Home | History | Annotate | Line # | Download | only in dist
      1 /*	$NetBSD: dwc2_hcd.h,v 1.15 2018/08/08 07:20:44 simonb Exp $	*/
      2 
      3 /*
      4  * hcd.h - DesignWare HS OTG Controller host-mode declarations
      5  *
      6  * Copyright (C) 2004-2013 Synopsys, Inc.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions, and the following disclaimer,
     13  *    without modification.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. The names of the above-listed copyright holders may not be used
     18  *    to endorse or promote products derived from this software without
     19  *    specific prior written permission.
     20  *
     21  * ALTERNATIVELY, this software may be distributed under the terms of the
     22  * GNU General Public License ("GPL") as published by the Free Software
     23  * Foundation; either version 2 of the License, or (at your option) any
     24  * later version.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
     27  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
     28  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
     30  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     31  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     32  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     33  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     34  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     35  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     36  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 #ifndef __DWC2_HCD_H__
     39 #define __DWC2_HCD_H__
     40 
     41 /*
     42  * This file contains the structures, constants, and interfaces for the
     43  * Host Contoller Driver (HCD)
     44  *
     45  * The Host Controller Driver (HCD) is responsible for translating requests
     46  * from the USB Driver into the appropriate actions on the DWC_otg controller.
     47  * It isolates the USBD from the specifics of the controller by providing an
     48  * API to the USBD.
     49  */
     50 
     51 struct dwc2_qh;
     52 
     53 /**
     54  * struct dwc2_host_chan - Software host channel descriptor
     55  *
     56  * @hc_num:             Host channel number, used for register address lookup
     57  * @dev_addr:           Address of the device
     58  * @ep_num:             Endpoint of the device
     59  * @ep_is_in:           Endpoint direction
     60  * @speed:              Device speed. One of the following values:
     61  *                       - USB_SPEED_LOW
     62  *                       - USB_SPEED_FULL
     63  *                       - USB_SPEED_HIGH
     64  * @ep_type:            Endpoint type. One of the following values:
     65  *                       - USB_ENDPOINT_XFER_CONTROL: 0
     66  *                       - USB_ENDPOINT_XFER_ISOC:    1
     67  *                       - USB_ENDPOINT_XFER_BULK:    2
     68  *                       - USB_ENDPOINT_XFER_INTR:    3
     69  * @max_packet:         Max packet size in bytes
     70  * @data_pid_start:     PID for initial transaction.
     71  *                       0: DATA0
     72  *                       1: DATA2
     73  *                       2: DATA1
     74  *                       3: MDATA (non-Control EP),
     75  *                          SETUP (Control EP)
     76  * @multi_count:        Number of additional periodic transactions per
     77  *                      (micro)frame
     78  * @xfer_buf:           Pointer to current transfer buffer position
     79  * @xfer_dma:           DMA address of xfer_buf
     80  * @align_buf:          In Buffer DMA mode this will be used if xfer_buf is not
     81  *                      DWORD aligned
     82  * @xfer_len:           Total number of bytes to transfer
     83  * @xfer_count:         Number of bytes transferred so far
     84  * @start_pkt_count:    Packet count at start of transfer
     85  * @xfer_started:       True if the transfer has been started
     86  * @ping:               True if a PING request should be issued on this channel
     87  * @error_state:        True if the error count for this transaction is non-zero
     88  * @halt_on_queue:      True if this channel should be halted the next time a
     89  *                      request is queued for the channel. This is necessary in
     90  *                      slave mode if no request queue space is available when
     91  *                      an attempt is made to halt the channel.
     92  * @halt_pending:       True if the host channel has been halted, but the core
     93  *                      is not finished flushing queued requests
     94  * @do_split:           Enable split for the channel
     95  * @complete_split:     Enable complete split
     96  * @hub_addr:           Address of high speed hub for the split
     97  * @hub_port:           Port of the low/full speed device for the split
     98  * @xact_pos:           Split transaction position. One of the following values:
     99  *                       - DWC2_HCSPLT_XACTPOS_MID
    100  *                       - DWC2_HCSPLT_XACTPOS_BEGIN
    101  *                       - DWC2_HCSPLT_XACTPOS_END
    102  *                       - DWC2_HCSPLT_XACTPOS_ALL
    103  * @requests:           Number of requests issued for this channel since it was
    104  *                      assigned to the current transfer (not counting PINGs)
    105  * @schinfo:            Scheduling micro-frame bitmap
    106  * @ntd:                Number of transfer descriptors for the transfer
    107  * @halt_status:        Reason for halting the host channel
    108  * @hcint               Contents of the HCINT register when the interrupt came
    109  * @qh:                 QH for the transfer being processed by this channel
    110  * @hc_list_entry:      For linking to list of host channels
    111  * @desc_list_addr:     Current QH's descriptor list DMA address
    112  * @desc_list_sz:       Current QH's descriptor list size
    113  *
    114  * This structure represents the state of a single host channel when acting in
    115  * host mode. It contains the data items needed to transfer packets to an
    116  * endpoint via a host channel.
    117  */
    118 struct dwc2_host_chan {
    119 	u8 hc_num;
    120 
    121 	unsigned dev_addr:7;
    122 	unsigned ep_num:4;
    123 	unsigned ep_is_in:1;
    124 	unsigned speed:4;
    125 	unsigned ep_type:2;
    126 	unsigned max_packet:11;
    127 	unsigned data_pid_start:2;
    128 #define DWC2_HC_PID_DATA0	TSIZ_SC_MC_PID_DATA0
    129 #define DWC2_HC_PID_DATA2	TSIZ_SC_MC_PID_DATA2
    130 #define DWC2_HC_PID_DATA1	TSIZ_SC_MC_PID_DATA1
    131 #define DWC2_HC_PID_MDATA	TSIZ_SC_MC_PID_MDATA
    132 #define DWC2_HC_PID_SETUP	TSIZ_SC_MC_PID_SETUP
    133 
    134 	unsigned multi_count:2;
    135 
    136 	usb_dma_t *xfer_usbdma;
    137 	u8 *xfer_buf;
    138 	dma_addr_t xfer_dma;
    139 	dma_addr_t align_buf;
    140 	u32 xfer_len;
    141 	u32 xfer_count;
    142 	u16 start_pkt_count;
    143 	u8 xfer_started;
    144 	u8 do_ping;
    145 	u8 error_state;
    146 	u8 halt_on_queue;
    147 	u8 halt_pending;
    148 	u8 do_split;
    149 	u8 complete_split;
    150 	u8 hub_addr;
    151 	u8 hub_port;
    152 	u8 xact_pos;
    153 #define DWC2_HCSPLT_XACTPOS_MID	HCSPLT_XACTPOS_MID
    154 #define DWC2_HCSPLT_XACTPOS_END	HCSPLT_XACTPOS_END
    155 #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
    156 #define DWC2_HCSPLT_XACTPOS_ALL	HCSPLT_XACTPOS_ALL
    157 
    158 	u8 requests;
    159 	u8 schinfo;
    160 	u16 ntd;
    161 	enum dwc2_halt_status halt_status;
    162 	u32 hcint;
    163 	struct dwc2_qh *qh;
    164 	struct list_head hc_list_entry;
    165 	usb_dma_t desc_list_usbdma;
    166 	dma_addr_t desc_list_addr;
    167 	u32 desc_list_sz;
    168 };
    169 
    170 struct dwc2_hcd_pipe_info {
    171 	u8 dev_addr;
    172 	u8 ep_num;
    173 	u8 pipe_type;
    174 	u8 pipe_dir;
    175 	u16 mps;
    176 };
    177 
    178 struct dwc2_hcd_iso_packet_desc {
    179 	u32 offset;
    180 	u32 length;
    181 	u32 actual_length;
    182 	u32 status;
    183 };
    184 
    185 struct dwc2_qtd;
    186 
    187 struct dwc2_hcd_urb {
    188 	void *priv;		/* the xfer handle */
    189 	struct dwc2_qtd *qtd;
    190 	usb_dma_t *usbdma;
    191 	u8 *buf;
    192 	dma_addr_t dma;
    193 	usb_dma_t *setup_usbdma;
    194 	void *setup_packet;
    195 	dma_addr_t setup_dma;
    196 	u32 length;
    197 	u32 actual_length;
    198 	u32 status;
    199 	u32 error_count;
    200 	u32 packet_count;
    201 	u32 flags;
    202 	u16 interval;
    203 	struct dwc2_hcd_pipe_info pipe_info;
    204 	struct dwc2_hcd_iso_packet_desc iso_descs[0];
    205 };
    206 
    207 /* Phases for control transfers */
    208 enum dwc2_control_phase {
    209 	DWC2_CONTROL_SETUP,
    210 	DWC2_CONTROL_DATA,
    211 	DWC2_CONTROL_STATUS,
    212 };
    213 
    214 /* Transaction types */
    215 enum dwc2_transaction_type {
    216 	DWC2_TRANSACTION_NONE,
    217 	DWC2_TRANSACTION_PERIODIC,
    218 	DWC2_TRANSACTION_NON_PERIODIC,
    219 	DWC2_TRANSACTION_ALL,
    220 };
    221 
    222 /**
    223  * struct dwc2_qh - Software queue head structure
    224  *
    225  * @hsotg:              The HCD state structure for the DWC OTG controller
    226  * @ep_type:            Endpoint type. One of the following values:
    227  *                       - USB_ENDPOINT_XFER_CONTROL
    228  *                       - USB_ENDPOINT_XFER_BULK
    229  *                       - USB_ENDPOINT_XFER_INT
    230  *                       - USB_ENDPOINT_XFER_ISOC
    231  * @ep_is_in:           Endpoint direction
    232  * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
    233  * @dev_speed:          Device speed. One of the following values:
    234  *                       - USB_SPEED_LOW
    235  *                       - USB_SPEED_FULL
    236  *                       - USB_SPEED_HIGH
    237  * @data_toggle:        Determines the PID of the next data packet for
    238  *                      non-controltransfers. Ignored for control transfers.
    239  *                      One of the following values:
    240  *                       - DWC2_HC_PID_DATA0
    241  *                       - DWC2_HC_PID_DATA1
    242  * @ping_state:         Ping state
    243  * @do_split:           Full/low speed endpoint on high-speed hub requires split
    244  * @td_first:           Index of first activated isochronous transfer descriptor
    245  * @td_last:            Index of last activated isochronous transfer descriptor
    246  * @usecs:              Bandwidth in microseconds per (micro)frame
    247  * @interval:           Interval between transfers in (micro)frames
    248  * @sched_frame:        (Micro)frame to initialize a periodic transfer.
    249  *                      The transfer executes in the following (micro)frame.
    250  * @nak_frame:          Internal variable used by the NAK holdoff code
    251  * @frame_usecs:        Internal variable used by the microframe scheduler
    252  * @start_split_frame:  (Micro)frame at which last start split was initialized
    253  * @ntd:                Actual number of transfer descriptors in a list
    254  * @dw_align_buf:       Used instead of original buffer if its physical address
    255  *                      is not dword-aligned
    256  * @dw_align_buf_size:  Size of dw_align_buf
    257  * @dw_align_buf_dma:   DMA address for dw_align_buf
    258  * @qtd_list:           List of QTDs for this QH
    259  * @channel:            Host channel currently processing transfers for this QH
    260  * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
    261  *                      schedule
    262  * @desc_list:          List of transfer descriptors
    263  * @desc_list_dma:      Physical address of desc_list
    264  * @desc_list_sz:       Size of descriptors list
    265  * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
    266  *                      descriptor and indicates original XferSize value for the
    267  *                      descriptor
    268  * @wait_timer:         Timer used to wait before re-queuing.
    269  * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
    270  * @want_wait:          We should wait before re-queuing; only matters for non-
    271  *                      periodic transfers and is ignored for periodic ones.
    272  * @wait_timer_cancel:  Set to true to cancel the wait_timer.
    273  *
    274  * A Queue Head (QH) holds the static characteristics of an endpoint and
    275  * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
    276  * be entered in either the non-periodic or periodic schedule.
    277  */
    278 struct dwc2_qh {
    279 	struct dwc2_hsotg *hsotg;
    280 	u8 ep_type;
    281 	u8 ep_is_in;
    282 	u16 maxp;
    283 	u8 dev_speed;
    284 	u8 data_toggle;
    285 	u8 ping_state;
    286 	u8 do_split;
    287 	u8 td_first;
    288 	u8 td_last;
    289 	u16 usecs;
    290 	u16 interval;
    291 	u16 sched_frame;
    292 	u16 nak_frame;
    293 	u16 frame_usecs[8];
    294 	u16 start_split_frame;
    295 	u16 ntd;
    296 	usb_dma_t dw_align_buf_usbdma;
    297 	u8 *dw_align_buf;
    298 	int dw_align_buf_size;
    299 	dma_addr_t dw_align_buf_dma;
    300 	struct list_head qtd_list;
    301 	struct dwc2_host_chan *channel;
    302 	struct list_head qh_list_entry;
    303 	usb_dma_t desc_list_usbdma;
    304 	struct dwc2_hcd_dma_desc *desc_list;
    305 	dma_addr_t desc_list_dma;
    306 	u32 desc_list_sz;
    307 	u32 *n_bytes;
    308 	/* XXX struct timer_list wait_timer; */
    309 	callout_t wait_timer;
    310 	unsigned tt_buffer_dirty:1;
    311 	unsigned want_wait:1;
    312 	unsigned wait_timer_cancel:1;
    313 };
    314 
    315 /**
    316  * struct dwc2_qtd - Software queue transfer descriptor (QTD)
    317  *
    318  * @control_phase:      Current phase for control transfers (Setup, Data, or
    319  *                      Status)
    320  * @in_process:         Indicates if this QTD is currently processed by HW
    321  * @data_toggle:        Determines the PID of the next data packet for the
    322  *                      data phase of control transfers. Ignored for other
    323  *                      transfer types. One of the following values:
    324  *                       - DWC2_HC_PID_DATA0
    325  *                       - DWC2_HC_PID_DATA1
    326  * @complete_split:     Keeps track of the current split type for FS/LS
    327  *                      endpoints on a HS Hub
    328  * @isoc_split_pos:     Position of the ISOC split in full/low speed
    329  * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
    330  *                      transfer. A frame descriptor describes the buffer
    331  *                      position and length of the data to be transferred in the
    332  *                      next scheduled (micro)frame of an isochronous transfer.
    333  *                      It also holds status for that transaction. The frame
    334  *                      index starts at 0.
    335  * @isoc_split_offset:  Position of the ISOC split in the buffer for the
    336  *                      current frame
    337  * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
    338  * @error_count:        Holds the number of bus errors that have occurred for
    339  *                      a transaction within this transfer
    340  * @n_desc:             Number of DMA descriptors for this QTD
    341  * @isoc_frame_index_last: Last activated frame (packet) index, used in
    342  *                      descriptor DMA mode only
    343  * @num_naks:           Number of NAKs received on this QTD.
    344  * @urb:                URB for this transfer
    345  * @qh:                 Queue head for this QTD
    346  * @qtd_list_entry:     For linking to the QH's list of QTDs
    347  *
    348  * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
    349  * interrupt, or isochronous transfer. A single QTD is created for each URB
    350  * (of one of these types) submitted to the HCD. The transfer associated with
    351  * a QTD may require one or multiple transactions.
    352  *
    353  * A QTD is linked to a Queue Head, which is entered in either the
    354  * non-periodic or periodic schedule for execution. When a QTD is chosen for
    355  * execution, some or all of its transactions may be executed. After
    356  * execution, the state of the QTD is updated. The QTD may be retired if all
    357  * its transactions are complete or if an error occurred. Otherwise, it
    358  * remains in the schedule so more transactions can be executed later.
    359  */
    360 struct dwc2_qtd {
    361 	enum dwc2_control_phase control_phase;
    362 	u8 in_process;
    363 	u8 data_toggle;
    364 	u8 complete_split;
    365 	u8 isoc_split_pos;
    366 	u16 isoc_frame_index;
    367 	u16 isoc_split_offset;
    368 	u16 isoc_td_last;
    369 	u16 isoc_td_first;
    370 	u32 ssplit_out_xfer_count;
    371 	u8 error_count;
    372 	u8 n_desc;
    373 	u16 isoc_frame_index_last;
    374 	u16 num_naks;
    375 	struct dwc2_hcd_urb *urb;
    376 	struct dwc2_qh *qh;
    377 	struct list_head qtd_list_entry;
    378 };
    379 
    380 #ifdef DEBUG
    381 struct hc_xfer_info {
    382 	struct dwc2_hsotg *hsotg;
    383 	struct dwc2_host_chan *chan;
    384 };
    385 #endif
    386 
    387 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
    388 static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
    389 {
    390 	return (struct usb_hcd *)hsotg->priv;
    391 }
    392 
    393 /*
    394  * Inline used to disable one channel interrupt. Channel interrupts are
    395  * disabled when the channel is halted or released by the interrupt handler.
    396  * There is no need to handle further interrupts of that type until the
    397  * channel is re-assigned. In fact, subsequent handling may cause crashes
    398  * because the channel structures are cleaned up when the channel is released.
    399  */
    400 static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
    401 {
    402 	u32 mask = DWC2_READ_4(hsotg, HCINTMSK(chnum));
    403 
    404 	mask &= ~intr;
    405 	DWC2_WRITE_4(hsotg, HCINTMSK(chnum), mask);
    406 }
    407 
    408 /*
    409  * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
    410  * are read as 1, they won't clear when written back.
    411  */
    412 static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
    413 {
    414 	u32 hprt0 = DWC2_READ_4(hsotg, HPRT0);
    415 
    416 	hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
    417 	return hprt0;
    418 }
    419 
    420 static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
    421 {
    422 	return pipe->ep_num;
    423 }
    424 
    425 static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
    426 {
    427 	return pipe->pipe_type;
    428 }
    429 
    430 static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
    431 {
    432 	return pipe->mps;
    433 }
    434 
    435 static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
    436 {
    437 	return pipe->dev_addr;
    438 }
    439 
    440 static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
    441 {
    442 	return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
    443 }
    444 
    445 static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
    446 {
    447 	return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
    448 }
    449 
    450 static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
    451 {
    452 	return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
    453 }
    454 
    455 static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
    456 {
    457 	return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
    458 }
    459 
    460 static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
    461 {
    462 	return pipe->pipe_dir == USB_DIR_IN;
    463 }
    464 
    465 static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
    466 {
    467 	return !dwc2_hcd_is_pipe_in(pipe);
    468 }
    469 
    470 extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg);
    471 extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
    472 
    473 /* Transaction Execution Functions */
    474 extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
    475 						struct dwc2_hsotg *hsotg);
    476 extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
    477 					enum dwc2_transaction_type tr_type);
    478 
    479 /* Schedule Queue Functions */
    480 /* Implemented in hcd_queue.c */
    481 extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg);
    482 extern struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
    483 					  struct dwc2_hcd_urb *urb,
    484 					  gfp_t mem_flags);
    485 extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
    486 extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
    487 extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
    488 extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
    489 				   int sched_csplit);
    490 
    491 extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
    492 extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
    493 			    struct dwc2_qh *qh);
    494 
    495 /* Removes and frees a QTD */
    496 extern void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
    497 					 struct dwc2_qtd *qtd,
    498 					 struct dwc2_qh *qh);
    499 
    500 /* Descriptor DMA support functions */
    501 extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
    502 				     struct dwc2_qh *qh);
    503 extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
    504 					struct dwc2_host_chan *chan, int chnum,
    505 					enum dwc2_halt_status halt_status);
    506 
    507 extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
    508 				 gfp_t mem_flags);
    509 extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
    510 
    511 /* Check if QH is non-periodic */
    512 #define dwc2_qh_is_non_per(_qh_ptr_) \
    513 	((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
    514 	 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
    515 
    516 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
    517 static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
    518 static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
    519 static inline bool dbg_perio(void) { return true; }
    520 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
    521 static inline bool dbg_hc(struct dwc2_host_chan *hc)
    522 {
    523 	return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
    524 	       hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
    525 }
    526 
    527 static inline bool dbg_qh(struct dwc2_qh *qh)
    528 {
    529 	return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
    530 	       qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
    531 }
    532 
    533 
    534 static inline bool dbg_perio(void) { return false; }
    535 #endif
    536 
    537 /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
    538 #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
    539 
    540 /* Packet size for any kind of endpoint descriptor */
    541 #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
    542 
    543 /*
    544  * Returns true if frame1 index is greater than frame2 index. The comparison
    545  * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
    546  * frame number when the max index frame number is reached.
    547  */
    548 static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
    549 {
    550 	u16 diff = fr_idx1 - fr_idx2;
    551 	u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
    552 
    553 	return diff && !sign;
    554 }
    555 
    556 /*
    557  * Returns true if frame1 is less than or equal to frame2. The comparison is
    558  * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
    559  * frame number when the max frame number is reached.
    560  */
    561 static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
    562 {
    563 	return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
    564 }
    565 
    566 /*
    567  * Returns true if frame1 is greater than frame2. The comparison is done
    568  * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
    569  * number when the max frame number is reached.
    570  */
    571 static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
    572 {
    573 	return (frame1 != frame2) &&
    574 	       ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
    575 }
    576 
    577 /*
    578  * Increments frame by the amount specified by inc. The addition is done
    579  * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
    580  */
    581 static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
    582 {
    583 	return (frame + inc) & HFNUM_MAX_FRNUM;
    584 }
    585 
    586 static inline u16 dwc2_full_frame_num(u16 frame)
    587 {
    588 	return (frame & HFNUM_MAX_FRNUM) >> 3;
    589 }
    590 
    591 static inline u16 dwc2_micro_frame_num(u16 frame)
    592 {
    593 	return frame & 0x7;
    594 }
    595 
    596 /*
    597  * Returns the Core Interrupt Status register contents, ANDed with the Core
    598  * Interrupt Mask register contents
    599  */
    600 static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
    601 {
    602 	return DWC2_READ_4(hsotg, GINTSTS) & DWC2_READ_4(hsotg, GINTMSK);
    603 }
    604 
    605 static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
    606 {
    607 	return dwc2_urb->status;
    608 }
    609 
    610 static inline u32 dwc2_hcd_urb_get_actual_length(
    611 		struct dwc2_hcd_urb *dwc2_urb)
    612 {
    613 	return dwc2_urb->actual_length;
    614 }
    615 
    616 static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
    617 {
    618 	return dwc2_urb->error_count;
    619 }
    620 
    621 static inline void dwc2_hcd_urb_set_iso_desc_params(
    622 		struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
    623 		u32 length)
    624 {
    625 	dwc2_urb->iso_descs[desc_num].offset = offset;
    626 	dwc2_urb->iso_descs[desc_num].length = length;
    627 }
    628 
    629 static inline u32 dwc2_hcd_urb_get_iso_desc_status(
    630 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
    631 {
    632 	return dwc2_urb->iso_descs[desc_num].status;
    633 }
    634 
    635 static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
    636 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
    637 {
    638 	return dwc2_urb->iso_descs[desc_num].actual_length;
    639 }
    640 
    641 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
    642 						  struct usbd_xfer *xfer)
    643 {
    644 	struct dwc2_pipe *dpipe = DWC2_XFER2DPIPE(xfer);
    645 	struct dwc2_qh *qh = dpipe->priv;
    646 
    647 	if (qh && !list_empty(&qh->qh_list_entry))
    648 		return 1;
    649 
    650 	return 0;
    651 }
    652 
    653 static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
    654 					    struct dwc2_pipe *dpipe)
    655 {
    656 	struct dwc2_qh *qh = dpipe->priv;
    657 
    658 	if (!qh) {
    659 		WARN_ON(1);
    660 		return 0;
    661 	}
    662 
    663 	return qh->usecs;
    664 }
    665 
    666 extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
    667 				      struct dwc2_host_chan *chan, int chnum,
    668 				      struct dwc2_qtd *qtd);
    669 
    670 /* HCD Core API */
    671 
    672 /**
    673  * dwc2_handle_hcd_intr() - Called on every hardware interrupt
    674  *
    675  * @hsotg: The DWC2 HCD
    676  *
    677  * Returns IRQ_HANDLED if interrupt is handled
    678  * Return IRQ_NONE if interrupt is not handled
    679  */
    680 extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
    681 
    682 /**
    683  * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
    684  *
    685  * @hsotg: The DWC2 HCD
    686  */
    687 extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
    688 
    689 /**
    690  * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
    691  * and 0 otherwise
    692  *
    693  * @hsotg: The DWC2 HCD
    694  */
    695 extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
    696 
    697 /**
    698  * dwc2_hcd_dump_state() - Dumps hsotg state
    699  *
    700  * @hsotg: The DWC2 HCD
    701  *
    702  * NOTE: This function will be removed once the peripheral controller code
    703  * is integrated and the driver is stable
    704  */
    705 extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
    706 
    707 /**
    708  * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
    709  *
    710  * @hsotg: The DWC2 HCD
    711  *
    712  * This can be used to determine average interrupt latency. Frame remaining is
    713  * also shown for start transfer and two additional sample points.
    714  *
    715  * NOTE: This function will be removed once the peripheral controller code
    716  * is integrated and the driver is stable
    717  */
    718 extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
    719 
    720 /* URB interface */
    721 
    722 /* Transfer flags */
    723 #define URB_GIVEBACK_ASAP	0x1
    724 #define URB_SEND_ZERO_PACKET	0x2
    725 
    726 /* Host driver callbacks */
    727 
    728 extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
    729 extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
    730 extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
    731 			       int *hub_addr, int *hub_port);
    732 extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
    733 extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
    734 			       int status);
    735 
    736 #ifdef DEBUG
    737 /*
    738  * Macro to sample the remaining PHY clocks left in the current frame. This
    739  * may be used during debugging to determine the average time it takes to
    740  * execute sections of code. There are two possible sample points, "a" and
    741  * "b", so the _letter_ argument must be one of these values.
    742  *
    743  * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
    744  * example, "cat /sys/devices/lm0/hcd_frrem".
    745  */
    746 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)			\
    747 do {									\
    748 	struct hfnum_data _hfnum_;					\
    749 	struct dwc2_qtd *_qtd_;						\
    750 									\
    751 	_qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd,	\
    752 			   qtd_list_entry);				\
    753 	if (usb_pipeint(_qtd_->urb->pipe) &&				\
    754 	    (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) {	\
    755 		_hfnum_.d32 = DWC2_READ_4((_hcd_), HFNUM);		\
    756 		switch (_hfnum_.b.frnum & 0x7) {			\
    757 		case 7:							\
    758 			(_hcd_)->hfnum_7_samples_##_letter_++;		\
    759 			(_hcd_)->hfnum_7_frrem_accum_##_letter_ +=	\
    760 				_hfnum_.b.frrem;			\
    761 			break;						\
    762 		case 0:							\
    763 			(_hcd_)->hfnum_0_samples_##_letter_++;		\
    764 			(_hcd_)->hfnum_0_frrem_accum_##_letter_ +=	\
    765 				_hfnum_.b.frrem;			\
    766 			break;						\
    767 		default:						\
    768 			(_hcd_)->hfnum_other_samples_##_letter_++;	\
    769 			(_hcd_)->hfnum_other_frrem_accum_##_letter_ +=	\
    770 				_hfnum_.b.frrem;			\
    771 			break;						\
    772 		}							\
    773 	}								\
    774 } while (0)
    775 #else
    776 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)	do {} while (0)
    777 #endif
    778 
    779 
    780 void dwc2_wakeup_detected(void *);
    781 
    782 int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *, struct dwc2_hcd_urb *);
    783 void dwc2_hcd_reinit(struct dwc2_hsotg *);
    784 int dwc2_hcd_hub_control(struct dwc2_hsotg *, u16, u16, u16, char *, u16);
    785 struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *);
    786 int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
    787 				struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
    788 				struct dwc2_qtd *qtd);
    789 void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *, struct dwc2_hcd_urb *,
    790 			       u8 ,u8, u8, u8, u16);
    791 
    792 struct dwc2_hcd_urb * dwc2_hcd_urb_alloc(struct dwc2_hsotg *, int, gfp_t);
    793 void dwc2_hcd_urb_free(struct dwc2_hsotg *, struct dwc2_hcd_urb *, int);
    794 
    795 int _dwc2_hcd_start(struct dwc2_hsotg *);
    796 
    797 int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *);
    798 
    799 #endif /* __DWC2_HCD_H__ */
    800