Home | History | Annotate | Line # | Download | only in kern
      1 /*	$NetBSD: subr_percpu.c,v 1.25 2020/05/11 21:37:31 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c)2007,2008 YAMAMOTO Takashi,
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * per-cpu storage.
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: subr_percpu.c,v 1.25 2020/05/11 21:37:31 riastradh Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/cpu.h>
     38 #include <sys/kernel.h>
     39 #include <sys/kmem.h>
     40 #include <sys/mutex.h>
     41 #include <sys/percpu.h>
     42 #include <sys/rwlock.h>
     43 #include <sys/vmem.h>
     44 #include <sys/xcall.h>
     45 
     46 #define	PERCPU_QUANTUM_SIZE	(ALIGNBYTES + 1)
     47 #define	PERCPU_QCACHE_MAX	0
     48 #define	PERCPU_IMPORT_SIZE	2048
     49 
     50 struct percpu {
     51 	unsigned		pc_offset;
     52 	size_t			pc_size;
     53 	percpu_callback_t	pc_ctor;
     54 	percpu_callback_t	pc_dtor;
     55 	void			*pc_cookie;
     56 	LIST_ENTRY(percpu)	pc_list;
     57 };
     58 
     59 static krwlock_t	percpu_swap_lock	__cacheline_aligned;
     60 static vmem_t *		percpu_offset_arena	__read_mostly;
     61 static struct {
     62 	kmutex_t	lock;
     63 	unsigned int	nextoff;
     64 	LIST_HEAD(, percpu) ctor_list;
     65 	struct lwp	*busy;
     66 	kcondvar_t	cv;
     67 } percpu_allocation __cacheline_aligned;
     68 
     69 static percpu_cpu_t *
     70 cpu_percpu(struct cpu_info *ci)
     71 {
     72 
     73 	return &ci->ci_data.cpu_percpu;
     74 }
     75 
     76 static unsigned int
     77 percpu_offset(percpu_t *pc)
     78 {
     79 	const unsigned int off = pc->pc_offset;
     80 
     81 	KASSERT(off < percpu_allocation.nextoff);
     82 	return off;
     83 }
     84 
     85 /*
     86  * percpu_cpu_swap: crosscall handler for percpu_cpu_enlarge
     87  */
     88 __noubsan
     89 static void
     90 percpu_cpu_swap(void *p1, void *p2)
     91 {
     92 	struct cpu_info * const ci = p1;
     93 	percpu_cpu_t * const newpcc = p2;
     94 	percpu_cpu_t * const pcc = cpu_percpu(ci);
     95 
     96 	KASSERT(ci == curcpu() || !mp_online);
     97 
     98 	/*
     99 	 * swap *pcc and *newpcc unless anyone has beaten us.
    100 	 */
    101 	rw_enter(&percpu_swap_lock, RW_WRITER);
    102 	if (newpcc->pcc_size > pcc->pcc_size) {
    103 		percpu_cpu_t tmp;
    104 		int s;
    105 
    106 		tmp = *pcc;
    107 
    108 		/*
    109 		 * block interrupts so that we don't lose their modifications.
    110 		 */
    111 
    112 		s = splhigh();
    113 
    114 		/*
    115 		 * copy data to new storage.
    116 		 */
    117 
    118 		memcpy(newpcc->pcc_data, pcc->pcc_data, pcc->pcc_size);
    119 
    120 		/*
    121 		 * this assignment needs to be atomic for percpu_getptr_remote.
    122 		 */
    123 
    124 		pcc->pcc_data = newpcc->pcc_data;
    125 
    126 		splx(s);
    127 
    128 		pcc->pcc_size = newpcc->pcc_size;
    129 		*newpcc = tmp;
    130 	}
    131 	rw_exit(&percpu_swap_lock);
    132 }
    133 
    134 /*
    135  * percpu_cpu_enlarge: ensure that percpu_cpu_t of each cpus have enough space
    136  */
    137 
    138 static void
    139 percpu_cpu_enlarge(size_t size)
    140 {
    141 	CPU_INFO_ITERATOR cii;
    142 	struct cpu_info *ci;
    143 
    144 	for (CPU_INFO_FOREACH(cii, ci)) {
    145 		percpu_cpu_t pcc;
    146 
    147 		pcc.pcc_data = kmem_alloc(size, KM_SLEEP); /* XXX cacheline */
    148 		pcc.pcc_size = size;
    149 		if (!mp_online) {
    150 			percpu_cpu_swap(ci, &pcc);
    151 		} else {
    152 			uint64_t where;
    153 
    154 			where = xc_unicast(0, percpu_cpu_swap, ci, &pcc, ci);
    155 			xc_wait(where);
    156 		}
    157 		KASSERT(pcc.pcc_size <= size);
    158 		if (pcc.pcc_data != NULL) {
    159 			kmem_free(pcc.pcc_data, pcc.pcc_size);
    160 		}
    161 	}
    162 }
    163 
    164 /*
    165  * percpu_backend_alloc: vmem import callback for percpu_offset_arena
    166  */
    167 
    168 static int
    169 percpu_backend_alloc(vmem_t *dummy, vmem_size_t size, vmem_size_t *resultsize,
    170     vm_flag_t vmflags, vmem_addr_t *addrp)
    171 {
    172 	unsigned int offset;
    173 	unsigned int nextoff;
    174 
    175 	ASSERT_SLEEPABLE();
    176 	KASSERT(dummy == NULL);
    177 
    178 	if ((vmflags & VM_NOSLEEP) != 0)
    179 		return ENOMEM;
    180 
    181 	size = roundup(size, PERCPU_IMPORT_SIZE);
    182 	mutex_enter(&percpu_allocation.lock);
    183 	offset = percpu_allocation.nextoff;
    184 	percpu_allocation.nextoff = nextoff = percpu_allocation.nextoff + size;
    185 	mutex_exit(&percpu_allocation.lock);
    186 
    187 	percpu_cpu_enlarge(nextoff);
    188 
    189 	*resultsize = size;
    190 	*addrp = (vmem_addr_t)offset;
    191 	return 0;
    192 }
    193 
    194 static void
    195 percpu_zero_cb(void *vp, void *vp2, struct cpu_info *ci)
    196 {
    197 	size_t sz = (uintptr_t)vp2;
    198 
    199 	memset(vp, 0, sz);
    200 }
    201 
    202 /*
    203  * percpu_zero: initialize percpu storage with zero.
    204  */
    205 
    206 static void
    207 percpu_zero(percpu_t *pc, size_t sz)
    208 {
    209 
    210 	percpu_foreach(pc, percpu_zero_cb, (void *)(uintptr_t)sz);
    211 }
    212 
    213 /*
    214  * percpu_init: subsystem initialization
    215  */
    216 
    217 void
    218 percpu_init(void)
    219 {
    220 
    221 	ASSERT_SLEEPABLE();
    222 	rw_init(&percpu_swap_lock);
    223 	mutex_init(&percpu_allocation.lock, MUTEX_DEFAULT, IPL_NONE);
    224 	percpu_allocation.nextoff = PERCPU_QUANTUM_SIZE;
    225 	LIST_INIT(&percpu_allocation.ctor_list);
    226 	percpu_allocation.busy = NULL;
    227 	cv_init(&percpu_allocation.cv, "percpu");
    228 
    229 	percpu_offset_arena = vmem_xcreate("percpu", 0, 0, PERCPU_QUANTUM_SIZE,
    230 	    percpu_backend_alloc, NULL, NULL, PERCPU_QCACHE_MAX, VM_SLEEP,
    231 	    IPL_NONE);
    232 }
    233 
    234 /*
    235  * percpu_init_cpu: cpu initialization
    236  *
    237  * => should be called before the cpu appears on the list for CPU_INFO_FOREACH.
    238  * => may be called for static CPUs afterward (typically just primary CPU)
    239  */
    240 
    241 void
    242 percpu_init_cpu(struct cpu_info *ci)
    243 {
    244 	percpu_cpu_t * const pcc = cpu_percpu(ci);
    245 	struct percpu *pc;
    246 	size_t size = percpu_allocation.nextoff; /* XXX racy */
    247 
    248 	ASSERT_SLEEPABLE();
    249 
    250 	/*
    251 	 * For the primary CPU, prior percpu_create may have already
    252 	 * triggered allocation, so there's nothing more for us to do
    253 	 * here.
    254 	 */
    255 	if (pcc->pcc_size)
    256 		return;
    257 	KASSERT(pcc->pcc_data == NULL);
    258 
    259 	/*
    260 	 * Otherwise, allocate storage and, while the constructor list
    261 	 * is locked, run constructors for all percpus on this CPU.
    262 	 */
    263 	pcc->pcc_size = size;
    264 	if (size) {
    265 		pcc->pcc_data = kmem_zalloc(pcc->pcc_size, KM_SLEEP);
    266 		mutex_enter(&percpu_allocation.lock);
    267 		while (percpu_allocation.busy)
    268 			cv_wait(&percpu_allocation.cv,
    269 			    &percpu_allocation.lock);
    270 		percpu_allocation.busy = curlwp;
    271 		LIST_FOREACH(pc, &percpu_allocation.ctor_list, pc_list) {
    272 			KASSERT(pc->pc_ctor);
    273 			mutex_exit(&percpu_allocation.lock);
    274 			(*pc->pc_ctor)((char *)pcc->pcc_data + pc->pc_offset,
    275 			    pc->pc_cookie, ci);
    276 			mutex_enter(&percpu_allocation.lock);
    277 		}
    278 		KASSERT(percpu_allocation.busy == curlwp);
    279 		percpu_allocation.busy = NULL;
    280 		cv_broadcast(&percpu_allocation.cv);
    281 		mutex_exit(&percpu_allocation.lock);
    282 	}
    283 }
    284 
    285 /*
    286  * percpu_alloc: allocate percpu storage
    287  *
    288  * => called in thread context.
    289  * => considered as an expensive and rare operation.
    290  * => allocated storage is initialized with zeros.
    291  */
    292 
    293 percpu_t *
    294 percpu_alloc(size_t size)
    295 {
    296 
    297 	return percpu_create(size, NULL, NULL, NULL);
    298 }
    299 
    300 /*
    301  * percpu_create: allocate percpu storage and associate ctor/dtor with it
    302  *
    303  * => called in thread context.
    304  * => considered as an expensive and rare operation.
    305  * => allocated storage is initialized by ctor, or zeros if ctor is null
    306  * => percpu_free will call dtor first, if dtor is nonnull
    307  * => ctor or dtor may sleep, even on allocation
    308  */
    309 
    310 percpu_t *
    311 percpu_create(size_t size, percpu_callback_t ctor, percpu_callback_t dtor,
    312     void *cookie)
    313 {
    314 	vmem_addr_t offset;
    315 	percpu_t *pc;
    316 
    317 	ASSERT_SLEEPABLE();
    318 	(void)vmem_alloc(percpu_offset_arena, size, VM_SLEEP | VM_BESTFIT,
    319 	    &offset);
    320 
    321 	pc = kmem_alloc(sizeof(*pc), KM_SLEEP);
    322 	pc->pc_offset = offset;
    323 	pc->pc_size = size;
    324 	pc->pc_ctor = ctor;
    325 	pc->pc_dtor = dtor;
    326 	pc->pc_cookie = cookie;
    327 
    328 	if (ctor) {
    329 		CPU_INFO_ITERATOR cii;
    330 		struct cpu_info *ci;
    331 		void *buf;
    332 
    333 		/*
    334 		 * Wait until nobody is using the list of percpus with
    335 		 * constructors.
    336 		 */
    337 		mutex_enter(&percpu_allocation.lock);
    338 		while (percpu_allocation.busy)
    339 			cv_wait(&percpu_allocation.cv,
    340 			    &percpu_allocation.lock);
    341 		percpu_allocation.busy = curlwp;
    342 		mutex_exit(&percpu_allocation.lock);
    343 
    344 		/*
    345 		 * Run the constructor for all CPUs.  We use a
    346 		 * temporary buffer wo that we need not hold the
    347 		 * percpu_swap_lock while running the constructor.
    348 		 */
    349 		buf = kmem_alloc(size, KM_SLEEP);
    350 		for (CPU_INFO_FOREACH(cii, ci)) {
    351 			memset(buf, 0, size);
    352 			(*ctor)(buf, cookie, ci);
    353 			percpu_traverse_enter();
    354 			memcpy(percpu_getptr_remote(pc, ci), buf, size);
    355 			percpu_traverse_exit();
    356 		}
    357 		explicit_memset(buf, 0, size);
    358 		kmem_free(buf, size);
    359 
    360 		/*
    361 		 * Insert the percpu into the list of percpus with
    362 		 * constructors.  We are now done using the list, so it
    363 		 * is safe for concurrent percpu_create or concurrent
    364 		 * percpu_init_cpu to run.
    365 		 */
    366 		mutex_enter(&percpu_allocation.lock);
    367 		KASSERT(percpu_allocation.busy == curlwp);
    368 		percpu_allocation.busy = NULL;
    369 		cv_broadcast(&percpu_allocation.cv);
    370 		LIST_INSERT_HEAD(&percpu_allocation.ctor_list, pc, pc_list);
    371 		mutex_exit(&percpu_allocation.lock);
    372 	} else {
    373 		percpu_zero(pc, size);
    374 	}
    375 
    376 	return pc;
    377 }
    378 
    379 /*
    380  * percpu_free: free percpu storage
    381  *
    382  * => called in thread context.
    383  * => considered as an expensive and rare operation.
    384  */
    385 
    386 void
    387 percpu_free(percpu_t *pc, size_t size)
    388 {
    389 
    390 	ASSERT_SLEEPABLE();
    391 	KASSERT(size == pc->pc_size);
    392 
    393 	/*
    394 	 * If there's a constructor, take the percpu off the list of
    395 	 * percpus with constructors, but first wait until nobody is
    396 	 * using the list.
    397 	 */
    398 	if (pc->pc_ctor) {
    399 		mutex_enter(&percpu_allocation.lock);
    400 		while (percpu_allocation.busy)
    401 			cv_wait(&percpu_allocation.cv,
    402 			    &percpu_allocation.lock);
    403 		LIST_REMOVE(pc, pc_list);
    404 		mutex_exit(&percpu_allocation.lock);
    405 	}
    406 
    407 	/* If there's a destructor, run it now for all CPUs.  */
    408 	if (pc->pc_dtor) {
    409 		CPU_INFO_ITERATOR cii;
    410 		struct cpu_info *ci;
    411 		void *buf;
    412 
    413 		buf = kmem_alloc(size, KM_SLEEP);
    414 		for (CPU_INFO_FOREACH(cii, ci)) {
    415 			percpu_traverse_enter();
    416 			memcpy(buf, percpu_getptr_remote(pc, ci), size);
    417 			explicit_memset(percpu_getptr_remote(pc, ci), 0, size);
    418 			percpu_traverse_exit();
    419 			(*pc->pc_dtor)(buf, pc->pc_cookie, ci);
    420 		}
    421 		explicit_memset(buf, 0, size);
    422 		kmem_free(buf, size);
    423 	}
    424 
    425 	vmem_free(percpu_offset_arena, (vmem_addr_t)percpu_offset(pc), size);
    426 	kmem_free(pc, sizeof(*pc));
    427 }
    428 
    429 /*
    430  * percpu_getref:
    431  *
    432  * => safe to be used in either thread or interrupt context
    433  * => disables preemption; must be bracketed with a percpu_putref()
    434  */
    435 
    436 void *
    437 percpu_getref(percpu_t *pc)
    438 {
    439 
    440 	kpreempt_disable();
    441 	return percpu_getptr_remote(pc, curcpu());
    442 }
    443 
    444 /*
    445  * percpu_putref:
    446  *
    447  * => drops the preemption-disabled count after caller is done with per-cpu
    448  *    data
    449  */
    450 
    451 void
    452 percpu_putref(percpu_t *pc)
    453 {
    454 
    455 	kpreempt_enable();
    456 }
    457 
    458 /*
    459  * percpu_traverse_enter, percpu_traverse_exit, percpu_getptr_remote:
    460  * helpers to access remote cpu's percpu data.
    461  *
    462  * => called in thread context.
    463  * => percpu_traverse_enter can block low-priority xcalls.
    464  * => typical usage would be:
    465  *
    466  *	sum = 0;
    467  *	percpu_traverse_enter();
    468  *	for (CPU_INFO_FOREACH(cii, ci)) {
    469  *		unsigned int *p = percpu_getptr_remote(pc, ci);
    470  *		sum += *p;
    471  *	}
    472  *	percpu_traverse_exit();
    473  */
    474 
    475 void
    476 percpu_traverse_enter(void)
    477 {
    478 
    479 	ASSERT_SLEEPABLE();
    480 	rw_enter(&percpu_swap_lock, RW_READER);
    481 }
    482 
    483 void
    484 percpu_traverse_exit(void)
    485 {
    486 
    487 	rw_exit(&percpu_swap_lock);
    488 }
    489 
    490 void *
    491 percpu_getptr_remote(percpu_t *pc, struct cpu_info *ci)
    492 {
    493 
    494 	return &((char *)cpu_percpu(ci)->pcc_data)[percpu_offset(pc)];
    495 }
    496 
    497 /*
    498  * percpu_foreach: call the specified callback function for each cpus.
    499  *
    500  * => must be called from thread context.
    501  * => callback executes on **current** CPU (or, really, arbitrary CPU,
    502  *    in case of preemption)
    503  * => caller should not rely on the cpu iteration order.
    504  * => the callback function should be minimum because it is executed with
    505  *    holding a global lock, which can block low-priority xcalls.
    506  *    eg. it's illegal for a callback function to sleep for memory allocation.
    507  */
    508 void
    509 percpu_foreach(percpu_t *pc, percpu_callback_t cb, void *arg)
    510 {
    511 	CPU_INFO_ITERATOR cii;
    512 	struct cpu_info *ci;
    513 
    514 	percpu_traverse_enter();
    515 	for (CPU_INFO_FOREACH(cii, ci)) {
    516 		(*cb)(percpu_getptr_remote(pc, ci), arg, ci);
    517 	}
    518 	percpu_traverse_exit();
    519 }
    520 
    521 struct percpu_xcall_ctx {
    522 	percpu_callback_t  ctx_cb;
    523 	void		  *ctx_arg;
    524 };
    525 
    526 static void
    527 percpu_xcfunc(void * const v1, void * const v2)
    528 {
    529 	percpu_t * const pc = v1;
    530 	struct percpu_xcall_ctx * const ctx = v2;
    531 
    532 	(*ctx->ctx_cb)(percpu_getref(pc), ctx->ctx_arg, curcpu());
    533 	percpu_putref(pc);
    534 }
    535 
    536 /*
    537  * percpu_foreach_xcall: call the specified callback function for each
    538  * cpu.  This version uses an xcall to run the callback on each cpu.
    539  *
    540  * => must be called from thread context.
    541  * => callback executes on **remote** CPU in soft-interrupt context
    542  *    (at the specified soft interrupt priority).
    543  * => caller should not rely on the cpu iteration order.
    544  * => the callback function should be minimum because it may be
    545  *    executed in soft-interrupt context.  eg. it's illegal for
    546  *    a callback function to sleep for memory allocation.
    547  */
    548 void
    549 percpu_foreach_xcall(percpu_t *pc, u_int xcflags, percpu_callback_t cb,
    550 		     void *arg)
    551 {
    552 	struct percpu_xcall_ctx ctx = {
    553 		.ctx_cb = cb,
    554 		.ctx_arg = arg,
    555 	};
    556 	CPU_INFO_ITERATOR cii;
    557 	struct cpu_info *ci;
    558 
    559 	for (CPU_INFO_FOREACH(cii, ci)) {
    560 		xc_wait(xc_unicast(xcflags, percpu_xcfunc, pc, &ctx, ci));
    561 	}
    562 }
    563