Home | History | Annotate | Line # | Download | only in eb7500atx
      1 /*	$NetBSD: eb7500atx_machdep.c,v 1.37 2022/05/15 20:37:51 andvar Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2000-2002 Reinoud Zandijk.
      5  * Copyright (c) 1994-1998 Mark Brinicombe.
      6  * Copyright (c) 1994 Brini.
      7  * All rights reserved.
      8  *
      9  * This code is derived from software written for Brini by Mark Brinicombe
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by Brini.
     22  * 4. The name of the company nor the name of the author may be used to
     23  *    endorse or promote products derived from this software without specific
     24  *    prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
     27  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     28  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     29  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     30  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     31  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     32  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36  * SUCH DAMAGE.
     37  *
     38  * RiscBSD kernel project
     39  *
     40  * machdep.c
     41  *
     42  * Machine dependent functions for kernel setup
     43  *
     44  * This file still needs a lot of work
     45  *
     46  * Created      : 17/09/94
     47  * Updated for yet another new bootloader 28/12/02
     48  */
     49 
     50 #include "opt_ddb.h"
     51 #include "opt_modular.h"
     52 #include "vidcvideo.h"
     53 #include "pckbc.h"
     54 
     55 #include <sys/param.h>
     56 
     57 __KERNEL_RCSID(0, "$NetBSD: eb7500atx_machdep.c,v 1.37 2022/05/15 20:37:51 andvar Exp $");
     58 
     59 #include <sys/systm.h>
     60 #include <sys/kernel.h>
     61 #include <sys/reboot.h>
     62 #include <sys/proc.h>
     63 #include <sys/msgbuf.h>
     64 #include <sys/exec.h>
     65 #include <sys/exec_aout.h>
     66 #include <sys/ksyms.h>
     67 #include <sys/bus.h>
     68 #include <sys/cpu.h>
     69 #include <sys/intr.h>
     70 #include <sys/device.h>
     71 
     72 #include <dev/cons.h>
     73 
     74 #include <dev/ic/pckbcvar.h>
     75 
     76 #include <dev/i2c/i2cvar.h>
     77 #include <dev/i2c/pcf8583var.h>
     78 
     79 #include <machine/db_machdep.h>
     80 #include <ddb/db_sym.h>
     81 #include <ddb/db_extern.h>
     82 
     83 #include <uvm/uvm.h>
     84 
     85 #include <arm/locore.h>
     86 #include <arm/undefined.h>
     87 
     88 #include <machine/signal.h>
     89 #include <machine/bootconfig.h>
     90 #include <machine/io.h>
     91 #include <arm/arm32/machdep.h>
     92 #include <machine/rtc.h>
     93 
     94 #include <arm/iomd/vidc.h>
     95 #include <arm/iomd/iomdreg.h>
     96 #include <arm/iomd/iomdvar.h>
     97 #include <arm/iomd/vidcvideo.h>
     98 #include <arm/iomd/iomdiicvar.h>
     99 
    100 /* static i2c_tag_t acorn32_i2c_tag;*/
    101 
    102 #include "ksyms.h"
    103 
    104 /* Kernel text starts at the base of the kernel address space. */
    105 #define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00000000)
    106 #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
    107 
    108 /*
    109  * The range 0xf1000000 - 0xf5ffffff is available for kernel VM space
    110  * Fixed mappings exist from 0xf6000000 - 0xffffffff
    111  */
    112 #define	KERNEL_VM_SIZE		0x05000000
    113 
    114 /*
    115  * Address to call from cpu_reset() to reset the machine.
    116  * This is machine architecture dependent as it varies depending
    117  * on where the ROM appears when you turn the MMU off.
    118  */
    119 
    120 #define VERBOSE_INIT_ARM
    121 
    122 struct bootconfig bootconfig;	/* Boot config storage */
    123 videomemory_t videomemory;	/* Video memory descriptor */
    124 
    125 char *boot_args = NULL;		/* holds the pre-processed boot arguments */
    126 extern char *booted_kernel;	/* used for ioctl to retrieve booted kernel */
    127 
    128 extern int       *vidc_base;
    129 extern uint32_t  iomd_base;
    130 extern struct bus_space iomd_bs_tag;
    131 
    132 paddr_t physical_start;
    133 paddr_t physical_freestart;
    134 paddr_t physical_freeend;
    135 paddr_t physical_end;
    136 paddr_t dma_range_begin;
    137 paddr_t dma_range_end;
    138 
    139 u_int free_pages;
    140 paddr_t memoryblock_end;
    141 
    142 #ifndef PMAP_STATIC_L1S
    143 int max_processes = 64;		/* Default number */
    144 #endif	/* !PMAP_STATIC_L1S */
    145 
    146 u_int videodram_size = 0;	/* Amount of DRAM to reserve for video */
    147 
    148 paddr_t msgbufphys;
    149 
    150 #define	KERNEL_PT_VMEM		0 /* Page table for mapping video memory */
    151 #define	KERNEL_PT_SYS		1 /* Page table for mapping proc0 zero page */
    152 #define	KERNEL_PT_KERNEL	2 /* Page table for mapping kernel */
    153 #define	KERNEL_PT_VMDATA	3 /* Page tables for mapping kernel VM */
    154 #define	KERNEL_PT_VMDATA_NUM	4 /* start with 16MB of KVM */
    155 #define	NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
    156 
    157 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
    158 
    159 
    160 #ifdef CPU_SA110
    161 #define CPU_SA110_CACHE_CLEAN_SIZE (0x4000 * 2)
    162 static vaddr_t sa110_cc_base;
    163 #endif	/* CPU_SA110 */
    164 
    165 /* Prototypes */
    166 void physcon_display_base(u_int);
    167 extern void consinit(void);
    168 
    169 void data_abort_handler(trapframe_t *);
    170 void prefetch_abort_handler(trapframe_t *);
    171 void undefinedinstruction_bounce(trapframe_t *frame);
    172 
    173 static void canonicalise_bootconfig(struct bootconfig *, struct bootconfig *);
    174 static void process_kernel_args(void);
    175 
    176 extern void dump_spl_masks(void);
    177 
    178 void rpc_sa110_cc_setup(void);
    179 
    180 void parse_rpc_bootargs(char *args);
    181 
    182 extern void dumpsys(void);
    183 
    184 
    185 #	define console_flush()		/* empty */
    186 
    187 
    188 #define panic2(a) do {							\
    189 	memset((void *) (videomemory.vidm_vbase), 0x55, 50*1024);	\
    190 	consinit();							\
    191 	panic a;							\
    192 } while (/* CONSTCOND */ 0)
    193 
    194 /*
    195  * void cpu_reboot(int howto, char *bootstr)
    196  *
    197  * Reboots the system
    198  *
    199  * Deal with any syncing, unmounting, dumping and shutdown hooks,
    200  * then reset the CPU.
    201  */
    202 
    203 /* NOTE: These variables will be removed, well some of them */
    204 
    205 extern u_int current_mask;
    206 
    207 void
    208 cpu_reboot(int howto, char *bootstr)
    209 {
    210 
    211 #ifdef DIAGNOSTIC
    212 	printf("boot: howto=%08x curlwp=%p\n", howto, curlwp);
    213 
    214 	printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_vm=%08x\n",
    215 	    irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
    216 	    irqmasks[IPL_VM]);
    217 	printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
    218 	    irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
    219 
    220 	/* dump_spl_masks(); */
    221 #endif	/* DIAGNOSTIC */
    222 
    223 	/*
    224 	 * If we are still cold then hit the air brakes
    225 	 * and crash to earth fast
    226 	 */
    227 	if (cold) {
    228 		doshutdownhooks();
    229 		pmf_system_shutdown(boothowto);
    230 		printf("Halted while still in the ICE age.\n");
    231 		printf("The operating system has halted.\n");
    232 		printf("Please press any key to reboot.\n\n");
    233 		cngetc();
    234 		printf("rebooting...\n");
    235 		cpu_reset();
    236 		/*NOTREACHED*/
    237 	}
    238 
    239 	/* Disable console buffering */
    240 	cnpollc(1);
    241 
    242 	/*
    243 	 * If RB_NOSYNC was not specified sync the discs.
    244 	 * Note: Unless cold is set to 1 here, syslogd will die during
    245 	 * the unmount.  It looks like syslogd is getting woken up
    246 	 * only to find that it cannot page part of the binary in as
    247 	 * the filesystem has been unmounted.
    248 	 */
    249 	if (!(howto & RB_NOSYNC))
    250 		bootsync();
    251 
    252 	/* Say NO to interrupts */
    253 	splhigh();
    254 
    255 	/* Do a dump if requested. */
    256 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    257 		dumpsys();
    258 
    259 	/*
    260 	 * Auto reboot overload protection
    261 	 *
    262 	 * This code stops the kernel entering an endless loop of reboot
    263 	 * - panic cycles. This will have the effect of stopping further
    264 	 * reboots after it has rebooted 8 times after panics. A clean
    265 	 * halt or reboot will reset the counter.
    266 	 */
    267 
    268 	/* Run any shutdown hooks */
    269 	doshutdownhooks();
    270 
    271 	pmf_system_shutdown(boothowto);
    272 
    273 	/* Make sure IRQ's are disabled */
    274 	IRQdisable;
    275 
    276 	if (howto & RB_HALT) {
    277 		printf("The operating system has halted.\n");
    278 		printf("Please press any key to reboot.\n\n");
    279 		cngetc();
    280 	}
    281 
    282 	printf("rebooting...\n");
    283 	cpu_reset();
    284 	/*NOTREACHED*/
    285 }
    286 
    287 
    288 /*
    289  * u_int initarm(BootConfig *bootconf)
    290  *
    291  * Initial entry point on startup. This gets called before main() is
    292  * entered.
    293  * It should be responsible for setting up everything that must be
    294  * in place when main is called.
    295  * This includes
    296  *   Taking a copy of the boot configuration structure.
    297  *   Initialising the physical console so characters can be printed.
    298  *   Setting up page tables for the kernel
    299  *   Relocating the kernel to the bottom of physical memory
    300  */
    301 
    302 /*
    303  * this part is completely rewritten for the new bootloader ... It features
    304  * a flat memory map with a mapping comparable to the EBSA arm32 machine
    305  * to boost the portability and likeness of the code
    306  */
    307 
    308 /*
    309  * Mapping table for core kernel memory. This memory is mapped at init
    310  * time with section mappings.
    311  *
    312  * XXX One big assumption in the current architecture seems that the kernel is
    313  * XXX supposed to be mapped into bootconfig.dram[0].
    314  */
    315 
    316 #define ONE_MB	0x100000
    317 
    318 struct l1_sec_map {
    319 	vaddr_t		va;
    320 	paddr_t		pa;
    321 	vsize_t		size;
    322 	vm_prot_t	prot;
    323 	int		cache;
    324 } l1_sec_table[] = {
    325 	/* Map 1Mb section for VIDC20 */
    326 	{ VIDC_BASE,		VIDC_HW_BASE,
    327 	    ONE_MB,		VM_PROT_READ|VM_PROT_WRITE,
    328 	    PTE_NOCACHE },
    329 
    330 	/* Map 1Mb section from IOMD */
    331 	{ IOMD_BASE,		IOMD_HW_BASE,
    332 	    ONE_MB,		VM_PROT_READ|VM_PROT_WRITE,
    333 	    PTE_NOCACHE },
    334 
    335 	/* Map 1Mb of COMBO (and module space) */
    336 	{ IO_BASE,		IO_HW_BASE,
    337 	    ONE_MB,		VM_PROT_READ|VM_PROT_WRITE,
    338 	    PTE_NOCACHE },
    339 	{ 0, 0, 0, 0, 0 }
    340 };
    341 
    342 
    343 static void
    344 canonicalise_bootconfig(struct bootconfig *bootconf, struct bootconfig *raw_bootconf)
    345 {
    346 	/* check for bootconfig v2+ structure */
    347 	if (raw_bootconf->magic == BOOTCONFIG_MAGIC) {
    348 		/* v2+ cleaned up structure found */
    349 		*bootconf = *raw_bootconf;
    350 		return;
    351 	} else {
    352 		panic2(("Internal error: no valid bootconfig block found"));
    353 	}
    354 }
    355 
    356 
    357 vaddr_t
    358 initarm(void *cookie)
    359 {
    360 	struct bootconfig *raw_bootconf = cookie;
    361 	int loop;
    362 	int loop1;
    363 	u_int logical;
    364 	u_int kerneldatasize;
    365 	u_int l1pagetable;
    366 	struct exec *kernexec = (struct exec *)KERNEL_TEXT_BASE;
    367 
    368 	/*
    369 	 * Heads up ... Setup the CPU / MMU / TLB functions
    370 	 */
    371 	set_cpufuncs();
    372 
    373 	/* canonicalise the boot configuration structure to allow versioning */
    374 	canonicalise_bootconfig(&bootconfig, raw_bootconf);
    375 	booted_kernel = bootconfig.kernelname;
    376 
    377 	/* if the wscons interface is used, switch off VERBOSE booting :( */
    378 #if NVIDCVIDEO>0
    379 #	undef VERBOSE_INIT_ARM
    380 #endif
    381 
    382 	/*
    383 	 * Initialise the video memory descriptor
    384 	 *
    385 	 * Note: all references to the video memory virtual/physical address
    386 	 * should go via this structure.
    387 	 */
    388 
    389 	/* Hardwire it on the place the bootloader tells us */
    390 	videomemory.vidm_vbase = bootconfig.display_start;
    391 	videomemory.vidm_pbase = bootconfig.display_phys;
    392 	videomemory.vidm_size = bootconfig.display_size;
    393 	if (bootconfig.vram[0].pages)
    394 		videomemory.vidm_type = VIDEOMEM_TYPE_VRAM;
    395 	else
    396 		videomemory.vidm_type = VIDEOMEM_TYPE_DRAM;
    397 	vidc_base = (int *) VIDC_HW_BASE;
    398 	iomd_base =         IOMD_HW_BASE;
    399 
    400 	/*
    401 	 * Initialise the physical console
    402 	 * This is done in main() but for the moment we do it here so that
    403 	 * we can use printf in initarm() before main() has been called.
    404 	 * only for `vidcconsole!' ... not wscons
    405 	 */
    406 #if NVIDCVIDEO == 0
    407 	consinit();
    408 #endif
    409 
    410 	/*
    411 	 * Initialise the diagnostic serial console
    412 	 * This allows a means of generating output during initarm().
    413 	 * Once all the memory map changes are complete we can call consinit()
    414 	 * and not have to worry about things moving.
    415 	 */
    416 	/* fcomcnattach(DC21285_ARMCSR_BASE, comcnspeed, comcnmode); */
    417 	/* XXX snif .... i am still not able to this */
    418 
    419 	/*
    420 	 * We have the following memory map (derived from EBSA)
    421 	 *
    422 	 * virtual address == physical address apart from the areas:
    423 	 * 0x00000000 -> 0x000fffff which is mapped to
    424 	 * top 1MB of physical memory
    425 	 * 0xf0000000 -> 0xf0ffffff which is mapped to
    426 	 * physical address 0x01000000 -> 0x01ffffff (DRAM0a, dram[0])
    427 	 *
    428 	 * This means that the kernel is mapped suitably for continuing
    429 	 * execution, all I/O is mapped 1:1 virtual to physical and
    430 	 * physical memory is accessible.
    431 	 *
    432 	 * The initarm() has the responsibility for creating the kernel
    433 	 * page tables.
    434 	 * It must also set up various memory pointers that are used
    435 	 * by pmap etc.
    436 	 */
    437 
    438 	/* START OF REAL NEW STUFF */
    439 
    440 	/* Check to make sure the page size is correct */
    441 	if (PAGE_SIZE != bootconfig.pagesize)
    442 		panic2(("Page size is %d bytes instead of %d !! (huh?)\n",
    443 			   bootconfig.pagesize, PAGE_SIZE));
    444 
    445 	/* process arguments */
    446 	process_kernel_args();
    447 
    448 
    449 	/*
    450 	 * Now set up the page tables for the kernel ... this part is copied
    451 	 * in a (modified?) way from the EBSA machine port....
    452 	 */
    453 
    454 #ifdef VERBOSE_INIT_ARM
    455 	printf("Allocating page tables\n");
    456 #endif
    457 	/*
    458 	 * Set up the variables that define the availability of physical
    459 	 * memory
    460 	 */
    461 	physical_start = 0xffffffff;
    462 	physical_end = 0;
    463 	for (loop = 0, physmem = 0; loop < bootconfig.dramblocks; ++loop) {
    464 	    	if (bootconfig.dram[loop].address < physical_start)
    465 			physical_start = bootconfig.dram[loop].address;
    466 		memoryblock_end = bootconfig.dram[loop].address +
    467 		    bootconfig.dram[loop].pages * PAGE_SIZE;
    468 		if (memoryblock_end > physical_end)
    469 			physical_end = memoryblock_end;
    470 		physmem += bootconfig.dram[loop].pages;
    471 	};
    472 	/* constants for now, but might be changed/configured */
    473 	dma_range_begin = (paddr_t) physical_start;
    474 	dma_range_end   = (paddr_t) MIN(physical_end, 512*1024*1024);
    475 	/* XXX HACK HACK XXX */
    476 	/* dma_range_end   = 0x18000000; */
    477 
    478 	if (physical_start !=  bootconfig.dram[0].address) {
    479 		int oldblocks = 0;
    480 
    481 		/*
    482 		 * must be a kinetic, as it's the only thing to shuffle memory
    483 		 * around
    484 		 */
    485 		/* hack hack - throw away the slow dram */
    486 		for (loop = 0; loop < bootconfig.dramblocks; ++loop) {
    487 			if (bootconfig.dram[loop].address <
    488 			    bootconfig.dram[0].address)	{
    489 				/* non kinetic ram */
    490 				bootconfig.dram[loop].address = 0;
    491 				physmem -= bootconfig.dram[loop].pages;
    492 				bootconfig.drampages -=
    493 				    bootconfig.dram[loop].pages;
    494 				bootconfig.dram[loop].pages = 0;
    495 				oldblocks++;
    496 			}
    497 		}
    498 		physical_start = bootconfig.dram[0].address;
    499 		bootconfig.dramblocks -= oldblocks;
    500 	}
    501 
    502 	physical_freestart = physical_start;
    503 	free_pages = bootconfig.drampages;
    504 	physical_freeend = physical_end;
    505 
    506 
    507 	/*
    508 	 * AHUM !! set this variable ... it was set up in the old 1st
    509 	 * stage bootloader
    510 	 */
    511 	kerneldatasize = bootconfig.kernsize + bootconfig.MDFsize;
    512 
    513 	/* Update the address of the first free page of physical memory */
    514 	/* XXX Assumption that the kernel and stuff is at the LOWEST physical memory address? XXX */
    515 	physical_freestart +=
    516 	    bootconfig.kernsize + bootconfig.MDFsize + bootconfig.scratchsize;
    517 	free_pages -= (physical_freestart - physical_start) / PAGE_SIZE;
    518 
    519 	/* Define a macro to simplify memory allocation */
    520 #define	valloc_pages(var, np)						\
    521 	alloc_pages((var).pv_pa, (np));					\
    522 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
    523 
    524 #define alloc_pages(var, np)						\
    525 	(var) = physical_freestart;					\
    526 	physical_freestart += ((np) * PAGE_SIZE);			\
    527 	free_pages -= (np);						\
    528 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
    529 
    530 	loop1 = 0;
    531 	kernel_l1pt.pv_pa = 0;
    532 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
    533 		/* Are we 16KB aligned for an L1 ? */
    534 		if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
    535 		    && kernel_l1pt.pv_pa == 0) {
    536 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
    537 		} else {
    538 			valloc_pages(kernel_pt_table[loop1],
    539 					L2_TABLE_SIZE / PAGE_SIZE);
    540 			++loop1;
    541 		}
    542 	}
    543 
    544 
    545 #ifdef DIAGNOSTIC
    546 	/* This should never be able to happen but better confirm that. */
    547 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
    548 		panic2(("initarm: Failed to align the kernel page "
    549 		    "directory\n"));
    550 #endif
    551 
    552 	/*
    553 	 * Allocate a page for the system page mapped to V0x00000000
    554 	 * This page will just contain the system vectors and can be
    555 	 * shared by all processes.
    556 	 */
    557 	alloc_pages(systempage.pv_pa, 1);
    558 
    559 	/* Allocate stacks for all modes */
    560 	valloc_pages(irqstack, IRQ_STACK_SIZE);
    561 	valloc_pages(abtstack, ABT_STACK_SIZE);
    562 	valloc_pages(undstack, UND_STACK_SIZE);
    563 	valloc_pages(kernelstack, UPAGES);
    564 
    565 #ifdef VERBOSE_INIT_ARM
    566 	printf("Setting up stacks :\n");
    567 	printf("IRQ stack: p0x%08lx v0x%08lx\n",
    568 	    irqstack.pv_pa, irqstack.pv_va);
    569 	printf("ABT stack: p0x%08lx v0x%08lx\n",
    570 	    abtstack.pv_pa, abtstack.pv_va);
    571 	printf("UND stack: p0x%08lx v0x%08lx\n",
    572 	    undstack.pv_pa, undstack.pv_va);
    573 	printf("SVC stack: p0x%08lx v0x%08lx\n",
    574 	    kernelstack.pv_pa, kernelstack.pv_va);
    575 	printf("\n");
    576 #endif
    577 
    578 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
    579 
    580 #ifdef CPU_SA110
    581 	/*
    582 	 * XXX totally stuffed hack to work round problems introduced
    583 	 * in recent versions of the pmap code. Due to the calls used there
    584 	 * we cannot allocate virtual memory during bootstrap.
    585 	 */
    586 	sa110_cc_base = (KERNEL_BASE + (physical_freestart - physical_start)
    587 	    + (CPU_SA110_CACHE_CLEAN_SIZE - 1))
    588 	    & ~(CPU_SA110_CACHE_CLEAN_SIZE - 1);
    589 #endif	/* CPU_SA110 */
    590 
    591 	/*
    592 	 * Ok we have allocated physical pages for the primary kernel
    593 	 * page tables
    594 	 */
    595 
    596 #ifdef VERBOSE_INIT_ARM
    597 	printf("Creating L1 page table\n");
    598 #endif
    599 
    600 	/*
    601 	 * Now we start construction of the L1 page table
    602 	 * We start by mapping the L2 page tables into the L1.
    603 	 * This means that we can replace L1 mappings later on if necessary
    604 	 */
    605 	l1pagetable = kernel_l1pt.pv_pa;
    606 
    607 	/* Map the L2 pages tables in the L1 page table */
    608 	pmap_link_l2pt(l1pagetable, 0x00000000,
    609 	    &kernel_pt_table[KERNEL_PT_SYS]);
    610 	pmap_link_l2pt(l1pagetable, KERNEL_BASE,
    611 	    &kernel_pt_table[KERNEL_PT_KERNEL]);
    612 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop)
    613 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
    614 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
    615 	pmap_link_l2pt(l1pagetable, VMEM_VBASE,
    616 	    &kernel_pt_table[KERNEL_PT_VMEM]);
    617 
    618 	/* update the top of the kernel VM */
    619 	pmap_curmaxkvaddr =
    620 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
    621 
    622 #ifdef VERBOSE_INIT_ARM
    623 	printf("Mapping kernel\n");
    624 #endif
    625 
    626 	/* Now we fill in the L2 pagetable for the kernel code/data */
    627 	/* XXX Kernel doesn't have to be on physical_start (!) use bootconfig XXX */
    628 	/*
    629 	 * The defines are a workaround for a recent problem that occurred
    630 	 * with ARM 610 processors and some ARM 710 processors
    631 	 * Other ARM 710 and StrongARM processors don't have a problem.
    632 	 */
    633 	if (N_GETMAGIC(kernexec[0]) == ZMAGIC) {
    634 #if defined(CPU_ARM6) || defined(CPU_ARM7)
    635 		logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
    636 		    physical_start, kernexec->a_text,
    637 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    638 #else	/* CPU_ARM6 || CPU_ARM7 */
    639 		logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
    640 		    physical_start, kernexec->a_text,
    641 		    VM_PROT_READ, PTE_CACHE);
    642 #endif	/* CPU_ARM6 || CPU_ARM7 */
    643 		logical += pmap_map_chunk(l1pagetable,
    644 		    KERNEL_TEXT_BASE + logical, physical_start + logical,
    645 		    kerneldatasize - kernexec->a_text,
    646 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    647 	} else {	/* !ZMAGIC */
    648 		/*
    649 		 * Most likely an ELF kernel ...
    650 		 * XXX no distinction yet between read only and
    651 		 * read/write area's ...
    652 		 */
    653 		pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
    654 		    physical_start, kerneldatasize,
    655 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    656 	};
    657 
    658 
    659 #ifdef VERBOSE_INIT_ARM
    660 	printf("Constructing L2 page tables\n");
    661 #endif
    662 
    663 	/* Map the stack pages */
    664 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
    665 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    666 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
    667 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    668 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
    669 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    670 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
    671 	    UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    672 
    673 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
    674 	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    675 
    676 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
    677 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
    678 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
    679 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    680 	}
    681 
    682 	/* Now we fill in the L2 pagetable for the VRAM */
    683 	/*
    684 	 * Current architectures mean that the VRAM is always in 1
    685 	 * continuous bank.  This means that we can just map the 2 meg
    686 	 * that the VRAM would occupy.  In theory we don't need a page
    687 	 * table for VRAM, we could section map it but we would need
    688 	 * the page tables if DRAM was in use.
    689 	 * XXX please map two adjacent virtual areas to ONE physical
    690 	 * area
    691 	 */
    692 	pmap_map_chunk(l1pagetable, VMEM_VBASE, videomemory.vidm_pbase,
    693 	    videomemory.vidm_size, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    694 	pmap_map_chunk(l1pagetable, VMEM_VBASE + videomemory.vidm_size,
    695 	    videomemory.vidm_pbase, videomemory.vidm_size,
    696 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    697 
    698 	/* Map the vector page. */
    699 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
    700 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    701 
    702 	/* Map the core memory needed before autoconfig */
    703 	loop = 0;
    704 	while (l1_sec_table[loop].size) {
    705 		vsize_t sz;
    706 
    707 #ifdef VERBOSE_INIT_ARM
    708 		printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
    709 			l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
    710 			l1_sec_table[loop].va);
    711 #endif
    712 		for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_S_SIZE)
    713 			pmap_map_section(l1pagetable,
    714 			    l1_sec_table[loop].va + sz,
    715 			    l1_sec_table[loop].pa + sz,
    716 			    l1_sec_table[loop].prot,
    717 			    l1_sec_table[loop].cache);
    718 		++loop;
    719 	}
    720 
    721 	/*
    722 	 * Now we have the real page tables in place so we can switch
    723 	 * to them.  Once this is done we will be running with the
    724 	 * REAL kernel page tables.
    725 	 */
    726 
    727 #ifdef VERBOSE_INIT_ARM
    728 	printf("switching domains\n");
    729 #endif
    730 	/* be a client to all domains */
    731 	cpu_domains(0x55555555);
    732 
    733 	/* Switch tables */
    734 #ifdef VERBOSE_INIT_ARM
    735 	printf("switching to new L1 page table\n");
    736 #endif
    737 	cpu_setttb(kernel_l1pt.pv_pa, true);
    738 
    739 	/*
    740 	 * We must now clean the cache again....
    741 	 * Cleaning may be done by reading new data to displace any
    742 	 * dirty data in the cache. This will have happened in cpu_setttb()
    743 	 * but since we are boot strapping the addresses used for the read
    744 	 * may have just been remapped and thus the cache could be out
    745 	 * of sync. A re-clean after the switch will cure this.
    746 	 * After booting there are no gross relocations of the kernel thus
    747 	 * this problem will not occur after initarm().
    748 	 */
    749 	cpu_idcache_wbinv_all();
    750 	cpu_tlb_flushID();
    751 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    752 
    753 	/*
    754 	 * Moved from cpu_startup() as data_abort_handler() references
    755 	 * this during uvm init
    756 	 */
    757 	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
    758 
    759 	/*
    760 	 * if there is support for a serial console ...we should now
    761 	 * reattach it
    762 	 */
    763 	/*      fcomcndetach();*/
    764 
    765 	/*
    766 	 * Reflect videomemory relocation in the videomemory structure
    767 	 * and reinit console
    768 	 */
    769 	if (bootconfig.vram[0].pages == 0) {
    770 		videomemory.vidm_vbase   = VMEM_VBASE;
    771 	} else {
    772 		videomemory.vidm_vbase   = VMEM_VBASE;
    773 		bootconfig.display_start = VMEM_VBASE;
    774 	};
    775 	vidc_base = (int *) VIDC_BASE;
    776 	iomd_base =         IOMD_BASE;
    777 
    778 #ifdef VERBOSE_INIT_ARM
    779 	printf("running on the new L1 page table!\n");
    780 	printf("done.\n");
    781 #endif
    782 
    783 	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
    784 
    785 #ifdef VERBOSE_INIT_ARM
    786 	printf("\n");
    787 #endif
    788 
    789 	/*
    790 	 * Pages were allocated during the secondary bootstrap for the
    791 	 * stacks for different CPU modes.
    792 	 * We must now set the r13 registers in the different CPU modes to
    793 	 * point to these stacks.
    794 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
    795 	 * of the stack memory.
    796 	 */
    797 #ifdef VERBOSE_INIT_ARM
    798 	printf("init subsystems: stacks ");
    799 	console_flush();
    800 #endif
    801 
    802 	set_stackptr(PSR_IRQ32_MODE,
    803 	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
    804 	set_stackptr(PSR_ABT32_MODE,
    805 	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
    806 	set_stackptr(PSR_UND32_MODE,
    807 	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
    808 #ifdef VERBOSE_INIT_ARM
    809 	printf("kstack V%08lx P%08lx\n", kernelstack.pv_va,
    810 	    kernelstack.pv_pa);
    811 #endif	/* VERBOSE_INIT_ARM */
    812 
    813 	/*
    814 	 * Well we should set a data abort handler.
    815 	 * Once things get going this will change as we will need a proper
    816 	 * handler. Until then we will use a handler that just panics but
    817 	 * tells us why.
    818 	 * Initialisation of the vectors will just panic on a data abort.
    819 	 * This just fills in a slightly better one.
    820 	 */
    821 #ifdef VERBOSE_INIT_ARM
    822 	printf("vectors ");
    823 #endif
    824 	data_abort_handler_address = (u_int)data_abort_handler;
    825 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
    826 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
    827 	console_flush();
    828 
    829 
    830 	/*
    831 	 * At last !
    832 	 * We now have the kernel in physical memory from the bottom upwards.
    833 	 * Kernel page tables are physically above this.
    834 	 * The kernel is mapped to 0xf0000000
    835 	 * The kernel data PTs will handle the mapping of
    836 	 *   0xf1000000-0xf5ffffff (80 Mb)
    837 	 * 2Meg of VRAM is mapped to 0xf7000000
    838 	 * The page tables are mapped to 0xefc00000
    839 	 * The IOMD is mapped to 0xf6000000
    840 	 * The VIDC is mapped to 0xf6100000
    841 	 * The IOMD/VIDC could be pushed up higher but i havent got
    842 	 * sufficient documentation to do so; the addresses are not
    843 	 * parametized yet and hard to read... better fix this before;
    844 	 * its pretty unforgiving.
    845 	 */
    846 
    847 	/* Initialise the undefined instruction handlers */
    848 #ifdef VERBOSE_INIT_ARM
    849 	printf("undefined ");
    850 #endif
    851 	undefined_init();
    852 	console_flush();
    853 
    854 	/* Load memory into UVM. */
    855 #ifdef VERBOSE_INIT_ARM
    856 	printf("page ");
    857 #endif
    858 	uvm_md_init();
    859 
    860 	for (loop = 0; loop < bootconfig.dramblocks; loop++) {
    861 		paddr_t start = (paddr_t)bootconfig.dram[loop].address;
    862 		paddr_t end = start + (bootconfig.dram[loop].pages * PAGE_SIZE);
    863 
    864 		if (start < physical_freestart)
    865 			start = physical_freestart;
    866 		if (end > physical_freeend)
    867 			end = physical_freeend;
    868 
    869 		/* XXX Consider DMA range intersection checking. */
    870 
    871 		uvm_page_physload(atop(start), atop(end),
    872 		    atop(start), atop(end), VM_FREELIST_DEFAULT);
    873 	}
    874 
    875 	/* Boot strap pmap telling it where managed kernel virtual memory is */
    876 #ifdef VERBOSE_INIT_ARM
    877 	printf("pmap ");
    878 #endif
    879 	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
    880 	console_flush();
    881 
    882 	/* Setup the IRQ system */
    883 #ifdef VERBOSE_INIT_ARM
    884 	printf("irq ");
    885 #endif
    886 	console_flush();
    887 	irq_init();
    888 #ifdef VERBOSE_INIT_ARM
    889 	printf("done.\n\n");
    890 #endif
    891 
    892 #if NVIDCVIDEO>0
    893 	consinit();		/* necessary ? */
    894 #endif
    895 
    896 	/* Talk to the user */
    897 	printf("NetBSD/evbarm booting ... \n");
    898 
    899 	/* Tell the user if his boot loader is too old */
    900 	if ((bootconfig.magic < BOOTCONFIG_MAGIC) ||
    901 	    (bootconfig.version != BOOTCONFIG_VERSION)) {
    902 		printf("\nDETECTED AN OLD BOOTLOADER. PLEASE UPGRADE IT\n\n");
    903 		delay(5000000);
    904 	}
    905 
    906 	printf("Kernel loaded from file %s\n", bootconfig.kernelname);
    907 	printf("Kernel arg string (@%p) %s\n",
    908 	    bootconfig.args, bootconfig.args);
    909 	printf("\nBoot configuration structure reports the following "
    910 	    "memory\n");
    911 
    912 	printf(" DRAM block 0a at %08x size %08x "
    913 	    "DRAM block 0b at %08x size %08x\n\r",
    914 	    bootconfig.dram[0].address,
    915 	    bootconfig.dram[0].pages * bootconfig.pagesize,
    916 	    bootconfig.dram[1].address,
    917 	    bootconfig.dram[1].pages * bootconfig.pagesize);
    918 	printf(" DRAM block 1a at %08x size %08x "
    919 	    "DRAM block 1b at %08x size %08x\n\r",
    920 	    bootconfig.dram[2].address,
    921 	    bootconfig.dram[2].pages * bootconfig.pagesize,
    922 	    bootconfig.dram[3].address,
    923 	    bootconfig.dram[3].pages * bootconfig.pagesize);
    924 	printf(" VRAM block 0  at %08x size %08x\n\r",
    925 	    bootconfig.vram[0].address,
    926 	    bootconfig.vram[0].pages * bootconfig.pagesize);
    927 
    928 #if NKSYMS || defined(DDB) || defined(MODULAR)
    929 	ksyms_addsyms_elf(bootconfig.ksym_end - bootconfig.ksym_start,
    930 		(void *) bootconfig.ksym_start, (void *) bootconfig.ksym_end);
    931 #endif
    932 
    933 
    934 #ifdef DDB
    935 	db_machine_init();
    936 	if (boothowto & RB_KDB)
    937 		Debugger();
    938 #endif	/* DDB */
    939 
    940 	/* We return the new stack pointer address */
    941 	return kernelstack.pv_va + USPACE_SVC_STACK_TOP;
    942 }
    943 
    944 
    945 static void
    946 process_kernel_args(void)
    947 {
    948 	char *args;
    949 
    950 	/* Ok now we will check the arguments for interesting parameters. */
    951 	args = bootconfig.args;
    952 	boothowto = 0;
    953 
    954 	/* Only arguments itself are passed from the new bootloader */
    955 	while (*args == ' ')
    956 		++args;
    957 
    958 	boot_args = args;
    959 	parse_mi_bootargs(boot_args);
    960 	parse_rpc_bootargs(boot_args);
    961 }
    962 
    963 
    964 void
    965 parse_rpc_bootargs(char *args)
    966 {
    967 	int integer;
    968 
    969 	if (get_bootconf_option(args, "videodram", BOOTOPT_TYPE_INT,
    970 	    &integer)) {
    971 		videodram_size = integer;
    972 		/* Round to 4K page */
    973 		videodram_size *= 1024;
    974 		videodram_size = round_page(videodram_size);
    975 		if (videodram_size > 1024*1024)
    976 			videodram_size = 1024*1024;
    977 	}
    978 }
    979 /* End of machdep.c */
    980