Home | History | Annotate | Line # | Download | only in uvm
      1 /*	$NetBSD: uvm_km.c,v 1.166 2024/12/07 23:19:07 chs Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     37  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     38  *
     39  *
     40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41  * All rights reserved.
     42  *
     43  * Permission to use, copy, modify and distribute this software and
     44  * its documentation is hereby granted, provided that both the copyright
     45  * notice and this permission notice appear in all copies of the
     46  * software, derivative works or modified versions, and any portions
     47  * thereof, and that both notices appear in supporting documentation.
     48  *
     49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52  *
     53  * Carnegie Mellon requests users of this software to return to
     54  *
     55  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56  *  School of Computer Science
     57  *  Carnegie Mellon University
     58  *  Pittsburgh PA 15213-3890
     59  *
     60  * any improvements or extensions that they make and grant Carnegie the
     61  * rights to redistribute these changes.
     62  */
     63 
     64 /*
     65  * uvm_km.c: handle kernel memory allocation and management
     66  */
     67 
     68 /*
     69  * overview of kernel memory management:
     70  *
     71  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     72  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     73  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     74  *
     75  * the kernel_map has several "submaps."   submaps can only appear in
     76  * the kernel_map (user processes can't use them).   submaps "take over"
     77  * the management of a sub-range of the kernel's address space.  submaps
     78  * are typically allocated at boot time and are never released.   kernel
     79  * virtual address space that is mapped by a submap is locked by the
     80  * submap's lock -- not the kernel_map's lock.
     81  *
     82  * thus, the useful feature of submaps is that they allow us to break
     83  * up the locking and protection of the kernel address space into smaller
     84  * chunks.
     85  *
     86  * the vm system has several standard kernel submaps/arenas, including:
     87  *   kmem_arena => used for kmem/pool (memoryallocators(9))
     88  *   pager_map => used to map "buf" structures into kernel space
     89  *   exec_map => used during exec to handle exec args
     90  *   etc...
     91  *
     92  * The kmem_arena is a "special submap", as it lives in a fixed map entry
     93  * within the kernel_map and is controlled by vmem(9).
     94  *
     95  * the kernel allocates its private memory out of special uvm_objects whose
     96  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
     97  * are "special" and never die).   all kernel objects should be thought of
     98  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
     99  * object is equal to the size of kernel virtual address space (i.e. the
    100  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    101  *
    102  * note that just because a kernel object spans the entire kernel virtual
    103  * address space doesn't mean that it has to be mapped into the entire space.
    104  * large chunks of a kernel object's space go unused either because
    105  * that area of kernel VM is unmapped, or there is some other type of
    106  * object mapped into that range (e.g. a vnode).    for submap's kernel
    107  * objects, the only part of the object that can ever be populated is the
    108  * offsets that are managed by the submap.
    109  *
    110  * note that the "offset" in a kernel object is always the kernel virtual
    111  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    112  * example:
    113  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    114  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    115  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    116  *   then that means that the page at offset 0x235000 in kernel_object is
    117  *   mapped at 0xf8235000.
    118  *
    119  * kernel object have one other special property: when the kernel virtual
    120  * memory mapping them is unmapped, the backing memory in the object is
    121  * freed right away.   this is done with the uvm_km_pgremove() function.
    122  * this has to be done because there is no backing store for kernel pages
    123  * and no need to save them after they are no longer referenced.
    124  *
    125  * Generic arenas:
    126  *
    127  * kmem_arena:
    128  *	Main arena controlling the kernel KVA used by other arenas.
    129  *
    130  * kmem_va_arena:
    131  *	Implements quantum caching in order to speedup allocations and
    132  *	reduce fragmentation.  The pool(9), unless created with a custom
    133  *	meta-data allocator, and kmem(9) subsystems use this arena.
    134  *
    135  * Arenas for meta-data allocations are used by vmem(9) and pool(9).
    136  * These arenas cannot use quantum cache.  However, kmem_va_meta_arena
    137  * compensates this by importing larger chunks from kmem_arena.
    138  *
    139  * kmem_va_meta_arena:
    140  *	Space for meta-data.
    141  *
    142  * kmem_meta_arena:
    143  *	Imports from kmem_va_meta_arena.  Allocations from this arena are
    144  *	backed with the pages.
    145  *
    146  * Arena stacking:
    147  *
    148  *	kmem_arena
    149  *		kmem_va_arena
    150  *		kmem_va_meta_arena
    151  *			kmem_meta_arena
    152  */
    153 
    154 #include <sys/cdefs.h>
    155 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.166 2024/12/07 23:19:07 chs Exp $");
    156 
    157 #include "opt_uvmhist.h"
    158 
    159 #include "opt_kmempages.h"
    160 
    161 #ifndef NKMEMPAGES
    162 #define NKMEMPAGES 0
    163 #endif
    164 
    165 /*
    166  * Defaults for lower and upper-bounds for the kmem_arena page count.
    167  * Can be overridden by kernel config options.
    168  */
    169 #ifndef NKMEMPAGES_MIN
    170 #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
    171 #endif
    172 
    173 #ifndef NKMEMPAGES_MAX
    174 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
    175 #endif
    176 
    177 
    178 #include <sys/param.h>
    179 #include <sys/systm.h>
    180 #include <sys/atomic.h>
    181 #include <sys/proc.h>
    182 #include <sys/pool.h>
    183 #include <sys/vmem.h>
    184 #include <sys/vmem_impl.h>
    185 #include <sys/kmem.h>
    186 #include <sys/msan.h>
    187 
    188 #include <uvm/uvm.h>
    189 
    190 /*
    191  * global data structures
    192  */
    193 
    194 struct vm_map *kernel_map = NULL;
    195 
    196 /*
    197  * local data structures
    198  */
    199 
    200 static struct vm_map		kernel_map_store;
    201 static struct vm_map_entry	kernel_image_mapent_store;
    202 static struct vm_map_entry	kernel_kmem_mapent_store;
    203 
    204 size_t nkmempages = 0;
    205 vaddr_t kmembase;
    206 vsize_t kmemsize;
    207 
    208 static struct vmem kmem_arena_store;
    209 vmem_t *kmem_arena = NULL;
    210 static struct vmem kmem_va_arena_store;
    211 vmem_t *kmem_va_arena;
    212 
    213 /*
    214  * kmeminit_nkmempages: calculate the size of kmem_arena.
    215  */
    216 void
    217 kmeminit_nkmempages(void)
    218 {
    219 	size_t npages;
    220 
    221 	if (nkmempages != 0) {
    222 		/*
    223 		 * It's already been set (by us being here before)
    224 		 * bail out now;
    225 		 */
    226 		return;
    227 	}
    228 
    229 #if defined(NKMEMPAGES_MAX_UNLIMITED) && !defined(KMSAN)
    230 	/*
    231 	 * The extra 1/9 here is to account for uvm_km_va_starved_p()
    232 	 * wanting to keep 10% of kmem virtual space free.
    233 	 * The intent is that on "unlimited" platforms we should be able
    234 	 * to allocate all of physical memory as kmem without behaving
    235 	 * as though we running short of kmem virtual space.
    236 	 */
    237 	npages = (physmem * 10) / 9;
    238 #else
    239 
    240 #if defined(KMSAN)
    241 	npages = (physmem / 4);
    242 #elif defined(PMAP_MAP_POOLPAGE)
    243 	npages = (physmem / 4);
    244 #else
    245 	npages = (physmem / 3) * 2;
    246 #endif /* defined(PMAP_MAP_POOLPAGE) */
    247 
    248 #if !defined(NKMEMPAGES_MAX_UNLIMITED)
    249 	if (npages > NKMEMPAGES_MAX)
    250 		npages = NKMEMPAGES_MAX;
    251 #endif
    252 
    253 #endif
    254 
    255 	if (npages < NKMEMPAGES_MIN)
    256 		npages = NKMEMPAGES_MIN;
    257 
    258 	nkmempages = npages;
    259 }
    260 
    261 /*
    262  * uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
    263  * KVM already allocated for text, data, bss, and static data structures).
    264  *
    265  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    266  *    we assume that [vmin -> start] has already been allocated and that
    267  *    "end" is the end.
    268  */
    269 
    270 void
    271 uvm_km_bootstrap(vaddr_t start, vaddr_t end)
    272 {
    273 	bool kmem_arena_small;
    274 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    275 	struct uvm_map_args args;
    276 	int error;
    277 
    278 	UVMHIST_FUNC(__func__);
    279 	UVMHIST_CALLARGS(maphist, "start=%#jx end=%#jx", start, end, 0,0);
    280 
    281 	kmeminit_nkmempages();
    282 	kmemsize = (vsize_t)nkmempages * PAGE_SIZE;
    283 	kmem_arena_small = kmemsize < 64 * 1024 * 1024;
    284 
    285 	UVMHIST_LOG(maphist, "kmemsize=%#jx", kmemsize, 0,0,0);
    286 
    287 	/*
    288 	 * next, init kernel memory objects.
    289 	 */
    290 
    291 	/* kernel_object: for pageable anonymous kernel memory */
    292 	uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    293 				VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    294 
    295 	/*
    296 	 * init the map and reserve any space that might already
    297 	 * have been allocated kernel space before installing.
    298 	 */
    299 
    300 	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    301 	kernel_map_store.pmap = pmap_kernel();
    302 	if (start != base) {
    303 		error = uvm_map_prepare(&kernel_map_store,
    304 		    base, start - base,
    305 		    NULL, UVM_UNKNOWN_OFFSET, 0,
    306 		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    307 		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
    308 		if (!error) {
    309 			kernel_image_mapent_store.flags =
    310 			    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
    311 			error = uvm_map_enter(&kernel_map_store, &args,
    312 			    &kernel_image_mapent_store);
    313 		}
    314 
    315 		if (error)
    316 			panic(
    317 			    "uvm_km_bootstrap: could not reserve space for kernel");
    318 
    319 		kmembase = args.uma_start + args.uma_size;
    320 	} else {
    321 		kmembase = base;
    322 	}
    323 
    324 	error = uvm_map_prepare(&kernel_map_store,
    325 	    kmembase, kmemsize,
    326 	    NULL, UVM_UNKNOWN_OFFSET, 0,
    327 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    328 	    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
    329 	if (!error) {
    330 		kernel_kmem_mapent_store.flags =
    331 		    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
    332 		error = uvm_map_enter(&kernel_map_store, &args,
    333 		    &kernel_kmem_mapent_store);
    334 	}
    335 
    336 	if (error)
    337 		panic("uvm_km_bootstrap: could not reserve kernel kmem");
    338 
    339 	/*
    340 	 * install!
    341 	 */
    342 
    343 	kernel_map = &kernel_map_store;
    344 
    345 	pool_subsystem_init();
    346 
    347 	kmem_arena = vmem_init(&kmem_arena_store, "kmem",
    348 	    kmembase, kmemsize, PAGE_SIZE, NULL, NULL, NULL,
    349 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    350 #ifdef PMAP_GROWKERNEL
    351 	/*
    352 	 * kmem_arena VA allocations happen independently of uvm_map.
    353 	 * grow kernel to accommodate the kmem_arena.
    354 	 */
    355 	if (uvm_maxkaddr < kmembase + kmemsize) {
    356 		uvm_maxkaddr = pmap_growkernel(kmembase + kmemsize);
    357 		KASSERTMSG(uvm_maxkaddr >= kmembase + kmemsize,
    358 		    "%#"PRIxVADDR" %#"PRIxVADDR" %#"PRIxVSIZE,
    359 		    uvm_maxkaddr, kmembase, kmemsize);
    360 	}
    361 #endif
    362 
    363 	vmem_subsystem_init(kmem_arena);
    364 
    365 	UVMHIST_LOG(maphist, "kmem vmem created (base=%#jx, size=%#jx",
    366 	    kmembase, kmemsize, 0,0);
    367 
    368 	kmem_va_arena = vmem_init(&kmem_va_arena_store, "kva",
    369 	    0, 0, PAGE_SIZE, vmem_alloc, vmem_free, kmem_arena,
    370 	    (kmem_arena_small ? 4 : VMEM_QCACHE_IDX_MAX) * PAGE_SIZE,
    371 	    VM_NOSLEEP, IPL_VM);
    372 
    373 	UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
    374 }
    375 
    376 /*
    377  * uvm_km_init: init the kernel maps virtual memory caches
    378  * and start the pool/kmem allocator.
    379  */
    380 void
    381 uvm_km_init(void)
    382 {
    383 	kmem_init();
    384 }
    385 
    386 /*
    387  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    388  * is allocated all references to that area of VM must go through it.  this
    389  * allows the locking of VAs in kernel_map to be broken up into regions.
    390  *
    391  * => if `fixed' is true, *vmin specifies where the region described
    392  *   pager_map => used to map "buf" structures into kernel space
    393  *      by the submap must start
    394  * => if submap is non NULL we use that as the submap, otherwise we
    395  *	alloc a new map
    396  */
    397 
    398 struct vm_map *
    399 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
    400     vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
    401     struct vm_map *submap)
    402 {
    403 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    404 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    405 
    406 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    407 
    408 	size = round_page(size);	/* round up to pagesize */
    409 
    410 	/*
    411 	 * first allocate a blank spot in the parent map
    412 	 */
    413 
    414 	if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
    415 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    416 	    UVM_ADV_RANDOM, mapflags)) != 0) {
    417 		panic("%s: unable to allocate space in parent map", __func__);
    418 	}
    419 
    420 	/*
    421 	 * set VM bounds (vmin is filled in by uvm_map)
    422 	 */
    423 
    424 	*vmax = *vmin + size;
    425 
    426 	/*
    427 	 * add references to pmap and create or init the submap
    428 	 */
    429 
    430 	pmap_reference(vm_map_pmap(map));
    431 	if (submap == NULL) {
    432 		submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
    433 	}
    434 	uvm_map_setup(submap, *vmin, *vmax, flags);
    435 	submap->pmap = vm_map_pmap(map);
    436 
    437 	/*
    438 	 * now let uvm_map_submap plug in it...
    439 	 */
    440 
    441 	if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
    442 		panic("uvm_km_suballoc: submap allocation failed");
    443 
    444 	return(submap);
    445 }
    446 
    447 /*
    448  * uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
    449  */
    450 
    451 void
    452 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
    453 {
    454 	struct uvm_object * const uobj = uvm_kernel_object;
    455 	const voff_t start = startva - vm_map_min(kernel_map);
    456 	const voff_t end = endva - vm_map_min(kernel_map);
    457 	struct vm_page *pg;
    458 	voff_t curoff, nextoff;
    459 	int swpgonlydelta = 0;
    460 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    461 
    462 	KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
    463 	KASSERT(startva < endva);
    464 	KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
    465 
    466 	rw_enter(uobj->vmobjlock, RW_WRITER);
    467 	pmap_remove(pmap_kernel(), startva, endva);
    468 	for (curoff = start; curoff < end; curoff = nextoff) {
    469 		nextoff = curoff + PAGE_SIZE;
    470 		pg = uvm_pagelookup(uobj, curoff);
    471 		if (pg != NULL && pg->flags & PG_BUSY) {
    472 			uvm_pagewait(pg, uobj->vmobjlock, "km_pgrm");
    473 			rw_enter(uobj->vmobjlock, RW_WRITER);
    474 			nextoff = curoff;
    475 			continue;
    476 		}
    477 
    478 		/*
    479 		 * free the swap slot, then the page.
    480 		 */
    481 
    482 		if (pg == NULL &&
    483 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
    484 			swpgonlydelta++;
    485 		}
    486 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    487 		if (pg != NULL) {
    488 			uvm_pagefree(pg);
    489 		}
    490 	}
    491 	rw_exit(uobj->vmobjlock);
    492 
    493 	if (swpgonlydelta > 0) {
    494 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
    495 		atomic_add_int(&uvmexp.swpgonly, -swpgonlydelta);
    496 	}
    497 }
    498 
    499 
    500 /*
    501  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
    502  *    regions.
    503  *
    504  * => when you unmap a part of anonymous kernel memory you want to toss
    505  *    the pages right away.    (this is called from uvm_unmap_...).
    506  * => none of the pages will ever be busy, and none of them will ever
    507  *    be on the active or inactive queues (because they have no object).
    508  */
    509 
    510 void
    511 uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
    512 {
    513 #define __PGRM_BATCH 16
    514 	struct vm_page *pg;
    515 	paddr_t pa[__PGRM_BATCH];
    516 	int npgrm, i;
    517 	vaddr_t va, batch_vastart;
    518 
    519 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    520 
    521 	KASSERT(VM_MAP_IS_KERNEL(map));
    522 	KASSERTMSG(vm_map_min(map) <= start,
    523 	    "vm_map_min(map) [%#"PRIxVADDR"] <= start [%#"PRIxVADDR"]"
    524 	    " (size=%#"PRIxVSIZE")",
    525 	    vm_map_min(map), start, end - start);
    526 	KASSERT(start < end);
    527 	KASSERT(end <= vm_map_max(map));
    528 
    529 	for (va = start; va < end;) {
    530 		batch_vastart = va;
    531 		/* create a batch of at most __PGRM_BATCH pages to free */
    532 		for (i = 0;
    533 		     i < __PGRM_BATCH && va < end;
    534 		     va += PAGE_SIZE) {
    535 			if (!pmap_extract(pmap_kernel(), va, &pa[i])) {
    536 				continue;
    537 			}
    538 			i++;
    539 		}
    540 		npgrm = i;
    541 		/* now remove the mappings */
    542 		pmap_kremove(batch_vastart, va - batch_vastart);
    543 		/* and free the pages */
    544 		for (i = 0; i < npgrm; i++) {
    545 			pg = PHYS_TO_VM_PAGE(pa[i]);
    546 			KASSERT(pg);
    547 			KASSERT(pg->uobject == NULL);
    548 			KASSERT(pg->uanon == NULL);
    549 			KASSERT((pg->flags & PG_BUSY) == 0);
    550 			uvm_pagefree(pg);
    551 		}
    552 	}
    553 #undef __PGRM_BATCH
    554 }
    555 
    556 #if defined(DEBUG)
    557 void
    558 uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
    559 {
    560 	vaddr_t va;
    561 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    562 
    563 	KDASSERT(VM_MAP_IS_KERNEL(map));
    564 	KDASSERT(vm_map_min(map) <= start);
    565 	KDASSERT(start < end);
    566 	KDASSERT(end <= vm_map_max(map));
    567 
    568 	for (va = start; va < end; va += PAGE_SIZE) {
    569 		paddr_t pa;
    570 
    571 		if (pmap_extract(pmap_kernel(), va, &pa)) {
    572 			panic("uvm_km_check_empty: va %p has pa %#llx",
    573 			    (void *)va, (long long)pa);
    574 		}
    575 		/*
    576 		 * kernel_object should not have pages for the corresponding
    577 		 * region.  check it.
    578 		 *
    579 		 * why trylock?  because:
    580 		 * - caller might not want to block.
    581 		 * - we can recurse when allocating radix_node for
    582 		 *   kernel_object.
    583 		 */
    584 		if (rw_tryenter(uvm_kernel_object->vmobjlock, RW_READER)) {
    585 			struct vm_page *pg;
    586 
    587 			pg = uvm_pagelookup(uvm_kernel_object,
    588 			    va - vm_map_min(kernel_map));
    589 			rw_exit(uvm_kernel_object->vmobjlock);
    590 			if (pg) {
    591 				panic("uvm_km_check_empty: "
    592 				    "has page hashed at %p",
    593 				    (const void *)va);
    594 			}
    595 		}
    596 	}
    597 }
    598 #endif /* defined(DEBUG) */
    599 
    600 /*
    601  * uvm_km_alloc: allocate an area of kernel memory.
    602  *
    603  * => NOTE: we can return 0 even if we can wait if there is not enough
    604  *	free VM space in the map... caller should be prepared to handle
    605  *	this case.
    606  * => we return KVA of memory allocated
    607  */
    608 
    609 vaddr_t
    610 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    611 {
    612 	vaddr_t kva, loopva;
    613 	vaddr_t offset;
    614 	vsize_t loopsize;
    615 	struct vm_page *pg;
    616 	struct uvm_object *obj;
    617 	int pgaflags;
    618 	vm_prot_t prot, vaprot;
    619 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    620 
    621 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    622 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
    623 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
    624 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
    625 	KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
    626 	KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
    627 
    628 	/*
    629 	 * setup for call
    630 	 */
    631 
    632 	kva = vm_map_min(map);	/* hint */
    633 	size = round_page(size);
    634 	obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
    635 	UVMHIST_LOG(maphist,"  (map=%#jx, obj=%#jx, size=%#jx, flags=%#jx)",
    636 	    (uintptr_t)map, (uintptr_t)obj, size, flags);
    637 
    638 	/*
    639 	 * allocate some virtual space
    640 	 */
    641 
    642 	vaprot = (flags & UVM_KMF_EXEC) ? UVM_PROT_ALL : UVM_PROT_RW;
    643 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    644 	    align, UVM_MAPFLAG(vaprot, UVM_PROT_ALL, UVM_INH_NONE,
    645 	    UVM_ADV_RANDOM,
    646 	    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
    647 	     | UVM_KMF_COLORMATCH)))) != 0)) {
    648 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    649 		return(0);
    650 	}
    651 
    652 	/*
    653 	 * if all we wanted was VA, return now
    654 	 */
    655 
    656 	if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
    657 		UVMHIST_LOG(maphist,"<- done valloc (kva=%#jx)", kva,0,0,0);
    658 		return(kva);
    659 	}
    660 
    661 	/*
    662 	 * recover object offset from virtual address
    663 	 */
    664 
    665 	offset = kva - vm_map_min(kernel_map);
    666 	UVMHIST_LOG(maphist, "  kva=%#jx, offset=%#jx", kva, offset,0,0);
    667 
    668 	/*
    669 	 * now allocate and map in the memory... note that we are the only ones
    670 	 * whom should ever get a handle on this area of VM.
    671 	 */
    672 
    673 	loopva = kva;
    674 	loopsize = size;
    675 
    676 	pgaflags = UVM_FLAG_COLORMATCH;
    677 	if (flags & UVM_KMF_NOWAIT)
    678 		pgaflags |= UVM_PGA_USERESERVE;
    679 	if (flags & UVM_KMF_ZERO)
    680 		pgaflags |= UVM_PGA_ZERO;
    681 	prot = VM_PROT_READ | VM_PROT_WRITE;
    682 	if (flags & UVM_KMF_EXEC)
    683 		prot |= VM_PROT_EXECUTE;
    684 	while (loopsize) {
    685 		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
    686 		    "loopva=%#"PRIxVADDR, loopva);
    687 
    688 		pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
    689 #ifdef UVM_KM_VMFREELIST
    690 		   UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
    691 #else
    692 		   UVM_PGA_STRAT_NORMAL, 0
    693 #endif
    694 		   );
    695 
    696 		/*
    697 		 * out of memory?
    698 		 */
    699 
    700 		if (__predict_false(pg == NULL)) {
    701 			if ((flags & UVM_KMF_NOWAIT) ||
    702 			    ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
    703 				/* free everything! */
    704 				uvm_km_free(map, kva, size,
    705 				    flags & UVM_KMF_TYPEMASK);
    706 				return (0);
    707 			} else {
    708 				uvm_wait("km_getwait2");	/* sleep here */
    709 				continue;
    710 			}
    711 		}
    712 
    713 		pg->flags &= ~PG_BUSY;	/* new page */
    714 		UVM_PAGE_OWN(pg, NULL);
    715 
    716 		/*
    717 		 * map it in
    718 		 */
    719 
    720 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    721 		    prot, PMAP_KMPAGE);
    722 		loopva += PAGE_SIZE;
    723 		offset += PAGE_SIZE;
    724 		loopsize -= PAGE_SIZE;
    725 	}
    726 
    727 	pmap_update(pmap_kernel());
    728 
    729 	if ((flags & UVM_KMF_ZERO) == 0) {
    730 		kmsan_orig((void *)kva, size, KMSAN_TYPE_UVM, __RET_ADDR);
    731 		kmsan_mark((void *)kva, size, KMSAN_STATE_UNINIT);
    732 	}
    733 
    734 	UVMHIST_LOG(maphist,"<- done (kva=%#jx)", kva,0,0,0);
    735 	return(kva);
    736 }
    737 
    738 /*
    739  * uvm_km_protect: change the protection of an allocated area
    740  */
    741 
    742 int
    743 uvm_km_protect(struct vm_map *map, vaddr_t addr, vsize_t size, vm_prot_t prot)
    744 {
    745 	return uvm_map_protect(map, addr, addr + round_page(size), prot, false);
    746 }
    747 
    748 /*
    749  * uvm_km_free: free an area of kernel memory
    750  */
    751 
    752 void
    753 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
    754 {
    755 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    756 
    757 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
    758 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
    759 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
    760 	KASSERT((addr & PAGE_MASK) == 0);
    761 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    762 
    763 	size = round_page(size);
    764 
    765 	if (flags & UVM_KMF_PAGEABLE) {
    766 		uvm_km_pgremove(addr, addr + size);
    767 	} else if (flags & UVM_KMF_WIRED) {
    768 		/*
    769 		 * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
    770 		 * remove it after.  See comment below about KVA visibility.
    771 		 */
    772 		uvm_km_pgremove_intrsafe(map, addr, addr + size);
    773 	}
    774 
    775 	/*
    776 	 * Note: uvm_unmap_remove() calls pmap_update() for us, before
    777 	 * KVA becomes globally available.
    778 	 */
    779 
    780 	uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
    781 }
    782 
    783 /* Sanity; must specify both or none. */
    784 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    785     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    786 #error Must specify MAP and UNMAP together.
    787 #endif
    788 
    789 #if defined(PMAP_ALLOC_POOLPAGE) && \
    790     !defined(PMAP_MAP_POOLPAGE) && !defined(PMAP_UNMAP_POOLPAGE)
    791 #error Must specify ALLOC with MAP and UNMAP
    792 #endif
    793 
    794 int
    795 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    796     vmem_addr_t *addr)
    797 {
    798 	struct vm_page *pg;
    799 	vmem_addr_t va;
    800 	int rc;
    801 	vaddr_t loopva;
    802 	vsize_t loopsize;
    803 
    804 	size = round_page(size);
    805 
    806 #if defined(PMAP_MAP_POOLPAGE)
    807 	if (size == PAGE_SIZE) {
    808 again:
    809 #ifdef PMAP_ALLOC_POOLPAGE
    810 		pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
    811 		   0 : UVM_PGA_USERESERVE);
    812 #else
    813 		pg = uvm_pagealloc(NULL, 0, NULL,
    814 		   (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
    815 #endif /* PMAP_ALLOC_POOLPAGE */
    816 		if (__predict_false(pg == NULL)) {
    817 			if (flags & VM_SLEEP) {
    818 				uvm_wait("plpg");
    819 				goto again;
    820 			}
    821 			return ENOMEM;
    822 		}
    823 		va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    824 		KASSERT(va != 0);
    825 		*addr = va;
    826 		return 0;
    827 	}
    828 #endif /* PMAP_MAP_POOLPAGE */
    829 
    830 	rc = vmem_alloc(vm, size, flags, &va);
    831 	if (rc != 0)
    832 		return rc;
    833 
    834 #ifdef PMAP_GROWKERNEL
    835 	/*
    836 	 * These VA allocations happen independently of uvm_map
    837 	 * so this allocation must not extend beyond the current limit.
    838 	 */
    839 	KASSERTMSG(uvm_maxkaddr >= va + size,
    840 	    "%#"PRIxVADDR" %#"PRIxPTR" %#zx",
    841 	    uvm_maxkaddr, va, size);
    842 #endif
    843 
    844 	loopva = va;
    845 	loopsize = size;
    846 
    847 	while (loopsize) {
    848 		paddr_t pa __diagused;
    849 		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, &pa),
    850 		    "loopva=%#"PRIxVADDR" loopsize=%#"PRIxVSIZE
    851 		    " pa=%#"PRIxPADDR" vmem=%p",
    852 		    loopva, loopsize, pa, vm);
    853 
    854 		pg = uvm_pagealloc(NULL, loopva, NULL,
    855 		    UVM_FLAG_COLORMATCH
    856 		    | ((flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE));
    857 		if (__predict_false(pg == NULL)) {
    858 			if (flags & VM_SLEEP) {
    859 				uvm_wait("plpg");
    860 				continue;
    861 			} else {
    862 				uvm_km_pgremove_intrsafe(kernel_map, va,
    863 				    va + size);
    864 				vmem_free(vm, va, size);
    865 				return ENOMEM;
    866 			}
    867 		}
    868 
    869 		pg->flags &= ~PG_BUSY;	/* new page */
    870 		UVM_PAGE_OWN(pg, NULL);
    871 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    872 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
    873 
    874 		loopva += PAGE_SIZE;
    875 		loopsize -= PAGE_SIZE;
    876 	}
    877 	pmap_update(pmap_kernel());
    878 
    879 	*addr = va;
    880 
    881 	return 0;
    882 }
    883 
    884 void
    885 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
    886 {
    887 
    888 	size = round_page(size);
    889 #if defined(PMAP_UNMAP_POOLPAGE)
    890 	if (size == PAGE_SIZE) {
    891 		paddr_t pa;
    892 
    893 		pa = PMAP_UNMAP_POOLPAGE(addr);
    894 		uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    895 		return;
    896 	}
    897 #endif /* PMAP_UNMAP_POOLPAGE */
    898 	uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
    899 	pmap_update(pmap_kernel());
    900 
    901 	vmem_free(vm, addr, size);
    902 }
    903 
    904 bool
    905 uvm_km_va_starved_p(void)
    906 {
    907 	vmem_size_t total;
    908 	vmem_size_t free;
    909 
    910 	if (kmem_arena == NULL)
    911 		return false;
    912 
    913 	total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
    914 	free = vmem_size(kmem_arena, VMEM_FREE);
    915 
    916 	return (free < (total / 10));
    917 }
    918