955 			HME_XD_ENCODE_TSIZE(len) | txflags);
    956 
    957 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
    958 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
    959 				  HME_ETX_TP_DMAWAKEUP);
    960 
    961 		if (++ri == ntbuf)
    962 			ri = 0;
    963 
    964 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
    965 			ifp->if_flags |= IFF_OACTIVE;
    966 			break;
    967 		}
    968 	}
    969 
    970 	if (obusy != sc->sc_rb.rb_td_nbusy) {
    971 		sc->sc_rb.rb_tdhead = ri;
    972 		ifp->if_timer = 5;
    973 	}
    974 }
    975 
    976 /*
    977  * Transmit interrupt.
    978  */
    979 int
    980 hme_tint(struct hme_softc *sc)
    981 {
    982 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    983 	bus_space_tag_t t = sc->sc_bustag;
    984 	bus_space_handle_t mac = sc->sc_mac;
    985 	unsigned int ri, txflags;
    986 
    987 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
    988 
    989 	/*
    990 	 * Unload collision counters
    991 	 */
    992 	if_statadd_ref(ifp, nsr, if_collisions,
    993 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
    994 		bus_space_read_4(t, mac, HME_MACI_FCCNT));
    995 	if_statadd_ref(ifp, nsr, if_oerrors,
    996 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
    997 		bus_space_read_4(t, mac, HME_MACI_LTCNT));
    998 
    999 	/*
   1000 	 * then clear the hardware counters.
   1001 	 */
   1002 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
   1003 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
   1004 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
   1005 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
   1006 
   1007 	/* Fetch current position in the transmit ring */
   1008 	ri = sc->sc_rb.rb_tdtail;
   1009 
   1010 	for (;;) {
   1011 		if (sc->sc_rb.rb_td_nbusy <= 0)
   1012 			break;
   1013 
   1014 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
   1015 
   1016 		if (txflags & HME_XD_OWN)
   1017 			break;
   1018 
   1019 		ifp->if_flags &= ~IFF_OACTIVE;
   1020 		if_statinc_ref(ifp, nsr, if_opackets);
   1021 
   1022 		if (++ri == sc->sc_rb.rb_ntbuf)
   1023 			ri = 0;
   1024 
   1025 		--sc->sc_rb.rb_td_nbusy;
   1026 	}
   1027 
   1028 	IF_STAT_PUTREF(ifp);
   1029 
   1030 	/* Update ring */
   1031 	sc->sc_rb.rb_tdtail = ri;
   1032 
   1033 	if_schedule_deferred_start(ifp);
   1034 
   1035 	if (sc->sc_rb.rb_td_nbusy == 0)
   1036 		ifp->if_timer = 0;
   1037 
   1038 	return (1);
   1039 }
   1040 
   1041 /*
   1042  * Receive interrupt.
   1043  */
   1044 int
   1045 hme_rint(struct hme_softc *sc)
   1046 {
   1047 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1048 	bus_space_tag_t t = sc->sc_bustag;
   1049 	bus_space_handle_t mac = sc->sc_mac;
   1050 	void *xdr = sc->sc_rb.rb_rxd;
   1051 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
   1052 	unsigned int ri;
   1053 	uint32_t flags;
   1054 
   1055 	ri = sc->sc_rb.rb_rdtail;
   1056 
   1057 	/*
   1058 	 * Process all buffers with valid data.
   1059 	 */
   1060 	for (;;) {
   1061 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
   1062 		if (flags & HME_XD_OWN)
   1063 			break;
   1064 
   1065 		if (flags & HME_XD_OFL) {
   1066 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
   1067 					device_xname(sc->sc_dev), ri, flags);
   1068 		} else
   1069 			hme_read(sc, ri, flags);
   1070 
   1071 		/* This buffer can be used by the hardware again */
   1072 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
   1073 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
   1074 
   1075 		if (++ri == nrbuf)
   1076 			ri = 0;
   1077 	}
   1078 
   1079 	sc->sc_rb.rb_rdtail = ri;
   1080 
   1081 	/* Read error counters ... */
   1082 	if_statadd(ifp, if_ierrors,
   1083 	    bus_space_read_4(t, mac, HME_MACI_STAT_LCNT) +
   1084 	    bus_space_read_4(t, mac, HME_MACI_STAT_ACNT) +
   1085 	    bus_space_read_4(t, mac, HME_MACI_STAT_CCNT) +
   1086 	    bus_space_read_4(t, mac, HME_MACI_STAT_CVCNT));
   1087 
   1088 	/* ... then clear the hardware counters. */
   1089 	bus_space_write_4(t, mac, HME_MACI_STAT_LCNT, 0);
   1090 	bus_space_write_4(t, mac, HME_MACI_STAT_ACNT, 0);
   1091 	bus_space_write_4(t, mac, HME_MACI_STAT_CCNT, 0);
   1092 	bus_space_write_4(t, mac, HME_MACI_STAT_CVCNT, 0);
   1093 	return (1);
   1094 }
   1095 
   1096 int
   1097 hme_eint(struct hme_softc *sc, u_int status)
   1098 {
   1099 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1100 	char bits[128];
   1101 
   1102 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
   1103 		bus_space_tag_t t = sc->sc_bustag;
   1104 		bus_space_handle_t mif = sc->sc_mif;
   1105 		uint32_t cf, st, sm;
   1106 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1107 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
   1108 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
   1109 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
   1110 			device_xname(sc->sc_dev), cf, st, sm);
   1111 		return (1);
   1112 	}
   1113 
   1114 	/* Receive error counters rolled over */
   1115 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   1116 	if (status & HME_SEB_STAT_ACNTEXP)
   1117 		if_statadd_ref(ifp, nsr, if_ierrors, 0xff);
   1118 	if (status & HME_SEB_STAT_CCNTEXP)
   1119 		if_statadd_ref(ifp, nsr, if_ierrors, 0xff);
   1120 	if (status & HME_SEB_STAT_LCNTEXP)
   1121 		if_statadd_ref(ifp, nsr, if_ierrors, 0xff);
   1122 	if (status & HME_SEB_STAT_CVCNTEXP)
   1123 		if_statadd_ref(ifp, nsr, if_ierrors, 0xff);
   1124 	IF_STAT_PUTREF(ifp);
   1125 
   1126 	/* RXTERR locks up the interface, so do a reset */
   1127 	if (status & HME_SEB_STAT_RXTERR)
   1128 		hme_reset(sc);
   1129 
   1130 	snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
   1131 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
   1132 
   1133 	return (1);
   1134 }
   1135 
   1136 int
   1137 hme_intr(void *v)
   1138 {
   1139 	struct hme_softc *sc = v;
   1140 	bus_space_tag_t t = sc->sc_bustag;
   1141 	bus_space_handle_t seb = sc->sc_seb;
   1142 	uint32_t status;
   1143 	int r = 0;
   1144 
   1145 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
   1146 
   1147 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
   1148 		r |= hme_eint(sc, status);
   1149 
   1150 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
   1151 		r |= hme_tint(sc);
   1152 
   1153 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
   1154 		r |= hme_rint(sc);
   1155 
   1156 	rnd_add_uint32(&sc->rnd_source, status);
   1157 
   1158 	return (r);
   1159 }
   1160 
   1161 
   1162 void
   1163 hme_watchdog(struct ifnet *ifp)
   1164 {
   1165 	struct hme_softc *sc = ifp->if_softc;
   1166 
   1167 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
   1168 	if_statinc(ifp, if_oerrors);
   1169 
   1170 	hme_reset(sc);
   1171 }
   1172 
   1173 /*
   1174  * Initialize the MII Management Interface
   1175  */
   1176 void
   1177 hme_mifinit(struct hme_softc *sc)
   1178 {
   1179 	bus_space_tag_t t = sc->sc_bustag;
   1180 	bus_space_handle_t mif = sc->sc_mif;
   1181 	bus_space_handle_t mac = sc->sc_mac;
   1182 	int instance, phy;
   1183 	uint32_t v;
   1184 
   1185 	if (sc->sc_mii.mii_media.ifm_cur != NULL) {
   1186 		instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1187 		phy = sc->sc_phys[instance];
   1188 	} else
   1189 		/* No media set yet, pick phy arbitrarily.. */
   1190 		phy = HME_PHYAD_EXTERNAL;
   1191 
   1192 	/* Configure the MIF in frame mode, no poll, current phy select */
   1193 	v = 0;
   1194 	if (phy == HME_PHYAD_EXTERNAL)
   1195 		v |= HME_MIF_CFG_PHY;
   1196 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1197 
   1198 	/* If an external transceiver is selected, enable its MII drivers */
   1199 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1200 	v &= ~HME_MAC_XIF_MIIENABLE;
   1201 	if (phy == HME_PHYAD_EXTERNAL)
   1202 		v |= HME_MAC_XIF_MIIENABLE;
   1203 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1204 }
   1205 
   1206 /*
   1207  * MII interface
   1208  */
   1209 static int
   1210 hme_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   1211 {
   1212 	struct hme_softc *sc = device_private(self);
   1213 	bus_space_tag_t t = sc->sc_bustag;
   1214 	bus_space_handle_t mif = sc->sc_mif;
   1215 	bus_space_handle_t mac = sc->sc_mac;
   1216 	uint32_t v, xif_cfg, mifi_cfg;
   1217 	int n, rv;
   1218 
   1219 	/* We can at most have two PHYs */
   1220 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1221 		return -1;
   1222 
   1223 	/* Select the desired PHY in the MIF configuration register */
   1224 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1225 	v &= ~HME_MIF_CFG_PHY;
   1226 	if (phy == HME_PHYAD_EXTERNAL)
   1227 		v |= HME_MIF_CFG_PHY;
   1228 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1229 
   1230 	/* Enable MII drivers on external transceiver */
   1231 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1232 	if (phy == HME_PHYAD_EXTERNAL)
   1233 		v |= HME_MAC_XIF_MIIENABLE;
   1234 	else
   1235 		v &= ~HME_MAC_XIF_MIIENABLE;
   1236 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1237 
   1238 #if 0
   1239 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1240 	/*
   1241 	 * Check whether a transceiver is connected by testing
   1242 	 * the MIF configuration register's MDI_X bits. Note that
   1243 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1244 	 */
   1245 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1246 	delay(100);
   1247 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1248 	if ((v & mif_mdi_bit) == 0) {
   1249 		rv = -1;
   1250 		goto out;
   1251 	}
   1252 #endif
   1253 
   1254 	/* Construct the frame command */
   1255 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
   1256 	    HME_MIF_FO_TAMSB |
   1257 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
   1258 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
   1259 	    (reg << HME_MIF_FO_REGAD_SHIFT);
   1260 
   1261 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1262 	for (n = 0; n < 100; n++) {
   1263 		DELAY(1);
   1264 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1265 		if (v & HME_MIF_FO_TALSB) {
   1266 			*val = v & HME_MIF_FO_DATA;
   1267 			rv = 0;
   1268 			goto out;
   1269 		}
   1270 	}
   1271 
   1272 	rv = ETIMEDOUT;
   1273 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
   1274 
   1275 out:
   1276 	/* Restore MIFI_CFG register */
   1277 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1278 	/* Restore XIF register */
   1279 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1280 	return rv;
   1281 }
   1282 
   1283 static int
   1284 hme_mii_writereg(device_t self, int phy, int reg, uint16_t val)
   1285 {
   1286 	struct hme_softc *sc = device_private(self);
   1287 	bus_space_tag_t t = sc->sc_bustag;
   1288 	bus_space_handle_t mif = sc->sc_mif;
   1289 	bus_space_handle_t mac = sc->sc_mac;
   1290 	uint32_t v, xif_cfg, mifi_cfg;
   1291 	int n, rv;
   1292 
   1293 	/* We can at most have two PHYs */
   1294 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1295 		return -1;
   1296 
   1297 	/* Select the desired PHY in the MIF configuration register */
   1298 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1299 	v &= ~HME_MIF_CFG_PHY;
   1300 	if (phy == HME_PHYAD_EXTERNAL)
   1301 		v |= HME_MIF_CFG_PHY;
   1302 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1303 
   1304 	/* Enable MII drivers on external transceiver */
   1305 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1306 	if (phy == HME_PHYAD_EXTERNAL)
   1307 		v |= HME_MAC_XIF_MIIENABLE;
   1308 	else
   1309 		v &= ~HME_MAC_XIF_MIIENABLE;
   1310 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1311 
   1312 #if 0
   1313 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1314 	/*
   1315 	 * Check whether a transceiver is connected by testing
   1316 	 * the MIF configuration register's MDI_X bits. Note that
   1317 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1318 	 */
   1319 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1320 	delay(100);
   1321 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1322 	if ((v & mif_mdi_bit) == 0) {
   1323 		rv = -1;
   1324 		goto out;
   1325 	}
   1326 #endif
   1327 
   1328 	/* Construct the frame command */
   1329 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
   1330 	    HME_MIF_FO_TAMSB				|
   1331 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
   1332 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
   1333 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
   1334 	    (val & HME_MIF_FO_DATA);
   1335 
   1336 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1337 	for (n = 0; n < 100; n++) {
   1338 		DELAY(1);
   1339 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1340 		if (v & HME_MIF_FO_TALSB) {
   1341 			rv = 0;
   1342 			goto out;
   1343 		}
   1344 	}
   1345 
   1346 	rv = ETIMEDOUT;
   1347 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
   1348 out:
   1349 	/* Restore MIFI_CFG register */
   1350 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1351 	/* Restore XIF register */
   1352 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1353 
   1354 	return rv;
   1355 }
   1356 
   1357 static void
   1358 hme_mii_statchg(struct ifnet *ifp)
   1359 {
   1360 	struct hme_softc *sc = ifp->if_softc;
   1361 	bus_space_tag_t t = sc->sc_bustag;
   1362 	bus_space_handle_t mac = sc->sc_mac;
   1363 	uint32_t v;
   1364 
   1365 #ifdef HMEDEBUG
   1366 	if (sc->sc_debug)
   1367 		printf("hme_mii_statchg: status change\n");
   1368 #endif
   1369 
   1370 	/* Set the MAC Full Duplex bit appropriately */
   1371 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
   1372 	   but not otherwise. */
   1373 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
   1374 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
   1375 		v |= HME_MAC_TXCFG_FULLDPLX;
   1376 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
   1377 	} else {
   1378 		v &= ~HME_MAC_TXCFG_FULLDPLX;
   1379 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
   1380 	}
   1381 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
   1382 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
   1383 }
   1384 
   1385 int
   1386 hme_mediachange(struct ifnet *ifp)
   1387 {
   1388 	struct hme_softc *sc = ifp->if_softc;
   1389 	bus_space_tag_t t = sc->sc_bustag;
   1390 	bus_space_handle_t mif = sc->sc_mif;
   1391 	bus_space_handle_t mac = sc->sc_mac;
   1392 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1393 	int phy = sc->sc_phys[instance];
   1394 	int rc;
   1395 	uint32_t v;
   1396 
   1397 #ifdef HMEDEBUG
   1398 	if (sc->sc_debug)
   1399 		printf("hme_mediachange: phy = %d\n", phy);
   1400 #endif
   1401 
   1402 	/* Select the current PHY in the MIF configuration register */
   1403 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1404 	v &= ~HME_MIF_CFG_PHY;
   1405 	if (phy == HME_PHYAD_EXTERNAL)
   1406 		v |= HME_MIF_CFG_PHY;
   1407 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1408 
   1409 	/* If an external transceiver is selected, enable its MII drivers */
   1410 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1411 	v &= ~HME_MAC_XIF_MIIENABLE;
   1412 	if (phy == HME_PHYAD_EXTERNAL)
   1413 		v |= HME_MAC_XIF_MIIENABLE;
   1414 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1415 
   1416 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
   1417 		return 0;
   1418 	return rc;
   1419 }
   1420 
   1421 /*
   1422  * Process an ioctl request.
   1423  */
   1424 int
   1425 hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
   1426 {
   1427 	struct hme_softc *sc = ifp->if_softc;
   1428 	struct ifaddr *ifa = (struct ifaddr *)data;
   1429 	int s, error = 0;
   1430 
   1431 	s = splnet();
   1432 
   1433 	switch (cmd) {
   1434 
   1435 	case SIOCINITIFADDR:
   1436 		switch (ifa->ifa_addr->sa_family) {
   1437 #ifdef INET
   1438 		case AF_INET:
   1439 			if (ifp->if_flags & IFF_UP)
   1440 				hme_setladrf(sc);
   1441 			else {
   1442 				ifp->if_flags |= IFF_UP;
   1443 				error = hme_init(ifp);
   1444 			}
   1445 			arp_ifinit(ifp, ifa);
   1446 			break;
   1447 #endif
   1448 		default:
   1449 			ifp->if_flags |= IFF_UP;
   1450 			error = hme_init(ifp);
   1451 			break;
   1452 		}
   1453 		break;
   1454 
   1455 	case SIOCSIFFLAGS:
   1456 #ifdef HMEDEBUG
   1457 		{
   1458 			struct ifreq *ifr = data;
   1459 			sc->sc_debug =
   1460 			    (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
   1461 		}
   1462 #endif
   1463 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1464 			break;
   1465 
   1466 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
   1467 		case IFF_RUNNING:
   1468 			/*
   1469 			 * If interface is marked down and it is running, then
   1470 			 * stop it.
   1471 			 */
   1472 			hme_stop(ifp, 0);
   1473 			ifp->if_flags &= ~IFF_RUNNING;
   1474 			break;
   1475 		case IFF_UP:
   1476 			/*
   1477 			 * If interface is marked up and it is stopped, then
   1478 			 * start it.
   1479 			 */
   1480 			error = hme_init(ifp);
   1481 			break;
   1482 		case IFF_UP | IFF_RUNNING:
   1483 			/*
   1484 			 * If setting debug or promiscuous mode, do not reset
   1485 			 * the chip; for everything else, call hme_init()
   1486 			 * which will trigger a reset.
   1487 			 */
   1488 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
   1489 			if (ifp->if_flags != sc->sc_if_flags) {
   1490 				if ((ifp->if_flags & (~RESETIGN))
   1491 				    == (sc->sc_if_flags & (~RESETIGN)))
   1492 					hme_setladrf(sc);
   1493 				else
   1494 					error = hme_init(ifp);
   1495 			}
   1496 #undef RESETIGN
   1497 			break;
   1498 		case 0:
   1499 			break;
   1500 		}
   1501 
   1502 		if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
   1503 			error = hme_init(ifp);
   1504 
   1505 		break;
   1506 
   1507 	default:
   1508 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1509 			break;
   1510 
   1511 		error = 0;
   1512 
   1513 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1514 			;
   1515 		else if (ifp->if_flags & IFF_RUNNING) {
   1516 			/*
   1517 			 * Multicast list has changed; set the hardware filter
   1518 			 * accordingly.
   1519 			 */
   1520 			hme_setladrf(sc);
   1521 		}
   1522 		break;
   1523 	}
   1524 
   1525 	sc->sc_if_flags = ifp->if_flags;
   1526 	splx(s);
   1527 	return (error);
   1528 }
   1529 
   1530 bool
   1531 hme_shutdown(device_t self, int howto)
   1532 {
   1533 	struct hme_softc *sc;
   1534 	struct ifnet *ifp;
   1535 
   1536 	sc = device_private(self);
   1537 	ifp = &sc->sc_ethercom.ec_if;
   1538 	hme_stop(ifp, 1);
   1539 
   1540 	return true;
   1541 }
   1542 
   1543 /*
   1544  * Set up the logical address filter.
   1545  */
   1546 void
   1547 hme_setladrf(struct hme_softc *sc)
   1548 {
   1549 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1550 	struct ether_multi *enm;
   1551 	struct ether_multistep step;
   1552 	struct ethercom *ec = &sc->sc_ethercom;
   1553 	bus_space_tag_t t = sc->sc_bustag;
   1554 	bus_space_handle_t mac = sc->sc_mac;
   1555 	uint32_t v;
   1556 	uint32_t crc;
   1557 	uint32_t hash[4];
   1558 
   1559 	/* Clear hash table */
   1560 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
   1561 
   1562 	/* Get current RX configuration */
   1563 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
   1564 
   1565 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   1566 		/* Turn on promiscuous mode; turn off the hash filter */
   1567 		v |= HME_MAC_RXCFG_PMISC;
   1568 		v &= ~HME_MAC_RXCFG_HENABLE;
   1569 		ifp->if_flags |= IFF_ALLMULTI;
   1570 		goto chipit;
   1571 	}
   1572 
   1573 	/* Turn off promiscuous mode; turn on the hash filter */
   1574 	v &= ~HME_MAC_RXCFG_PMISC;
   1575 	v |= HME_MAC_RXCFG_HENABLE;
   1576 
   1577 	/*
   1578 	 * Set up multicast address filter by passing all multicast addresses
   1579 	 * through a crc generator, and then using the high order 6 bits as an
   1580 	 * index into the 64 bit logical address filter.  The high order bit
   1581 	 * selects the word, while the rest of the bits select the bit within
   1582 	 * the word.
   1583 	 */
   1584 
   1585 	ETHER_LOCK(ec);
   1586 	ETHER_FIRST_MULTI(step, ec, enm);
   1587 	while (enm != NULL) {
   1588 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1589 			/*
   1590 			 * We must listen to a range of multicast addresses.
   1591 			 * For now, just accept all multicasts, rather than
   1592 			 * trying to set only those filter bits needed to match
   1593 			 * the range.  (At this time, the only use of address
   1594 			 * ranges is for IP multicast routing, for which the
   1595 			 * range is big enough to require all bits set.)
   1596 			 */
   1597 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
   1598 			ifp->if_flags |= IFF_ALLMULTI;
   1599 			ETHER_UNLOCK(ec);
   1600 			goto chipit;
   1601 		}
   1602 
   1603 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1604 
   1605 		/* Just want the 6 most significant bits. */
   1606 		crc >>= 26;
   1607 
   1608 		/* Set the corresponding bit in the filter. */
   1609 		hash[crc >> 4] |= 1 << (crc & 0xf);
   1610 
   1611 		ETHER_NEXT_MULTI(step, enm);
   1612 	}
   1613 	ETHER_UNLOCK(ec);
   1614 
   1615 	ifp->if_flags &= ~IFF_ALLMULTI;
   1616 
   1617 chipit:
   1618 	/* Now load the hash table into the chip */
   1619 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
   1620 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
   1621 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
   1622 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
   1623 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
   1624 }
   1625 
   1626 /*
   1627  * Routines for accessing the transmit and receive buffers.
   1628  * The various CPU and adapter configurations supported by this
   1629  * driver require three different access methods for buffers
   1630  * and descriptors:
   1631  *	(1) contig (contiguous data; no padding),
   1632  *	(2) gap2 (two bytes of data followed by two bytes of padding),
   1633  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
   1634  */
   1635 
   1636 #if 0
   1637 /*
   1638  * contig: contiguous data with no padding.
   1639  *
   1640  * Buffers may have any alignment.
   1641  */
   1642 
   1643 void
   1644 hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len)
   1645 {
   1646 	volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
   1647 
   1648 	/*
   1649 	 * Just call memcpy() to do the work.
   1650 	 */
   1651 	memcpy(buf, from, len);
   1652 }
   1653 
   1654 void
   1655 hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len)
   1656 {
   1657 	volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
   1658 
   1659 	/*
   1660 	 * Just call memcpy() to do the work.
   1661 	 */
   1662 	memcpy(to, buf, len);
   1663 }
   1664 #endif
   1665