Home | History | Annotate | Line # | Download | only in kern
      1 /*	$NetBSD: kern_event.c,v 1.150 2023/09/21 09:31:50 msaitoh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008, 2009, 2021 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
     34  * Copyright (c) 2009 Apple, Inc
     35  * All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  *
     46  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     56  * SUCH DAMAGE.
     57  *
     58  * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
     59  */
     60 
     61 #ifdef _KERNEL_OPT
     62 #include "opt_ddb.h"
     63 #endif /* _KERNEL_OPT */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.150 2023/09/21 09:31:50 msaitoh Exp $");
     67 
     68 #include <sys/param.h>
     69 #include <sys/systm.h>
     70 #include <sys/kernel.h>
     71 #include <sys/wait.h>
     72 #include <sys/proc.h>
     73 #include <sys/file.h>
     74 #include <sys/select.h>
     75 #include <sys/queue.h>
     76 #include <sys/event.h>
     77 #include <sys/eventvar.h>
     78 #include <sys/poll.h>
     79 #include <sys/kmem.h>
     80 #include <sys/stat.h>
     81 #include <sys/filedesc.h>
     82 #include <sys/syscallargs.h>
     83 #include <sys/kauth.h>
     84 #include <sys/conf.h>
     85 #include <sys/atomic.h>
     86 
     87 static int	kqueue_scan(file_t *, size_t, struct kevent *,
     88 			    const struct timespec *, register_t *,
     89 			    const struct kevent_ops *, struct kevent *,
     90 			    size_t);
     91 static int	kqueue_ioctl(file_t *, u_long, void *);
     92 static int	kqueue_fcntl(file_t *, u_int, void *);
     93 static int	kqueue_poll(file_t *, int);
     94 static int	kqueue_kqfilter(file_t *, struct knote *);
     95 static int	kqueue_stat(file_t *, struct stat *);
     96 static int	kqueue_close(file_t *);
     97 static void	kqueue_restart(file_t *);
     98 static int	kqueue_fpathconf(file_t *, int, register_t *);
     99 static int	kqueue_register(struct kqueue *, struct kevent *);
    100 static void	kqueue_doclose(struct kqueue *, struct klist *, int);
    101 
    102 static void	knote_detach(struct knote *, filedesc_t *fdp, bool);
    103 static void	knote_enqueue(struct knote *);
    104 static void	knote_activate(struct knote *);
    105 static void	knote_activate_locked(struct knote *);
    106 static void	knote_deactivate_locked(struct knote *);
    107 
    108 static void	filt_kqdetach(struct knote *);
    109 static int	filt_kqueue(struct knote *, long hint);
    110 static int	filt_procattach(struct knote *);
    111 static void	filt_procdetach(struct knote *);
    112 static int	filt_proc(struct knote *, long hint);
    113 static int	filt_fileattach(struct knote *);
    114 static void	filt_timerexpire(void *x);
    115 static int	filt_timerattach(struct knote *);
    116 static void	filt_timerdetach(struct knote *);
    117 static int	filt_timer(struct knote *, long hint);
    118 static int	filt_timertouch(struct knote *, struct kevent *, long type);
    119 static int	filt_userattach(struct knote *);
    120 static void	filt_userdetach(struct knote *);
    121 static int	filt_user(struct knote *, long hint);
    122 static int	filt_usertouch(struct knote *, struct kevent *, long type);
    123 
    124 /*
    125  * Private knote state that should never be exposed outside
    126  * of kern_event.c
    127  *
    128  * Field locking:
    129  *
    130  * q	kn_kq->kq_lock
    131  */
    132 struct knote_impl {
    133 	struct knote	ki_knote;
    134 	unsigned int	ki_influx;	/* q: in-flux counter */
    135 	kmutex_t	ki_foplock;	/* for kn_filterops */
    136 };
    137 
    138 #define	KIMPL_TO_KNOTE(kip)	(&(kip)->ki_knote)
    139 #define	KNOTE_TO_KIMPL(knp)	container_of((knp), struct knote_impl, ki_knote)
    140 
    141 static inline struct knote *
    142 knote_alloc(bool sleepok)
    143 {
    144 	struct knote_impl *ki;
    145 
    146 	ki = kmem_zalloc(sizeof(*ki), sleepok ? KM_SLEEP : KM_NOSLEEP);
    147 	mutex_init(&ki->ki_foplock, MUTEX_DEFAULT, IPL_NONE);
    148 
    149 	return KIMPL_TO_KNOTE(ki);
    150 }
    151 
    152 static inline void
    153 knote_free(struct knote *kn)
    154 {
    155 	struct knote_impl *ki = KNOTE_TO_KIMPL(kn);
    156 
    157 	mutex_destroy(&ki->ki_foplock);
    158 	kmem_free(ki, sizeof(*ki));
    159 }
    160 
    161 static inline void
    162 knote_foplock_enter(struct knote *kn)
    163 {
    164 	mutex_enter(&KNOTE_TO_KIMPL(kn)->ki_foplock);
    165 }
    166 
    167 static inline void
    168 knote_foplock_exit(struct knote *kn)
    169 {
    170 	mutex_exit(&KNOTE_TO_KIMPL(kn)->ki_foplock);
    171 }
    172 
    173 static inline bool __diagused
    174 knote_foplock_owned(struct knote *kn)
    175 {
    176 	return mutex_owned(&KNOTE_TO_KIMPL(kn)->ki_foplock);
    177 }
    178 
    179 static const struct fileops kqueueops = {
    180 	.fo_name = "kqueue",
    181 	.fo_read = (void *)enxio,
    182 	.fo_write = (void *)enxio,
    183 	.fo_ioctl = kqueue_ioctl,
    184 	.fo_fcntl = kqueue_fcntl,
    185 	.fo_poll = kqueue_poll,
    186 	.fo_stat = kqueue_stat,
    187 	.fo_close = kqueue_close,
    188 	.fo_kqfilter = kqueue_kqfilter,
    189 	.fo_restart = kqueue_restart,
    190 	.fo_fpathconf = kqueue_fpathconf,
    191 };
    192 
    193 static void
    194 filt_nopdetach(struct knote *kn __unused)
    195 {
    196 }
    197 
    198 static int
    199 filt_nopevent(struct knote *kn __unused, long hint __unused)
    200 {
    201 	return 0;
    202 }
    203 
    204 static const struct filterops nop_fd_filtops = {
    205 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
    206 	.f_attach = NULL,
    207 	.f_detach = filt_nopdetach,
    208 	.f_event = filt_nopevent,
    209 };
    210 
    211 static const struct filterops nop_filtops = {
    212 	.f_flags = FILTEROP_MPSAFE,
    213 	.f_attach = NULL,
    214 	.f_detach = filt_nopdetach,
    215 	.f_event = filt_nopevent,
    216 };
    217 
    218 static const struct filterops kqread_filtops = {
    219 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
    220 	.f_attach = NULL,
    221 	.f_detach = filt_kqdetach,
    222 	.f_event = filt_kqueue,
    223 };
    224 
    225 static const struct filterops proc_filtops = {
    226 	.f_flags = FILTEROP_MPSAFE,
    227 	.f_attach = filt_procattach,
    228 	.f_detach = filt_procdetach,
    229 	.f_event = filt_proc,
    230 };
    231 
    232 /*
    233  * file_filtops is not marked MPSAFE because it's going to call
    234  * fileops::fo_kqfilter(), which might not be.  That function,
    235  * however, will override the knote's filterops, and thus will
    236  * inherit the MPSAFE-ness of the back-end at that time.
    237  */
    238 static const struct filterops file_filtops = {
    239 	.f_flags = FILTEROP_ISFD,
    240 	.f_attach = filt_fileattach,
    241 	.f_detach = NULL,
    242 	.f_event = NULL,
    243 };
    244 
    245 static const struct filterops timer_filtops = {
    246 	.f_flags = FILTEROP_MPSAFE,
    247 	.f_attach = filt_timerattach,
    248 	.f_detach = filt_timerdetach,
    249 	.f_event = filt_timer,
    250 	.f_touch = filt_timertouch,
    251 };
    252 
    253 static const struct filterops user_filtops = {
    254 	.f_flags = FILTEROP_MPSAFE,
    255 	.f_attach = filt_userattach,
    256 	.f_detach = filt_userdetach,
    257 	.f_event = filt_user,
    258 	.f_touch = filt_usertouch,
    259 };
    260 
    261 static u_int	kq_ncallouts = 0;
    262 static int	kq_calloutmax = (4 * 1024);
    263 
    264 #define	KN_HASHSIZE		64		/* XXX should be tunable */
    265 #define	KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
    266 
    267 extern const struct filterops fs_filtops;	/* vfs_syscalls.c */
    268 extern const struct filterops sig_filtops;	/* kern_sig.c */
    269 
    270 /*
    271  * Table for all system-defined filters.
    272  * These should be listed in the numeric order of the EVFILT_* defines.
    273  * If filtops is NULL, the filter isn't implemented in NetBSD.
    274  * End of list is when name is NULL.
    275  *
    276  * Note that 'refcnt' is meaningless for built-in filters.
    277  */
    278 struct kfilter {
    279 	const char	*name;		/* name of filter */
    280 	uint32_t	filter;		/* id of filter */
    281 	unsigned	refcnt;		/* reference count */
    282 	const struct filterops *filtops;/* operations for filter */
    283 	size_t		namelen;	/* length of name string */
    284 };
    285 
    286 /* System defined filters */
    287 static struct kfilter sys_kfilters[] = {
    288 	{ "EVFILT_READ",	EVFILT_READ,	0, &file_filtops, 0 },
    289 	{ "EVFILT_WRITE",	EVFILT_WRITE,	0, &file_filtops, 0, },
    290 	{ "EVFILT_AIO",		EVFILT_AIO,	0, NULL, 0 },
    291 	{ "EVFILT_VNODE",	EVFILT_VNODE,	0, &file_filtops, 0 },
    292 	{ "EVFILT_PROC",	EVFILT_PROC,	0, &proc_filtops, 0 },
    293 	{ "EVFILT_SIGNAL",	EVFILT_SIGNAL,	0, &sig_filtops, 0 },
    294 	{ "EVFILT_TIMER",	EVFILT_TIMER,	0, &timer_filtops, 0 },
    295 	{ "EVFILT_FS",		EVFILT_FS,	0, &fs_filtops, 0 },
    296 	{ "EVFILT_USER",	EVFILT_USER,	0, &user_filtops, 0 },
    297 	{ "EVFILT_EMPTY",	EVFILT_EMPTY,	0, &file_filtops, 0 },
    298 	{ NULL,			0,		0, NULL, 0 },
    299 };
    300 
    301 /* User defined kfilters */
    302 static struct kfilter	*user_kfilters;		/* array */
    303 static int		user_kfilterc;		/* current offset */
    304 static int		user_kfiltermaxc;	/* max size so far */
    305 static size_t		user_kfiltersz;		/* size of allocated memory */
    306 
    307 /*
    308  * Global Locks.
    309  *
    310  * Lock order:
    311  *
    312  *	kqueue_filter_lock
    313  *	-> kn_kq->kq_fdp->fd_lock
    314  *	-> knote foplock (if taken)
    315  *	-> object lock (e.g., device driver lock, &c.)
    316  *	-> kn_kq->kq_lock
    317  *
    318  * Locking rules.  ==> indicates the lock is acquired by the backing
    319  * object, locks prior are acquired before calling filter ops:
    320  *
    321  *	f_attach: fdp->fd_lock -> knote foplock ->
    322  *	  (maybe) KERNEL_LOCK ==> backing object lock
    323  *
    324  *	f_detach: fdp->fd_lock -> knote foplock ->
    325  *	   (maybe) KERNEL_LOCK ==> backing object lock
    326  *
    327  *	f_event via kevent: fdp->fd_lock -> knote foplock ->
    328  *	   (maybe) KERNEL_LOCK ==> backing object lock
    329  *	   N.B. NOTE_SUBMIT will never be set in the "hint" argument
    330  *	   in this case.
    331  *
    332  *	f_event via knote (via backing object: Whatever caller guarantees.
    333  *	Typically:
    334  *		f_event(NOTE_SUBMIT): caller has already acquired backing
    335  *		    object lock.
    336  *		f_event(!NOTE_SUBMIT): caller has not acquired backing object,
    337  *		    lock or has possibly acquired KERNEL_LOCK.  Backing object
    338  *		    lock may or may not be acquired as-needed.
    339  *	N.B. the knote foplock will **not** be acquired in this case.  The
    340  *	caller guarantees that klist_fini() will not be called concurrently
    341  *	with knote().
    342  *
    343  *	f_touch: fdp->fd_lock -> kn_kq->kq_lock (spin lock)
    344  *	    N.B. knote foplock is **not** acquired in this case and
    345  *	    the caller must guarantee that klist_fini() will never
    346  *	    be called.  kevent_register() restricts filters that
    347  *	    provide f_touch to known-safe cases.
    348  *
    349  *	klist_fini(): Caller must guarantee that no more knotes can
    350  *	    be attached to the klist, and must **not** hold the backing
    351  *	    object's lock; klist_fini() itself will acquire the foplock
    352  *	    of each knote on the klist.
    353  *
    354  * Locking rules when detaching knotes:
    355  *
    356  * There are some situations where knote submission may require dropping
    357  * locks (see knote_proc_fork()).  In order to support this, it's possible
    358  * to mark a knote as being 'in-flux'.  Such a knote is guaranteed not to
    359  * be detached while it remains in-flux.  Because it will not be detached,
    360  * locks can be dropped so e.g. memory can be allocated, locks on other
    361  * data structures can be acquired, etc.  During this time, any attempt to
    362  * detach an in-flux knote must wait until the knote is no longer in-flux.
    363  * When this happens, the knote is marked for death (KN_WILLDETACH) and the
    364  * LWP who gets to finish the detach operation is recorded in the knote's
    365  * 'udata' field (which is no longer required for its original purpose once
    366  * a knote is so marked).  Code paths that lead to knote_detach() must ensure
    367  * that their LWP is the one tasked with its final demise after waiting for
    368  * the in-flux status of the knote to clear.  Note that once a knote is
    369  * marked KN_WILLDETACH, no code paths may put it into an in-flux state.
    370  *
    371  * Once the special circumstances have been handled, the locks are re-
    372  * acquired in the proper order (object lock -> kq_lock), the knote taken
    373  * out of flux, and any waiters are notified.  Because waiters must have
    374  * also dropped *their* locks in order to safely block, they must re-
    375  * validate all of their assumptions; see knote_detach_quiesce().  See also
    376  * the kqueue_register() (EV_ADD, EV_DELETE) and kqueue_scan() (EV_ONESHOT)
    377  * cases.
    378  *
    379  * When kqueue_scan() encounters an in-flux knote, the situation is
    380  * treated like another LWP's list marker.
    381  *
    382  * LISTEN WELL: It is important to not hold knotes in flux for an
    383  * extended period of time! In-flux knotes effectively block any
    384  * progress of the kqueue_scan() operation.  Any code paths that place
    385  * knotes in-flux should be careful to not block for indefinite periods
    386  * of time, such as for memory allocation (i.e. KM_NOSLEEP is OK, but
    387  * KM_SLEEP is not).
    388  */
    389 static krwlock_t	kqueue_filter_lock;	/* lock on filter lists */
    390 
    391 #define	KQ_FLUX_WAIT(kq)	(void)cv_wait(&kq->kq_cv, &kq->kq_lock)
    392 #define	KQ_FLUX_WAKEUP(kq)	cv_broadcast(&kq->kq_cv)
    393 
    394 static inline bool
    395 kn_in_flux(struct knote *kn)
    396 {
    397 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
    398 	return KNOTE_TO_KIMPL(kn)->ki_influx != 0;
    399 }
    400 
    401 static inline bool
    402 kn_enter_flux(struct knote *kn)
    403 {
    404 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
    405 
    406 	if (kn->kn_status & KN_WILLDETACH) {
    407 		return false;
    408 	}
    409 
    410 	struct knote_impl *ki = KNOTE_TO_KIMPL(kn);
    411 	KASSERT(ki->ki_influx < UINT_MAX);
    412 	ki->ki_influx++;
    413 
    414 	return true;
    415 }
    416 
    417 static inline bool
    418 kn_leave_flux(struct knote *kn)
    419 {
    420 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
    421 
    422 	struct knote_impl *ki = KNOTE_TO_KIMPL(kn);
    423 	KASSERT(ki->ki_influx > 0);
    424 	ki->ki_influx--;
    425 	return ki->ki_influx == 0;
    426 }
    427 
    428 static void
    429 kn_wait_flux(struct knote *kn, bool can_loop)
    430 {
    431 	struct knote_impl *ki = KNOTE_TO_KIMPL(kn);
    432 	bool loop;
    433 
    434 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
    435 
    436 	/*
    437 	 * It may not be safe for us to touch the knote again after
    438 	 * dropping the kq_lock.  The caller has let us know in
    439 	 * 'can_loop'.
    440 	 */
    441 	for (loop = true; loop && ki->ki_influx != 0; loop = can_loop) {
    442 		KQ_FLUX_WAIT(kn->kn_kq);
    443 	}
    444 }
    445 
    446 #define	KNOTE_WILLDETACH(kn)						\
    447 do {									\
    448 	(kn)->kn_status |= KN_WILLDETACH;				\
    449 	(kn)->kn_kevent.udata = curlwp;					\
    450 } while (/*CONSTCOND*/0)
    451 
    452 /*
    453  * Wait until the specified knote is in a quiescent state and
    454  * safe to detach.  Returns true if we potentially blocked (and
    455  * thus dropped our locks).
    456  */
    457 static bool
    458 knote_detach_quiesce(struct knote *kn)
    459 {
    460 	struct kqueue *kq = kn->kn_kq;
    461 	filedesc_t *fdp = kq->kq_fdp;
    462 
    463 	KASSERT(mutex_owned(&fdp->fd_lock));
    464 
    465 	mutex_spin_enter(&kq->kq_lock);
    466 	/*
    467 	 * There are two cases where we might see KN_WILLDETACH here:
    468 	 *
    469 	 * 1. Someone else has already started detaching the knote but
    470 	 *    had to wait for it to settle first.
    471 	 *
    472 	 * 2. We had to wait for it to settle, and had to come back
    473 	 *    around after re-acquiring the locks.
    474 	 *
    475 	 * When KN_WILLDETACH is set, we also set the LWP that claimed
    476 	 * the prize of finishing the detach in the 'udata' field of the
    477 	 * knote (which will never be used again for its usual purpose
    478 	 * once the note is in this state).  If it doesn't point to us,
    479 	 * we must drop the locks and let them in to finish the job.
    480 	 *
    481 	 * Otherwise, once we have claimed the knote for ourselves, we
    482 	 * can finish waiting for it to settle.  The is the only scenario
    483 	 * where touching a detaching knote is safe after dropping the
    484 	 * locks.
    485 	 */
    486 	if ((kn->kn_status & KN_WILLDETACH) != 0 &&
    487 	    kn->kn_kevent.udata != curlwp) {
    488 		/*
    489 		 * N.B. it is NOT safe for us to touch the knote again
    490 		 * after dropping the locks here.  The caller must go
    491 		 * back around and re-validate everything.  However, if
    492 		 * the knote is in-flux, we want to block to minimize
    493 		 * busy-looping.
    494 		 */
    495 		mutex_exit(&fdp->fd_lock);
    496 		if (kn_in_flux(kn)) {
    497 			kn_wait_flux(kn, false);
    498 			mutex_spin_exit(&kq->kq_lock);
    499 			return true;
    500 		}
    501 		mutex_spin_exit(&kq->kq_lock);
    502 		preempt_point();
    503 		return true;
    504 	}
    505 	/*
    506 	 * If we get here, we know that we will be claiming the
    507 	 * detach responsibilies, or that we already have and
    508 	 * this is the second attempt after re-validation.
    509 	 */
    510 	KASSERT((kn->kn_status & KN_WILLDETACH) == 0 ||
    511 		kn->kn_kevent.udata == curlwp);
    512 	/*
    513 	 * Similarly, if we get here, either we are just claiming it
    514 	 * and may have to wait for it to settle, or if this is the
    515 	 * second attempt after re-validation that no other code paths
    516 	 * have put it in-flux.
    517 	 */
    518 	KASSERT((kn->kn_status & KN_WILLDETACH) == 0 ||
    519 		kn_in_flux(kn) == false);
    520 	KNOTE_WILLDETACH(kn);
    521 	if (kn_in_flux(kn)) {
    522 		mutex_exit(&fdp->fd_lock);
    523 		kn_wait_flux(kn, true);
    524 		/*
    525 		 * It is safe for us to touch the knote again after
    526 		 * dropping the locks, but the caller must still
    527 		 * re-validate everything because other aspects of
    528 		 * the environment may have changed while we blocked.
    529 		 */
    530 		KASSERT(kn_in_flux(kn) == false);
    531 		mutex_spin_exit(&kq->kq_lock);
    532 		return true;
    533 	}
    534 	mutex_spin_exit(&kq->kq_lock);
    535 
    536 	return false;
    537 }
    538 
    539 /*
    540  * Calls into the filterops need to be resilient against things which
    541  * destroy a klist, e.g. device detach, freeing a vnode, etc., to avoid
    542  * chasing garbage pointers (to data, or even potentially code in a
    543  * module about to be unloaded).  To that end, we acquire the
    544  * knote foplock before calling into the filter ops.  When a driver
    545  * (or anything else) is tearing down its klist, klist_fini() enumerates
    546  * each knote, acquires its foplock, and replaces the filterops with a
    547  * nop stub, allowing knote detach (when descriptors are closed) to safely
    548  * proceed.
    549  */
    550 
    551 static int
    552 filter_attach(struct knote *kn)
    553 {
    554 	int rv;
    555 
    556 	KASSERT(knote_foplock_owned(kn));
    557 	KASSERT(kn->kn_fop != NULL);
    558 	KASSERT(kn->kn_fop->f_attach != NULL);
    559 
    560 	/*
    561 	 * N.B. that kn->kn_fop may change as the result of calling
    562 	 * f_attach().  After f_attach() returns, kn->kn_fop may not
    563 	 * be modified by code outside of klist_fini().
    564 	 */
    565 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
    566 		rv = kn->kn_fop->f_attach(kn);
    567 	} else {
    568 		KERNEL_LOCK(1, NULL);
    569 		rv = kn->kn_fop->f_attach(kn);
    570 		KERNEL_UNLOCK_ONE(NULL);
    571 	}
    572 
    573 	return rv;
    574 }
    575 
    576 static void
    577 filter_detach(struct knote *kn)
    578 {
    579 
    580 	KASSERT(knote_foplock_owned(kn));
    581 	KASSERT(kn->kn_fop != NULL);
    582 	KASSERT(kn->kn_fop->f_detach != NULL);
    583 
    584 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
    585 		kn->kn_fop->f_detach(kn);
    586 	} else {
    587 		KERNEL_LOCK(1, NULL);
    588 		kn->kn_fop->f_detach(kn);
    589 		KERNEL_UNLOCK_ONE(NULL);
    590 	}
    591 }
    592 
    593 static int
    594 filter_event(struct knote *kn, long hint, bool submitting)
    595 {
    596 	int rv;
    597 
    598 	/* See knote(). */
    599 	KASSERT(submitting || knote_foplock_owned(kn));
    600 	KASSERT(kn->kn_fop != NULL);
    601 	KASSERT(kn->kn_fop->f_event != NULL);
    602 
    603 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
    604 		rv = kn->kn_fop->f_event(kn, hint);
    605 	} else {
    606 		KERNEL_LOCK(1, NULL);
    607 		rv = kn->kn_fop->f_event(kn, hint);
    608 		KERNEL_UNLOCK_ONE(NULL);
    609 	}
    610 
    611 	return rv;
    612 }
    613 
    614 static int
    615 filter_touch(struct knote *kn, struct kevent *kev, long type)
    616 {
    617 
    618 	/*
    619 	 * XXX We cannot assert that the knote foplock is held here
    620 	 * XXX beause we cannot safely acquire it in all cases
    621 	 * XXX where "touch" will be used in kqueue_scan().  We just
    622 	 * XXX have to assume that f_touch will always be safe to call,
    623 	 * XXX and kqueue_register() allows only the two known-safe
    624 	 * XXX users of that op.
    625 	 */
    626 
    627 	KASSERT(kn->kn_fop != NULL);
    628 	KASSERT(kn->kn_fop->f_touch != NULL);
    629 
    630 	return kn->kn_fop->f_touch(kn, kev, type);
    631 }
    632 
    633 static kauth_listener_t	kqueue_listener;
    634 
    635 static int
    636 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    637     void *arg0, void *arg1, void *arg2, void *arg3)
    638 {
    639 	struct proc *p;
    640 	int result;
    641 
    642 	result = KAUTH_RESULT_DEFER;
    643 	p = arg0;
    644 
    645 	if (action != KAUTH_PROCESS_KEVENT_FILTER)
    646 		return result;
    647 
    648 	if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
    649 	    ISSET(p->p_flag, PK_SUGID)))
    650 		return result;
    651 
    652 	result = KAUTH_RESULT_ALLOW;
    653 
    654 	return result;
    655 }
    656 
    657 /*
    658  * Initialize the kqueue subsystem.
    659  */
    660 void
    661 kqueue_init(void)
    662 {
    663 
    664 	rw_init(&kqueue_filter_lock);
    665 
    666 	kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    667 	    kqueue_listener_cb, NULL);
    668 }
    669 
    670 /*
    671  * Find kfilter entry by name, or NULL if not found.
    672  */
    673 static struct kfilter *
    674 kfilter_byname_sys(const char *name)
    675 {
    676 	int i;
    677 
    678 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    679 
    680 	for (i = 0; sys_kfilters[i].name != NULL; i++) {
    681 		if (strcmp(name, sys_kfilters[i].name) == 0)
    682 			return &sys_kfilters[i];
    683 	}
    684 	return NULL;
    685 }
    686 
    687 static struct kfilter *
    688 kfilter_byname_user(const char *name)
    689 {
    690 	int i;
    691 
    692 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    693 
    694 	/* user filter slots have a NULL name if previously deregistered */
    695 	for (i = 0; i < user_kfilterc ; i++) {
    696 		if (user_kfilters[i].name != NULL &&
    697 		    strcmp(name, user_kfilters[i].name) == 0)
    698 			return &user_kfilters[i];
    699 	}
    700 	return NULL;
    701 }
    702 
    703 static struct kfilter *
    704 kfilter_byname(const char *name)
    705 {
    706 	struct kfilter *kfilter;
    707 
    708 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    709 
    710 	if ((kfilter = kfilter_byname_sys(name)) != NULL)
    711 		return kfilter;
    712 
    713 	return kfilter_byname_user(name);
    714 }
    715 
    716 /*
    717  * Find kfilter entry by filter id, or NULL if not found.
    718  * Assumes entries are indexed in filter id order, for speed.
    719  */
    720 static struct kfilter *
    721 kfilter_byfilter(uint32_t filter)
    722 {
    723 	struct kfilter *kfilter;
    724 
    725 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    726 
    727 	if (filter < EVFILT_SYSCOUNT)	/* it's a system filter */
    728 		kfilter = &sys_kfilters[filter];
    729 	else if (user_kfilters != NULL &&
    730 	    filter < EVFILT_SYSCOUNT + user_kfilterc)
    731 					/* it's a user filter */
    732 		kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
    733 	else
    734 		return (NULL);		/* out of range */
    735 	KASSERT(kfilter->filter == filter);	/* sanity check! */
    736 	return (kfilter);
    737 }
    738 
    739 /*
    740  * Register a new kfilter. Stores the entry in user_kfilters.
    741  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
    742  * If retfilter != NULL, the new filterid is returned in it.
    743  */
    744 int
    745 kfilter_register(const char *name, const struct filterops *filtops,
    746 		 int *retfilter)
    747 {
    748 	struct kfilter *kfilter;
    749 	size_t len;
    750 	int i;
    751 
    752 	if (name == NULL || name[0] == '\0' || filtops == NULL)
    753 		return (EINVAL);	/* invalid args */
    754 
    755 	rw_enter(&kqueue_filter_lock, RW_WRITER);
    756 	if (kfilter_byname(name) != NULL) {
    757 		rw_exit(&kqueue_filter_lock);
    758 		return (EEXIST);	/* already exists */
    759 	}
    760 	if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
    761 		rw_exit(&kqueue_filter_lock);
    762 		return (EINVAL);	/* too many */
    763 	}
    764 
    765 	for (i = 0; i < user_kfilterc; i++) {
    766 		kfilter = &user_kfilters[i];
    767 		if (kfilter->name == NULL) {
    768 			/* Previously deregistered slot.  Reuse. */
    769 			goto reuse;
    770 		}
    771 	}
    772 
    773 	/* check if need to grow user_kfilters */
    774 	if (user_kfilterc + 1 > user_kfiltermaxc) {
    775 		/* Grow in KFILTER_EXTENT chunks. */
    776 		user_kfiltermaxc += KFILTER_EXTENT;
    777 		len = user_kfiltermaxc * sizeof(*kfilter);
    778 		kfilter = kmem_alloc(len, KM_SLEEP);
    779 		memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
    780 		if (user_kfilters != NULL) {
    781 			memcpy(kfilter, user_kfilters, user_kfiltersz);
    782 			kmem_free(user_kfilters, user_kfiltersz);
    783 		}
    784 		user_kfiltersz = len;
    785 		user_kfilters = kfilter;
    786 	}
    787 	/* Adding new slot */
    788 	kfilter = &user_kfilters[user_kfilterc++];
    789 reuse:
    790 	kfilter->name = kmem_strdupsize(name, &kfilter->namelen, KM_SLEEP);
    791 
    792 	kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
    793 
    794 	kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
    795 	memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
    796 
    797 	if (retfilter != NULL)
    798 		*retfilter = kfilter->filter;
    799 	rw_exit(&kqueue_filter_lock);
    800 
    801 	return (0);
    802 }
    803 
    804 /*
    805  * Unregister a kfilter previously registered with kfilter_register.
    806  * This retains the filter id, but clears the name and frees filtops (filter
    807  * operations), so that the number isn't reused during a boot.
    808  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
    809  */
    810 int
    811 kfilter_unregister(const char *name)
    812 {
    813 	struct kfilter *kfilter;
    814 
    815 	if (name == NULL || name[0] == '\0')
    816 		return (EINVAL);	/* invalid name */
    817 
    818 	rw_enter(&kqueue_filter_lock, RW_WRITER);
    819 	if (kfilter_byname_sys(name) != NULL) {
    820 		rw_exit(&kqueue_filter_lock);
    821 		return (EINVAL);	/* can't detach system filters */
    822 	}
    823 
    824 	kfilter = kfilter_byname_user(name);
    825 	if (kfilter == NULL) {
    826 		rw_exit(&kqueue_filter_lock);
    827 		return (ENOENT);
    828 	}
    829 	if (kfilter->refcnt != 0) {
    830 		rw_exit(&kqueue_filter_lock);
    831 		return (EBUSY);
    832 	}
    833 
    834 	/* Cast away const (but we know it's safe. */
    835 	kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
    836 	kfilter->name = NULL;	/* mark as `not implemented' */
    837 
    838 	if (kfilter->filtops != NULL) {
    839 		/* Cast away const (but we know it's safe. */
    840 		kmem_free(__UNCONST(kfilter->filtops),
    841 		    sizeof(*kfilter->filtops));
    842 		kfilter->filtops = NULL; /* mark as `not implemented' */
    843 	}
    844 	rw_exit(&kqueue_filter_lock);
    845 
    846 	return (0);
    847 }
    848 
    849 
    850 /*
    851  * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
    852  * descriptors. Calls fileops kqfilter method for given file descriptor.
    853  */
    854 static int
    855 filt_fileattach(struct knote *kn)
    856 {
    857 	file_t *fp;
    858 
    859 	fp = kn->kn_obj;
    860 
    861 	return (*fp->f_ops->fo_kqfilter)(fp, kn);
    862 }
    863 
    864 /*
    865  * Filter detach method for EVFILT_READ on kqueue descriptor.
    866  */
    867 static void
    868 filt_kqdetach(struct knote *kn)
    869 {
    870 	struct kqueue *kq;
    871 
    872 	kq = ((file_t *)kn->kn_obj)->f_kqueue;
    873 
    874 	mutex_spin_enter(&kq->kq_lock);
    875 	selremove_knote(&kq->kq_sel, kn);
    876 	mutex_spin_exit(&kq->kq_lock);
    877 }
    878 
    879 /*
    880  * Filter event method for EVFILT_READ on kqueue descriptor.
    881  */
    882 /*ARGSUSED*/
    883 static int
    884 filt_kqueue(struct knote *kn, long hint)
    885 {
    886 	struct kqueue *kq;
    887 	int rv;
    888 
    889 	kq = ((file_t *)kn->kn_obj)->f_kqueue;
    890 
    891 	if (hint != NOTE_SUBMIT)
    892 		mutex_spin_enter(&kq->kq_lock);
    893 	kn->kn_data = KQ_COUNT(kq);
    894 	rv = (kn->kn_data > 0);
    895 	if (hint != NOTE_SUBMIT)
    896 		mutex_spin_exit(&kq->kq_lock);
    897 
    898 	return rv;
    899 }
    900 
    901 /*
    902  * Filter attach method for EVFILT_PROC.
    903  */
    904 static int
    905 filt_procattach(struct knote *kn)
    906 {
    907 	struct proc *p;
    908 
    909 	mutex_enter(&proc_lock);
    910 	p = proc_find(kn->kn_id);
    911 	if (p == NULL) {
    912 		mutex_exit(&proc_lock);
    913 		return ESRCH;
    914 	}
    915 
    916 	/*
    917 	 * Fail if it's not owned by you, or the last exec gave us
    918 	 * setuid/setgid privs (unless you're root).
    919 	 */
    920 	mutex_enter(p->p_lock);
    921 	mutex_exit(&proc_lock);
    922 	if (kauth_authorize_process(curlwp->l_cred,
    923 	    KAUTH_PROCESS_KEVENT_FILTER, p, NULL, NULL, NULL) != 0) {
    924 	    	mutex_exit(p->p_lock);
    925 		return EACCES;
    926 	}
    927 
    928 	kn->kn_obj = p;
    929 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
    930 
    931 	/*
    932 	 * NOTE_CHILD is only ever generated internally; don't let it
    933 	 * leak in from user-space.  See knote_proc_fork_track().
    934 	 */
    935 	kn->kn_sfflags &= ~NOTE_CHILD;
    936 
    937 	klist_insert(&p->p_klist, kn);
    938     	mutex_exit(p->p_lock);
    939 
    940 	return 0;
    941 }
    942 
    943 /*
    944  * Filter detach method for EVFILT_PROC.
    945  *
    946  * The knote may be attached to a different process, which may exit,
    947  * leaving nothing for the knote to be attached to.  So when the process
    948  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
    949  * it will be deleted when read out.  However, as part of the knote deletion,
    950  * this routine is called, so a check is needed to avoid actually performing
    951  * a detach, because the original process might not exist any more.
    952  */
    953 static void
    954 filt_procdetach(struct knote *kn)
    955 {
    956 	struct kqueue *kq = kn->kn_kq;
    957 	struct proc *p;
    958 
    959 	/*
    960 	 * We have to synchronize with knote_proc_exit(), but we
    961 	 * are forced to acquire the locks in the wrong order here
    962 	 * because we can't be sure kn->kn_obj is valid unless
    963 	 * KN_DETACHED is not set.
    964 	 */
    965  again:
    966 	mutex_spin_enter(&kq->kq_lock);
    967 	if ((kn->kn_status & KN_DETACHED) == 0) {
    968 		p = kn->kn_obj;
    969 		if (!mutex_tryenter(p->p_lock)) {
    970 			mutex_spin_exit(&kq->kq_lock);
    971 			preempt_point();
    972 			goto again;
    973 		}
    974 		kn->kn_status |= KN_DETACHED;
    975 		klist_remove(&p->p_klist, kn);
    976 		mutex_exit(p->p_lock);
    977 	}
    978 	mutex_spin_exit(&kq->kq_lock);
    979 }
    980 
    981 /*
    982  * Filter event method for EVFILT_PROC.
    983  *
    984  * Due to some of the complexities of process locking, we have special
    985  * entry points for delivering knote submissions.  filt_proc() is used
    986  * only to check for activation from kqueue_register() and kqueue_scan().
    987  */
    988 static int
    989 filt_proc(struct knote *kn, long hint)
    990 {
    991 	struct kqueue *kq = kn->kn_kq;
    992 	uint32_t fflags;
    993 
    994 	/*
    995 	 * Because we share the same klist with signal knotes, just
    996 	 * ensure that we're not being invoked for the proc-related
    997 	 * submissions.
    998 	 */
    999 	KASSERT((hint & (NOTE_EXEC | NOTE_EXIT | NOTE_FORK)) == 0);
   1000 
   1001 	mutex_spin_enter(&kq->kq_lock);
   1002 	fflags = kn->kn_fflags;
   1003 	mutex_spin_exit(&kq->kq_lock);
   1004 
   1005 	return fflags != 0;
   1006 }
   1007 
   1008 void
   1009 knote_proc_exec(struct proc *p)
   1010 {
   1011 	struct knote *kn, *tmpkn;
   1012 	struct kqueue *kq;
   1013 	uint32_t fflags;
   1014 
   1015 	mutex_enter(p->p_lock);
   1016 
   1017 	SLIST_FOREACH_SAFE(kn, &p->p_klist, kn_selnext, tmpkn) {
   1018 		/* N.B. EVFILT_SIGNAL knotes are on this same list. */
   1019 		if (kn->kn_fop == &sig_filtops) {
   1020 			continue;
   1021 		}
   1022 		KASSERT(kn->kn_fop == &proc_filtops);
   1023 
   1024 		kq = kn->kn_kq;
   1025 		mutex_spin_enter(&kq->kq_lock);
   1026 		fflags = (kn->kn_fflags |= (kn->kn_sfflags & NOTE_EXEC));
   1027 		if (fflags) {
   1028 			knote_activate_locked(kn);
   1029 		}
   1030 		mutex_spin_exit(&kq->kq_lock);
   1031 	}
   1032 
   1033 	mutex_exit(p->p_lock);
   1034 }
   1035 
   1036 static int __noinline
   1037 knote_proc_fork_track(struct proc *p1, struct proc *p2, struct knote *okn)
   1038 {
   1039 	struct kqueue *kq = okn->kn_kq;
   1040 
   1041 	KASSERT(mutex_owned(&kq->kq_lock));
   1042 	KASSERT(mutex_owned(p1->p_lock));
   1043 
   1044 	/*
   1045 	 * We're going to put this knote into flux while we drop
   1046 	 * the locks and create and attach a new knote to track the
   1047 	 * child.  If we are not able to enter flux, then this knote
   1048 	 * is about to go away, so skip the notification.
   1049 	 */
   1050 	if (!kn_enter_flux(okn)) {
   1051 		return 0;
   1052 	}
   1053 
   1054 	mutex_spin_exit(&kq->kq_lock);
   1055 	mutex_exit(p1->p_lock);
   1056 
   1057 	/*
   1058 	 * We actually have to register *two* new knotes:
   1059 	 *
   1060 	 * ==> One for the NOTE_CHILD notification.  This is a forced
   1061 	 *     ONESHOT note.
   1062 	 *
   1063 	 * ==> One to actually track the child process as it subsequently
   1064 	 *     forks, execs, and, ultimately, exits.
   1065 	 *
   1066 	 * If we only register a single knote, then it's possible for
   1067 	 * for the NOTE_CHILD and NOTE_EXIT to be collapsed into a single
   1068 	 * notification if the child exits before the tracking process
   1069 	 * has received the NOTE_CHILD notification, which applications
   1070 	 * aren't expecting (the event's 'data' field would be clobbered,
   1071 	 * for example).
   1072 	 *
   1073 	 * To do this, what we have here is an **extremely** stripped-down
   1074 	 * version of kqueue_register() that has the following properties:
   1075 	 *
   1076 	 * ==> Does not block to allocate memory.  If we are unable
   1077 	 *     to allocate memory, we return ENOMEM.
   1078 	 *
   1079 	 * ==> Does not search for existing knotes; we know there
   1080 	 *     are not any because this is a new process that isn't
   1081 	 *     even visible to other processes yet.
   1082 	 *
   1083 	 * ==> Assumes that the knhash for our kq's descriptor table
   1084 	 *     already exists (after all, we're already tracking
   1085 	 *     processes with knotes if we got here).
   1086 	 *
   1087 	 * ==> Directly attaches the new tracking knote to the child
   1088 	 *     process.
   1089 	 *
   1090 	 * The whole point is to do the minimum amount of work while the
   1091 	 * knote is held in-flux, and to avoid doing extra work in general
   1092 	 * (we already have the new child process; why bother looking it
   1093 	 * up again?).
   1094 	 */
   1095 	filedesc_t *fdp = kq->kq_fdp;
   1096 	struct knote *knchild, *kntrack;
   1097 	int error = 0;
   1098 
   1099 	knchild = knote_alloc(false);
   1100 	kntrack = knote_alloc(false);
   1101 	if (__predict_false(knchild == NULL || kntrack == NULL)) {
   1102 		error = ENOMEM;
   1103 		goto out;
   1104 	}
   1105 
   1106 	kntrack->kn_obj = p2;
   1107 	kntrack->kn_id = p2->p_pid;
   1108 	kntrack->kn_kq = kq;
   1109 	kntrack->kn_fop = okn->kn_fop;
   1110 	kntrack->kn_kfilter = okn->kn_kfilter;
   1111 	kntrack->kn_sfflags = okn->kn_sfflags;
   1112 	kntrack->kn_sdata = p1->p_pid;
   1113 
   1114 	kntrack->kn_kevent.ident = p2->p_pid;
   1115 	kntrack->kn_kevent.filter = okn->kn_filter;
   1116 	kntrack->kn_kevent.flags =
   1117 	    okn->kn_flags | EV_ADD | EV_ENABLE | EV_CLEAR;
   1118 	kntrack->kn_kevent.fflags = 0;
   1119 	kntrack->kn_kevent.data = 0;
   1120 	kntrack->kn_kevent.udata = okn->kn_kevent.udata; /* preserve udata */
   1121 
   1122 	/*
   1123 	 * The child note does not need to be attached to the
   1124 	 * new proc's klist at all.
   1125 	 */
   1126 	*knchild = *kntrack;
   1127 	knchild->kn_status = KN_DETACHED;
   1128 	knchild->kn_sfflags = 0;
   1129 	knchild->kn_kevent.flags |= EV_ONESHOT;
   1130 	knchild->kn_kevent.fflags = NOTE_CHILD;
   1131 	knchild->kn_kevent.data = p1->p_pid;		 /* parent */
   1132 
   1133 	mutex_enter(&fdp->fd_lock);
   1134 
   1135 	/*
   1136 	 * We need to check to see if the kq is closing, and skip
   1137 	 * attaching the knote if so.  Normally, this isn't necessary
   1138 	 * when coming in the front door because the file descriptor
   1139 	 * layer will synchronize this.
   1140 	 *
   1141 	 * It's safe to test KQ_CLOSING without taking the kq_lock
   1142 	 * here because that flag is only ever set when the fd_lock
   1143 	 * is also held.
   1144 	 */
   1145 	if (__predict_false(kq->kq_count & KQ_CLOSING)) {
   1146 		mutex_exit(&fdp->fd_lock);
   1147 		goto out;
   1148 	}
   1149 
   1150 	/*
   1151 	 * We do the "insert into FD table" and "attach to klist" steps
   1152 	 * in the opposite order of kqueue_register() here to avoid
   1153 	 * having to take p2->p_lock twice.  But this is OK because we
   1154 	 * hold fd_lock across the entire operation.
   1155 	 */
   1156 
   1157 	mutex_enter(p2->p_lock);
   1158 	error = kauth_authorize_process(curlwp->l_cred,
   1159 	    KAUTH_PROCESS_KEVENT_FILTER, p2, NULL, NULL, NULL);
   1160 	if (__predict_false(error != 0)) {
   1161 		mutex_exit(p2->p_lock);
   1162 		mutex_exit(&fdp->fd_lock);
   1163 		error = EACCES;
   1164 		goto out;
   1165 	}
   1166 	klist_insert(&p2->p_klist, kntrack);
   1167 	mutex_exit(p2->p_lock);
   1168 
   1169 	KASSERT(fdp->fd_knhashmask != 0);
   1170 	KASSERT(fdp->fd_knhash != NULL);
   1171 	struct klist *list = &fdp->fd_knhash[KN_HASH(kntrack->kn_id,
   1172 	    fdp->fd_knhashmask)];
   1173 	SLIST_INSERT_HEAD(list, kntrack, kn_link);
   1174 	SLIST_INSERT_HEAD(list, knchild, kn_link);
   1175 
   1176 	/* This adds references for knchild *and* kntrack. */
   1177 	atomic_add_int(&kntrack->kn_kfilter->refcnt, 2);
   1178 
   1179 	knote_activate(knchild);
   1180 
   1181 	kntrack = NULL;
   1182 	knchild = NULL;
   1183 
   1184 	mutex_exit(&fdp->fd_lock);
   1185 
   1186  out:
   1187 	if (__predict_false(knchild != NULL)) {
   1188 		knote_free(knchild);
   1189 	}
   1190 	if (__predict_false(kntrack != NULL)) {
   1191 		knote_free(kntrack);
   1192 	}
   1193 	mutex_enter(p1->p_lock);
   1194 	mutex_spin_enter(&kq->kq_lock);
   1195 
   1196 	if (kn_leave_flux(okn)) {
   1197 		KQ_FLUX_WAKEUP(kq);
   1198 	}
   1199 
   1200 	return error;
   1201 }
   1202 
   1203 void
   1204 knote_proc_fork(struct proc *p1, struct proc *p2)
   1205 {
   1206 	struct knote *kn;
   1207 	struct kqueue *kq;
   1208 	uint32_t fflags;
   1209 
   1210 	mutex_enter(p1->p_lock);
   1211 
   1212 	/*
   1213 	 * N.B. We DO NOT use SLIST_FOREACH_SAFE() here because we
   1214 	 * don't want to pre-fetch the next knote; in the event we
   1215 	 * have to drop p_lock, we will have put the knote in-flux,
   1216 	 * meaning that no one will be able to detach it until we
   1217 	 * have taken the knote out of flux.  However, that does
   1218 	 * NOT stop someone else from detaching the next note in the
   1219 	 * list while we have it unlocked.  Thus, we want to fetch
   1220 	 * the next note in the list only after we have re-acquired
   1221 	 * the lock, and using SLIST_FOREACH() will satisfy that.
   1222 	 */
   1223 	SLIST_FOREACH(kn, &p1->p_klist, kn_selnext) {
   1224 		/* N.B. EVFILT_SIGNAL knotes are on this same list. */
   1225 		if (kn->kn_fop == &sig_filtops) {
   1226 			continue;
   1227 		}
   1228 		KASSERT(kn->kn_fop == &proc_filtops);
   1229 
   1230 		kq = kn->kn_kq;
   1231 		mutex_spin_enter(&kq->kq_lock);
   1232 		kn->kn_fflags |= (kn->kn_sfflags & NOTE_FORK);
   1233 		if (__predict_false(kn->kn_sfflags & NOTE_TRACK)) {
   1234 			/*
   1235 			 * This will drop kq_lock and p_lock and
   1236 			 * re-acquire them before it returns.
   1237 			 */
   1238 			if (knote_proc_fork_track(p1, p2, kn)) {
   1239 				kn->kn_fflags |= NOTE_TRACKERR;
   1240 			}
   1241 			KASSERT(mutex_owned(p1->p_lock));
   1242 			KASSERT(mutex_owned(&kq->kq_lock));
   1243 		}
   1244 		fflags = kn->kn_fflags;
   1245 		if (fflags) {
   1246 			knote_activate_locked(kn);
   1247 		}
   1248 		mutex_spin_exit(&kq->kq_lock);
   1249 	}
   1250 
   1251 	mutex_exit(p1->p_lock);
   1252 }
   1253 
   1254 void
   1255 knote_proc_exit(struct proc *p)
   1256 {
   1257 	struct knote *kn;
   1258 	struct kqueue *kq;
   1259 
   1260 	KASSERT(mutex_owned(p->p_lock));
   1261 
   1262 	while (!SLIST_EMPTY(&p->p_klist)) {
   1263 		kn = SLIST_FIRST(&p->p_klist);
   1264 		kq = kn->kn_kq;
   1265 
   1266 		KASSERT(kn->kn_obj == p);
   1267 
   1268 		mutex_spin_enter(&kq->kq_lock);
   1269 		kn->kn_data = P_WAITSTATUS(p);
   1270 		/*
   1271 		 * Mark as ONESHOT, so that the knote is g/c'ed
   1272 		 * when read.
   1273 		 */
   1274 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
   1275 		kn->kn_fflags |= kn->kn_sfflags & NOTE_EXIT;
   1276 
   1277 		/*
   1278 		 * Detach the knote from the process and mark it as such.
   1279 		 * N.B. EVFILT_SIGNAL are also on p_klist, but by the
   1280 		 * time we get here, all open file descriptors for this
   1281 		 * process have been released, meaning that signal knotes
   1282 		 * will have already been detached.
   1283 		 *
   1284 		 * We need to synchronize this with filt_procdetach().
   1285 		 */
   1286 		KASSERT(kn->kn_fop == &proc_filtops);
   1287 		if ((kn->kn_status & KN_DETACHED) == 0) {
   1288 			kn->kn_status |= KN_DETACHED;
   1289 			SLIST_REMOVE_HEAD(&p->p_klist, kn_selnext);
   1290 		}
   1291 
   1292 		/*
   1293 		 * Always activate the knote for NOTE_EXIT regardless
   1294 		 * of whether or not the listener cares about it.
   1295 		 * This matches historical behavior.
   1296 		 */
   1297 		knote_activate_locked(kn);
   1298 		mutex_spin_exit(&kq->kq_lock);
   1299 	}
   1300 }
   1301 
   1302 #define	FILT_TIMER_NOSCHED	((uintptr_t)-1)
   1303 
   1304 static int
   1305 filt_timercompute(struct kevent *kev, uintptr_t *tticksp)
   1306 {
   1307 	struct timespec ts;
   1308 	uintptr_t tticks;
   1309 
   1310 	if (kev->fflags & ~(NOTE_TIMER_UNITMASK | NOTE_ABSTIME)) {
   1311 		return EINVAL;
   1312 	}
   1313 
   1314 	/*
   1315 	 * Convert the event 'data' to a timespec, then convert the
   1316 	 * timespec to callout ticks.
   1317 	 */
   1318 	switch (kev->fflags & NOTE_TIMER_UNITMASK) {
   1319 	case NOTE_SECONDS:
   1320 		ts.tv_sec = kev->data;
   1321 		ts.tv_nsec = 0;
   1322 		break;
   1323 
   1324 	case NOTE_MSECONDS:		/* == historical value 0 */
   1325 		ts.tv_sec = kev->data / 1000;
   1326 		ts.tv_nsec = (kev->data % 1000) * 1000000;
   1327 		break;
   1328 
   1329 	case NOTE_USECONDS:
   1330 		ts.tv_sec = kev->data / 1000000;
   1331 		ts.tv_nsec = (kev->data % 1000000) * 1000;
   1332 		break;
   1333 
   1334 	case NOTE_NSECONDS:
   1335 		ts.tv_sec = kev->data / 1000000000;
   1336 		ts.tv_nsec = kev->data % 1000000000;
   1337 		break;
   1338 
   1339 	default:
   1340 		return EINVAL;
   1341 	}
   1342 
   1343 	if (kev->fflags & NOTE_ABSTIME) {
   1344 		struct timespec deadline = ts;
   1345 
   1346 		/*
   1347 		 * Get current time.
   1348 		 *
   1349 		 * XXX This is CLOCK_REALTIME.  There is no way to
   1350 		 * XXX specify CLOCK_MONOTONIC.
   1351 		 */
   1352 		nanotime(&ts);
   1353 
   1354 		/* Absolute timers do not repeat. */
   1355 		kev->data = FILT_TIMER_NOSCHED;
   1356 
   1357 		/* If we're past the deadline, then the event will fire. */
   1358 		if (timespeccmp(&deadline, &ts, <=)) {
   1359 			tticks = FILT_TIMER_NOSCHED;
   1360 			goto out;
   1361 		}
   1362 
   1363 		/* Calculate how much time is left. */
   1364 		timespecsub(&deadline, &ts, &ts);
   1365 	} else {
   1366 		/* EV_CLEAR automatically set for relative timers. */
   1367 		kev->flags |= EV_CLEAR;
   1368 	}
   1369 
   1370 	tticks = tstohz(&ts);
   1371 
   1372 	/* if the supplied value is under our resolution, use 1 tick */
   1373 	if (tticks == 0) {
   1374 		if (kev->data == 0)
   1375 			return EINVAL;
   1376 		tticks = 1;
   1377 	} else if (tticks > INT_MAX) {
   1378 		return EINVAL;
   1379 	}
   1380 
   1381 	if ((kev->flags & EV_ONESHOT) != 0) {
   1382 		/* Timer does not repeat. */
   1383 		kev->data = FILT_TIMER_NOSCHED;
   1384 	} else {
   1385 		KASSERT((uintptr_t)tticks != FILT_TIMER_NOSCHED);
   1386 		kev->data = tticks;
   1387 	}
   1388 
   1389  out:
   1390 	*tticksp = tticks;
   1391 
   1392 	return 0;
   1393 }
   1394 
   1395 static void
   1396 filt_timerexpire(void *knx)
   1397 {
   1398 	struct knote *kn = knx;
   1399 	struct kqueue *kq = kn->kn_kq;
   1400 
   1401 	mutex_spin_enter(&kq->kq_lock);
   1402 	kn->kn_data++;
   1403 	knote_activate_locked(kn);
   1404 	if (kn->kn_sdata != FILT_TIMER_NOSCHED) {
   1405 		KASSERT(kn->kn_sdata > 0);
   1406 		KASSERT(kn->kn_sdata <= INT_MAX);
   1407 		callout_schedule((callout_t *)kn->kn_hook,
   1408 		    (int)kn->kn_sdata);
   1409 	}
   1410 	mutex_spin_exit(&kq->kq_lock);
   1411 }
   1412 
   1413 static inline void
   1414 filt_timerstart(struct knote *kn, uintptr_t tticks)
   1415 {
   1416 	callout_t *calloutp = kn->kn_hook;
   1417 
   1418 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
   1419 	KASSERT(!callout_pending(calloutp));
   1420 
   1421 	if (__predict_false(tticks == FILT_TIMER_NOSCHED)) {
   1422 		kn->kn_data = 1;
   1423 	} else {
   1424 		KASSERT(tticks <= INT_MAX);
   1425 		callout_reset(calloutp, (int)tticks, filt_timerexpire, kn);
   1426 	}
   1427 }
   1428 
   1429 static int
   1430 filt_timerattach(struct knote *kn)
   1431 {
   1432 	callout_t *calloutp;
   1433 	struct kqueue *kq;
   1434 	uintptr_t tticks;
   1435 	int error;
   1436 
   1437 	struct kevent kev = {
   1438 		.flags = kn->kn_flags,
   1439 		.fflags = kn->kn_sfflags,
   1440 		.data = kn->kn_sdata,
   1441 	};
   1442 
   1443 	error = filt_timercompute(&kev, &tticks);
   1444 	if (error) {
   1445 		return error;
   1446 	}
   1447 
   1448 	if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
   1449 	    (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
   1450 		atomic_dec_uint(&kq_ncallouts);
   1451 		return ENOMEM;
   1452 	}
   1453 	callout_init(calloutp, CALLOUT_MPSAFE);
   1454 
   1455 	kq = kn->kn_kq;
   1456 	mutex_spin_enter(&kq->kq_lock);
   1457 
   1458 	kn->kn_sdata = kev.data;
   1459 	kn->kn_flags = kev.flags;
   1460 	KASSERT(kn->kn_sfflags == kev.fflags);
   1461 	kn->kn_hook = calloutp;
   1462 
   1463 	filt_timerstart(kn, tticks);
   1464 
   1465 	mutex_spin_exit(&kq->kq_lock);
   1466 
   1467 	return (0);
   1468 }
   1469 
   1470 static void
   1471 filt_timerdetach(struct knote *kn)
   1472 {
   1473 	callout_t *calloutp;
   1474 	struct kqueue *kq = kn->kn_kq;
   1475 
   1476 	/* prevent rescheduling when we expire */
   1477 	mutex_spin_enter(&kq->kq_lock);
   1478 	kn->kn_sdata = FILT_TIMER_NOSCHED;
   1479 	mutex_spin_exit(&kq->kq_lock);
   1480 
   1481 	calloutp = (callout_t *)kn->kn_hook;
   1482 
   1483 	/*
   1484 	 * Attempt to stop the callout.  This will block if it's
   1485 	 * already running.
   1486 	 */
   1487 	callout_halt(calloutp, NULL);
   1488 
   1489 	callout_destroy(calloutp);
   1490 	kmem_free(calloutp, sizeof(*calloutp));
   1491 	atomic_dec_uint(&kq_ncallouts);
   1492 }
   1493 
   1494 static int
   1495 filt_timertouch(struct knote *kn, struct kevent *kev, long type)
   1496 {
   1497 	struct kqueue *kq = kn->kn_kq;
   1498 	callout_t *calloutp;
   1499 	uintptr_t tticks;
   1500 	int error;
   1501 
   1502 	KASSERT(mutex_owned(&kq->kq_lock));
   1503 
   1504 	switch (type) {
   1505 	case EVENT_REGISTER:
   1506 		/* Only relevant for EV_ADD. */
   1507 		if ((kev->flags & EV_ADD) == 0) {
   1508 			return 0;
   1509 		}
   1510 
   1511 		/*
   1512 		 * Stop the timer, under the assumption that if
   1513 		 * an application is re-configuring the timer,
   1514 		 * they no longer care about the old one.  We
   1515 		 * can safely drop the kq_lock while we wait
   1516 		 * because fdp->fd_lock will be held throughout,
   1517 		 * ensuring that no one can sneak in with an
   1518 		 * EV_DELETE or close the kq.
   1519 		 */
   1520 		KASSERT(mutex_owned(&kq->kq_fdp->fd_lock));
   1521 
   1522 		calloutp = kn->kn_hook;
   1523 		callout_halt(calloutp, &kq->kq_lock);
   1524 		KASSERT(mutex_owned(&kq->kq_lock));
   1525 		knote_deactivate_locked(kn);
   1526 		kn->kn_data = 0;
   1527 
   1528 		error = filt_timercompute(kev, &tticks);
   1529 		if (error) {
   1530 			return error;
   1531 		}
   1532 		kn->kn_sdata = kev->data;
   1533 		kn->kn_flags = kev->flags;
   1534 		kn->kn_sfflags = kev->fflags;
   1535 		filt_timerstart(kn, tticks);
   1536 		break;
   1537 
   1538 	case EVENT_PROCESS:
   1539 		*kev = kn->kn_kevent;
   1540 		break;
   1541 
   1542 	default:
   1543 		panic("%s: invalid type (%ld)", __func__, type);
   1544 	}
   1545 
   1546 	return 0;
   1547 }
   1548 
   1549 static int
   1550 filt_timer(struct knote *kn, long hint)
   1551 {
   1552 	struct kqueue *kq = kn->kn_kq;
   1553 	int rv;
   1554 
   1555 	mutex_spin_enter(&kq->kq_lock);
   1556 	rv = (kn->kn_data != 0);
   1557 	mutex_spin_exit(&kq->kq_lock);
   1558 
   1559 	return rv;
   1560 }
   1561 
   1562 static int
   1563 filt_userattach(struct knote *kn)
   1564 {
   1565 	struct kqueue *kq = kn->kn_kq;
   1566 
   1567 	/*
   1568 	 * EVFILT_USER knotes are not attached to anything in the kernel.
   1569 	 */
   1570 	mutex_spin_enter(&kq->kq_lock);
   1571 	kn->kn_hook = NULL;
   1572 	if (kn->kn_fflags & NOTE_TRIGGER)
   1573 		kn->kn_hookid = 1;
   1574 	else
   1575 		kn->kn_hookid = 0;
   1576 	mutex_spin_exit(&kq->kq_lock);
   1577 	return (0);
   1578 }
   1579 
   1580 static void
   1581 filt_userdetach(struct knote *kn)
   1582 {
   1583 
   1584 	/*
   1585 	 * EVFILT_USER knotes are not attached to anything in the kernel.
   1586 	 */
   1587 }
   1588 
   1589 static int
   1590 filt_user(struct knote *kn, long hint)
   1591 {
   1592 	struct kqueue *kq = kn->kn_kq;
   1593 	int hookid;
   1594 
   1595 	mutex_spin_enter(&kq->kq_lock);
   1596 	hookid = kn->kn_hookid;
   1597 	mutex_spin_exit(&kq->kq_lock);
   1598 
   1599 	return hookid;
   1600 }
   1601 
   1602 static int
   1603 filt_usertouch(struct knote *kn, struct kevent *kev, long type)
   1604 {
   1605 	int ffctrl;
   1606 
   1607 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
   1608 
   1609 	switch (type) {
   1610 	case EVENT_REGISTER:
   1611 		if (kev->fflags & NOTE_TRIGGER)
   1612 			kn->kn_hookid = 1;
   1613 
   1614 		ffctrl = kev->fflags & NOTE_FFCTRLMASK;
   1615 		kev->fflags &= NOTE_FFLAGSMASK;
   1616 		switch (ffctrl) {
   1617 		case NOTE_FFNOP:
   1618 			break;
   1619 
   1620 		case NOTE_FFAND:
   1621 			kn->kn_sfflags &= kev->fflags;
   1622 			break;
   1623 
   1624 		case NOTE_FFOR:
   1625 			kn->kn_sfflags |= kev->fflags;
   1626 			break;
   1627 
   1628 		case NOTE_FFCOPY:
   1629 			kn->kn_sfflags = kev->fflags;
   1630 			break;
   1631 
   1632 		default:
   1633 			/* XXX Return error? */
   1634 			break;
   1635 		}
   1636 		kn->kn_sdata = kev->data;
   1637 		if (kev->flags & EV_CLEAR) {
   1638 			kn->kn_hookid = 0;
   1639 			kn->kn_data = 0;
   1640 			kn->kn_fflags = 0;
   1641 		}
   1642 		break;
   1643 
   1644 	case EVENT_PROCESS:
   1645 		*kev = kn->kn_kevent;
   1646 		kev->fflags = kn->kn_sfflags;
   1647 		kev->data = kn->kn_sdata;
   1648 		if (kn->kn_flags & EV_CLEAR) {
   1649 			kn->kn_hookid = 0;
   1650 			kn->kn_data = 0;
   1651 			kn->kn_fflags = 0;
   1652 		}
   1653 		break;
   1654 
   1655 	default:
   1656 		panic("filt_usertouch() - invalid type (%ld)", type);
   1657 		break;
   1658 	}
   1659 
   1660 	return 0;
   1661 }
   1662 
   1663 /*
   1664  * filt_seltrue:
   1665  *
   1666  *	This filter "event" routine simulates seltrue().
   1667  */
   1668 int
   1669 filt_seltrue(struct knote *kn, long hint)
   1670 {
   1671 
   1672 	/*
   1673 	 * We don't know how much data can be read/written,
   1674 	 * but we know that it *can* be.  This is about as
   1675 	 * good as select/poll does as well.
   1676 	 */
   1677 	kn->kn_data = 0;
   1678 	return (1);
   1679 }
   1680 
   1681 /*
   1682  * This provides full kqfilter entry for device switch tables, which
   1683  * has same effect as filter using filt_seltrue() as filter method.
   1684  */
   1685 static void
   1686 filt_seltruedetach(struct knote *kn)
   1687 {
   1688 	/* Nothing to do */
   1689 }
   1690 
   1691 const struct filterops seltrue_filtops = {
   1692 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
   1693 	.f_attach = NULL,
   1694 	.f_detach = filt_seltruedetach,
   1695 	.f_event = filt_seltrue,
   1696 };
   1697 
   1698 int
   1699 seltrue_kqfilter(dev_t dev, struct knote *kn)
   1700 {
   1701 	switch (kn->kn_filter) {
   1702 	case EVFILT_READ:
   1703 	case EVFILT_WRITE:
   1704 		kn->kn_fop = &seltrue_filtops;
   1705 		break;
   1706 	default:
   1707 		return (EINVAL);
   1708 	}
   1709 
   1710 	/* Nothing more to do */
   1711 	return (0);
   1712 }
   1713 
   1714 /*
   1715  * kqueue(2) system call.
   1716  */
   1717 static int
   1718 kqueue1(struct lwp *l, int flags, register_t *retval)
   1719 {
   1720 	struct kqueue *kq;
   1721 	file_t *fp;
   1722 	int fd, error;
   1723 
   1724 	if ((error = fd_allocfile(&fp, &fd)) != 0)
   1725 		return error;
   1726 	fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
   1727 	fp->f_type = DTYPE_KQUEUE;
   1728 	fp->f_ops = &kqueueops;
   1729 	kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
   1730 	mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
   1731 	cv_init(&kq->kq_cv, "kqueue");
   1732 	selinit(&kq->kq_sel);
   1733 	TAILQ_INIT(&kq->kq_head);
   1734 	fp->f_kqueue = kq;
   1735 	*retval = fd;
   1736 	kq->kq_fdp = curlwp->l_fd;
   1737 	fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
   1738 	fd_affix(curproc, fp, fd);
   1739 	return error;
   1740 }
   1741 
   1742 /*
   1743  * kqueue(2) system call.
   1744  */
   1745 int
   1746 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
   1747 {
   1748 	return kqueue1(l, 0, retval);
   1749 }
   1750 
   1751 int
   1752 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
   1753     register_t *retval)
   1754 {
   1755 	/* {
   1756 		syscallarg(int) flags;
   1757 	} */
   1758 	return kqueue1(l, SCARG(uap, flags), retval);
   1759 }
   1760 
   1761 /*
   1762  * kevent(2) system call.
   1763  */
   1764 int
   1765 kevent_fetch_changes(void *ctx, const struct kevent *changelist,
   1766     struct kevent *changes, size_t index, int n)
   1767 {
   1768 
   1769 	return copyin(changelist + index, changes, n * sizeof(*changes));
   1770 }
   1771 
   1772 int
   1773 kevent_put_events(void *ctx, struct kevent *events,
   1774     struct kevent *eventlist, size_t index, int n)
   1775 {
   1776 
   1777 	return copyout(events, eventlist + index, n * sizeof(*events));
   1778 }
   1779 
   1780 static const struct kevent_ops kevent_native_ops = {
   1781 	.keo_private = NULL,
   1782 	.keo_fetch_timeout = copyin,
   1783 	.keo_fetch_changes = kevent_fetch_changes,
   1784 	.keo_put_events = kevent_put_events,
   1785 };
   1786 
   1787 int
   1788 sys___kevent100(struct lwp *l, const struct sys___kevent100_args *uap,
   1789     register_t *retval)
   1790 {
   1791 	/* {
   1792 		syscallarg(int) fd;
   1793 		syscallarg(const struct kevent *) changelist;
   1794 		syscallarg(size_t) nchanges;
   1795 		syscallarg(struct kevent *) eventlist;
   1796 		syscallarg(size_t) nevents;
   1797 		syscallarg(const struct timespec *) timeout;
   1798 	} */
   1799 
   1800 	return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
   1801 	    SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
   1802 	    SCARG(uap, timeout), &kevent_native_ops);
   1803 }
   1804 
   1805 int
   1806 kevent1(register_t *retval, int fd,
   1807 	const struct kevent *changelist, size_t nchanges,
   1808 	struct kevent *eventlist, size_t nevents,
   1809 	const struct timespec *timeout,
   1810 	const struct kevent_ops *keops)
   1811 {
   1812 	struct kevent *kevp;
   1813 	struct kqueue *kq;
   1814 	struct timespec	ts;
   1815 	size_t i, n, ichange;
   1816 	int nerrors, error;
   1817 	struct kevent kevbuf[KQ_NEVENTS];	/* approx 300 bytes on 64-bit */
   1818 	file_t *fp;
   1819 
   1820 	/* check that we're dealing with a kq */
   1821 	fp = fd_getfile(fd);
   1822 	if (fp == NULL)
   1823 		return (EBADF);
   1824 
   1825 	if (fp->f_type != DTYPE_KQUEUE) {
   1826 		fd_putfile(fd);
   1827 		return (EBADF);
   1828 	}
   1829 
   1830 	if (timeout != NULL) {
   1831 		error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
   1832 		if (error)
   1833 			goto done;
   1834 		timeout = &ts;
   1835 	}
   1836 
   1837 	kq = fp->f_kqueue;
   1838 	nerrors = 0;
   1839 	ichange = 0;
   1840 
   1841 	/* traverse list of events to register */
   1842 	while (nchanges > 0) {
   1843 		n = MIN(nchanges, __arraycount(kevbuf));
   1844 		error = (*keops->keo_fetch_changes)(keops->keo_private,
   1845 		    changelist, kevbuf, ichange, n);
   1846 		if (error)
   1847 			goto done;
   1848 		for (i = 0; i < n; i++) {
   1849 			kevp = &kevbuf[i];
   1850 			kevp->flags &= ~EV_SYSFLAGS;
   1851 			/* register each knote */
   1852 			error = kqueue_register(kq, kevp);
   1853 			if (!error && !(kevp->flags & EV_RECEIPT))
   1854 				continue;
   1855 			if (nevents == 0)
   1856 				goto done;
   1857 			kevp->flags = EV_ERROR;
   1858 			kevp->data = error;
   1859 			error = (*keops->keo_put_events)
   1860 				(keops->keo_private, kevp,
   1861 				 eventlist, nerrors, 1);
   1862 			if (error)
   1863 				goto done;
   1864 			nevents--;
   1865 			nerrors++;
   1866 		}
   1867 		nchanges -= n;	/* update the results */
   1868 		ichange += n;
   1869 	}
   1870 	if (nerrors) {
   1871 		*retval = nerrors;
   1872 		error = 0;
   1873 		goto done;
   1874 	}
   1875 
   1876 	/* actually scan through the events */
   1877 	error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
   1878 	    kevbuf, __arraycount(kevbuf));
   1879  done:
   1880 	fd_putfile(fd);
   1881 	return (error);
   1882 }
   1883 
   1884 /*
   1885  * Register a given kevent kev onto the kqueue
   1886  */
   1887 static int
   1888 kqueue_register(struct kqueue *kq, struct kevent *kev)
   1889 {
   1890 	struct kfilter *kfilter;
   1891 	filedesc_t *fdp;
   1892 	file_t *fp;
   1893 	fdfile_t *ff;
   1894 	struct knote *kn, *newkn;
   1895 	struct klist *list;
   1896 	int error, fd, rv;
   1897 
   1898 	fdp = kq->kq_fdp;
   1899 	fp = NULL;
   1900 	kn = NULL;
   1901 	error = 0;
   1902 	fd = 0;
   1903 
   1904 	newkn = knote_alloc(true);
   1905 
   1906 	rw_enter(&kqueue_filter_lock, RW_READER);
   1907 	kfilter = kfilter_byfilter(kev->filter);
   1908 	if (kfilter == NULL || kfilter->filtops == NULL) {
   1909 		/* filter not found nor implemented */
   1910 		rw_exit(&kqueue_filter_lock);
   1911 		knote_free(newkn);
   1912 		return (EINVAL);
   1913 	}
   1914 
   1915 	/* search if knote already exists */
   1916 	if (kfilter->filtops->f_flags & FILTEROP_ISFD) {
   1917 		/* monitoring a file descriptor */
   1918 		/* validate descriptor */
   1919 		if (kev->ident > INT_MAX
   1920 		    || (fp = fd_getfile(fd = kev->ident)) == NULL) {
   1921 			rw_exit(&kqueue_filter_lock);
   1922 			knote_free(newkn);
   1923 			return EBADF;
   1924 		}
   1925 		mutex_enter(&fdp->fd_lock);
   1926 		ff = fdp->fd_dt->dt_ff[fd];
   1927 		if (ff->ff_refcnt & FR_CLOSING) {
   1928 			error = EBADF;
   1929 			goto doneunlock;
   1930 		}
   1931 		if (fd <= fdp->fd_lastkqfile) {
   1932 			SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
   1933 				if (kq == kn->kn_kq &&
   1934 				    kev->filter == kn->kn_filter)
   1935 					break;
   1936 			}
   1937 		}
   1938 	} else {
   1939 		/*
   1940 		 * not monitoring a file descriptor, so
   1941 		 * lookup knotes in internal hash table
   1942 		 */
   1943 		mutex_enter(&fdp->fd_lock);
   1944 		if (fdp->fd_knhashmask != 0) {
   1945 			list = &fdp->fd_knhash[
   1946 			    KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
   1947 			SLIST_FOREACH(kn, list, kn_link) {
   1948 				if (kev->ident == kn->kn_id &&
   1949 				    kq == kn->kn_kq &&
   1950 				    kev->filter == kn->kn_filter)
   1951 					break;
   1952 			}
   1953 		}
   1954 	}
   1955 
   1956 	/* It's safe to test KQ_CLOSING while holding only the fd_lock. */
   1957 	KASSERT(mutex_owned(&fdp->fd_lock));
   1958 	KASSERT((kq->kq_count & KQ_CLOSING) == 0);
   1959 
   1960 	/*
   1961 	 * kn now contains the matching knote, or NULL if no match
   1962 	 */
   1963 	if (kn == NULL) {
   1964 		if (kev->flags & EV_ADD) {
   1965 			/* create new knote */
   1966 			kn = newkn;
   1967 			newkn = NULL;
   1968 			kn->kn_obj = fp;
   1969 			kn->kn_id = kev->ident;
   1970 			kn->kn_kq = kq;
   1971 			kn->kn_fop = kfilter->filtops;
   1972 			kn->kn_kfilter = kfilter;
   1973 			kn->kn_sfflags = kev->fflags;
   1974 			kn->kn_sdata = kev->data;
   1975 			kev->fflags = 0;
   1976 			kev->data = 0;
   1977 			kn->kn_kevent = *kev;
   1978 
   1979 			KASSERT(kn->kn_fop != NULL);
   1980 			/*
   1981 			 * XXX Allow only known-safe users of f_touch.
   1982 			 * XXX See filter_touch() for details.
   1983 			 */
   1984 			if (kn->kn_fop->f_touch != NULL &&
   1985 			    kn->kn_fop != &timer_filtops &&
   1986 			    kn->kn_fop != &user_filtops) {
   1987 				error = ENOTSUP;
   1988 				goto fail_ev_add;
   1989 			}
   1990 
   1991 			/*
   1992 			 * apply reference count to knote structure, and
   1993 			 * do not release it at the end of this routine.
   1994 			 */
   1995 			fp = NULL;
   1996 
   1997 			if (!(kn->kn_fop->f_flags & FILTEROP_ISFD)) {
   1998 				/*
   1999 				 * If knote is not on an fd, store on
   2000 				 * internal hash table.
   2001 				 */
   2002 				if (fdp->fd_knhashmask == 0) {
   2003 					/* XXXAD can block with fd_lock held */
   2004 					fdp->fd_knhash = hashinit(KN_HASHSIZE,
   2005 					    HASH_LIST, true,
   2006 					    &fdp->fd_knhashmask);
   2007 				}
   2008 				list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
   2009 				    fdp->fd_knhashmask)];
   2010 			} else {
   2011 				/* Otherwise, knote is on an fd. */
   2012 				list = (struct klist *)
   2013 				    &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
   2014 				if ((int)kn->kn_id > fdp->fd_lastkqfile)
   2015 					fdp->fd_lastkqfile = kn->kn_id;
   2016 			}
   2017 			SLIST_INSERT_HEAD(list, kn, kn_link);
   2018 
   2019 			/*
   2020 			 * N.B. kn->kn_fop may change as the result
   2021 			 * of filter_attach()!
   2022 			 */
   2023 			knote_foplock_enter(kn);
   2024 			error = filter_attach(kn);
   2025 			if (error != 0) {
   2026 #ifdef DEBUG
   2027 				struct proc *p = curlwp->l_proc;
   2028 				const file_t *ft = kn->kn_obj;
   2029 				printf("%s: %s[%d]: event type %d not "
   2030 				    "supported for file type %d/%s "
   2031 				    "(error %d)\n", __func__,
   2032 				    p->p_comm, p->p_pid,
   2033 				    kn->kn_filter, ft ? ft->f_type : -1,
   2034 				    ft ? ft->f_ops->fo_name : "?", error);
   2035 #endif
   2036 
   2037  fail_ev_add:
   2038 				/*
   2039 				 * N.B. no need to check for this note to
   2040 				 * be in-flux, since it was never visible
   2041 				 * to the monitored object.
   2042 				 *
   2043 				 * knote_detach() drops fdp->fd_lock
   2044 				 */
   2045 				knote_foplock_exit(kn);
   2046 				mutex_enter(&kq->kq_lock);
   2047 				KNOTE_WILLDETACH(kn);
   2048 				KASSERT(kn_in_flux(kn) == false);
   2049 				mutex_exit(&kq->kq_lock);
   2050 				knote_detach(kn, fdp, false);
   2051 				goto done;
   2052 			}
   2053 			atomic_inc_uint(&kfilter->refcnt);
   2054 			goto done_ev_add;
   2055 		} else {
   2056 			/* No matching knote and the EV_ADD flag is not set. */
   2057 			error = ENOENT;
   2058 			goto doneunlock;
   2059 		}
   2060 	}
   2061 
   2062 	if (kev->flags & EV_DELETE) {
   2063 		/*
   2064 		 * Let the world know that this knote is about to go
   2065 		 * away, and wait for it to settle if it's currently
   2066 		 * in-flux.
   2067 		 */
   2068 		mutex_spin_enter(&kq->kq_lock);
   2069 		if (kn->kn_status & KN_WILLDETACH) {
   2070 			/*
   2071 			 * This knote is already on its way out,
   2072 			 * so just be done.
   2073 			 */
   2074 			mutex_spin_exit(&kq->kq_lock);
   2075 			goto doneunlock;
   2076 		}
   2077 		KNOTE_WILLDETACH(kn);
   2078 		if (kn_in_flux(kn)) {
   2079 			mutex_exit(&fdp->fd_lock);
   2080 			/*
   2081 			 * It's safe for us to conclusively wait for
   2082 			 * this knote to settle because we know we'll
   2083 			 * be completing the detach.
   2084 			 */
   2085 			kn_wait_flux(kn, true);
   2086 			KASSERT(kn_in_flux(kn) == false);
   2087 			mutex_spin_exit(&kq->kq_lock);
   2088 			mutex_enter(&fdp->fd_lock);
   2089 		} else {
   2090 			mutex_spin_exit(&kq->kq_lock);
   2091 		}
   2092 
   2093 		/* knote_detach() drops fdp->fd_lock */
   2094 		knote_detach(kn, fdp, true);
   2095 		goto done;
   2096 	}
   2097 
   2098 	/*
   2099 	 * The user may change some filter values after the
   2100 	 * initial EV_ADD, but doing so will not reset any
   2101 	 * filter which have already been triggered.
   2102 	 */
   2103 	knote_foplock_enter(kn);
   2104 	kn->kn_kevent.udata = kev->udata;
   2105 	KASSERT(kn->kn_fop != NULL);
   2106 	if (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
   2107 	    kn->kn_fop->f_touch != NULL) {
   2108 		mutex_spin_enter(&kq->kq_lock);
   2109 		error = filter_touch(kn, kev, EVENT_REGISTER);
   2110 		mutex_spin_exit(&kq->kq_lock);
   2111 		if (__predict_false(error != 0)) {
   2112 			/* Never a new knote (which would consume newkn). */
   2113 			KASSERT(newkn != NULL);
   2114 			knote_foplock_exit(kn);
   2115 			goto doneunlock;
   2116 		}
   2117 	} else {
   2118 		kn->kn_sfflags = kev->fflags;
   2119 		kn->kn_sdata = kev->data;
   2120 	}
   2121 
   2122 	/*
   2123 	 * We can get here if we are trying to attach
   2124 	 * an event to a file descriptor that does not
   2125 	 * support events, and the attach routine is
   2126 	 * broken and does not return an error.
   2127 	 */
   2128  done_ev_add:
   2129 	rv = filter_event(kn, 0, false);
   2130 	if (rv)
   2131 		knote_activate(kn);
   2132 
   2133 	knote_foplock_exit(kn);
   2134 
   2135 	/* disable knote */
   2136 	if ((kev->flags & EV_DISABLE)) {
   2137 		mutex_spin_enter(&kq->kq_lock);
   2138 		if ((kn->kn_status & KN_DISABLED) == 0)
   2139 			kn->kn_status |= KN_DISABLED;
   2140 		mutex_spin_exit(&kq->kq_lock);
   2141 	}
   2142 
   2143 	/* enable knote */
   2144 	if ((kev->flags & EV_ENABLE)) {
   2145 		knote_enqueue(kn);
   2146 	}
   2147  doneunlock:
   2148 	mutex_exit(&fdp->fd_lock);
   2149  done:
   2150 	rw_exit(&kqueue_filter_lock);
   2151 	if (newkn != NULL)
   2152 		knote_free(newkn);
   2153 	if (fp != NULL)
   2154 		fd_putfile(fd);
   2155 	return (error);
   2156 }
   2157 
   2158 #define KN_FMT(buf, kn) \
   2159     (snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf)
   2160 
   2161 #if defined(DDB)
   2162 void
   2163 kqueue_printit(struct kqueue *kq, bool full, void (*pr)(const char *, ...))
   2164 {
   2165 	const struct knote *kn;
   2166 	u_int count;
   2167 	int nmarker;
   2168 	char buf[128];
   2169 
   2170 	count = 0;
   2171 	nmarker = 0;
   2172 
   2173 	(*pr)("kqueue %p (restart=%d count=%u):\n", kq,
   2174 	    !!(kq->kq_count & KQ_RESTART), KQ_COUNT(kq));
   2175 	(*pr)("  Queued knotes:\n");
   2176 	TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
   2177 		if (kn->kn_status & KN_MARKER) {
   2178 			nmarker++;
   2179 		} else {
   2180 			count++;
   2181 		}
   2182 		(*pr)("    knote %p: kq=%p status=%s\n",
   2183 		    kn, kn->kn_kq, KN_FMT(buf, kn));
   2184 		(*pr)("      id=0x%lx (%lu) filter=%d\n",
   2185 		    (u_long)kn->kn_id, (u_long)kn->kn_id, kn->kn_filter);
   2186 		if (kn->kn_kq != kq) {
   2187 			(*pr)("      !!! kn->kn_kq != kq\n");
   2188 		}
   2189 	}
   2190 	if (count != KQ_COUNT(kq)) {
   2191 		(*pr)("  !!! count(%u) != KQ_COUNT(%u)\n",
   2192 		    count, KQ_COUNT(kq));
   2193 	}
   2194 }
   2195 #endif /* DDB */
   2196 
   2197 #if defined(DEBUG)
   2198 static void
   2199 kqueue_check(const char *func, size_t line, const struct kqueue *kq)
   2200 {
   2201 	const struct knote *kn;
   2202 	u_int count;
   2203 	int nmarker;
   2204 	char buf[128];
   2205 
   2206 	KASSERT(mutex_owned(&kq->kq_lock));
   2207 
   2208 	count = 0;
   2209 	nmarker = 0;
   2210 	TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
   2211 		if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
   2212 			panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s",
   2213 			    func, line, kq, kn, KN_FMT(buf, kn));
   2214 		}
   2215 		if ((kn->kn_status & KN_MARKER) == 0) {
   2216 			if (kn->kn_kq != kq) {
   2217 				panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s",
   2218 				    func, line, kq, kn, kn->kn_kq,
   2219 				    KN_FMT(buf, kn));
   2220 			}
   2221 			if ((kn->kn_status & KN_ACTIVE) == 0) {
   2222 				panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s",
   2223 				    func, line, kq, kn, KN_FMT(buf, kn));
   2224 			}
   2225 			count++;
   2226 			if (count > KQ_COUNT(kq)) {
   2227 				panic("%s,%zu: kq=%p kq->kq_count(%u) != "
   2228 				    "count(%d), nmarker=%d",
   2229 		    		    func, line, kq, KQ_COUNT(kq), count,
   2230 				    nmarker);
   2231 			}
   2232 		} else {
   2233 			nmarker++;
   2234 		}
   2235 	}
   2236 }
   2237 #define kq_check(a) kqueue_check(__func__, __LINE__, (a))
   2238 #else /* defined(DEBUG) */
   2239 #define	kq_check(a)	/* nothing */
   2240 #endif /* defined(DEBUG) */
   2241 
   2242 static void
   2243 kqueue_restart(file_t *fp)
   2244 {
   2245 	struct kqueue *kq = fp->f_kqueue;
   2246 	KASSERT(kq != NULL);
   2247 
   2248 	mutex_spin_enter(&kq->kq_lock);
   2249 	kq->kq_count |= KQ_RESTART;
   2250 	cv_broadcast(&kq->kq_cv);
   2251 	mutex_spin_exit(&kq->kq_lock);
   2252 }
   2253 
   2254 static int
   2255 kqueue_fpathconf(struct file *fp, int name, register_t *retval)
   2256 {
   2257 
   2258 	return EINVAL;
   2259 }
   2260 
   2261 /*
   2262  * Scan through the list of events on fp (for a maximum of maxevents),
   2263  * returning the results in to ulistp. Timeout is determined by tsp; if
   2264  * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
   2265  * as appropriate.
   2266  */
   2267 static int
   2268 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
   2269 	    const struct timespec *tsp, register_t *retval,
   2270 	    const struct kevent_ops *keops, struct kevent *kevbuf,
   2271 	    size_t kevcnt)
   2272 {
   2273 	struct kqueue	*kq;
   2274 	struct kevent	*kevp;
   2275 	struct timespec	ats, sleepts;
   2276 	struct knote	*kn, *marker;
   2277 	struct knote_impl morker;
   2278 	size_t		count, nkev, nevents;
   2279 	int		timeout, error, touch, rv, influx;
   2280 	filedesc_t	*fdp;
   2281 
   2282 	fdp = curlwp->l_fd;
   2283 	kq = fp->f_kqueue;
   2284 	count = maxevents;
   2285 	nkev = nevents = error = 0;
   2286 	if (count == 0) {
   2287 		*retval = 0;
   2288 		return 0;
   2289 	}
   2290 
   2291 	if (tsp) {				/* timeout supplied */
   2292 		ats = *tsp;
   2293 		if (inittimeleft(&ats, &sleepts) == -1) {
   2294 			*retval = maxevents;
   2295 			return EINVAL;
   2296 		}
   2297 		timeout = tstohz(&ats);
   2298 		if (timeout <= 0)
   2299 			timeout = -1;           /* do poll */
   2300 	} else {
   2301 		/* no timeout, wait forever */
   2302 		timeout = 0;
   2303 	}
   2304 
   2305 	memset(&morker, 0, sizeof(morker));
   2306 	marker = &morker.ki_knote;
   2307 	marker->kn_kq = kq;
   2308 	marker->kn_status = KN_MARKER;
   2309 	mutex_spin_enter(&kq->kq_lock);
   2310  retry:
   2311 	kevp = kevbuf;
   2312 	if (KQ_COUNT(kq) == 0) {
   2313 		if (timeout >= 0) {
   2314 			error = cv_timedwait_sig(&kq->kq_cv,
   2315 			    &kq->kq_lock, timeout);
   2316 			if (error == 0) {
   2317 				if (KQ_COUNT(kq) == 0 &&
   2318 				    (kq->kq_count & KQ_RESTART)) {
   2319 					/* return to clear file reference */
   2320 					error = ERESTART;
   2321 				} else if (tsp == NULL || (timeout =
   2322 				    gettimeleft(&ats, &sleepts)) > 0) {
   2323 					goto retry;
   2324 				}
   2325 			} else {
   2326 				/* don't restart after signals... */
   2327 				if (error == ERESTART)
   2328 					error = EINTR;
   2329 				if (error == EWOULDBLOCK)
   2330 					error = 0;
   2331 			}
   2332 		}
   2333 		mutex_spin_exit(&kq->kq_lock);
   2334 		goto done;
   2335 	}
   2336 
   2337 	/* mark end of knote list */
   2338 	TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
   2339 	influx = 0;
   2340 
   2341 	/*
   2342 	 * Acquire the fdp->fd_lock interlock to avoid races with
   2343 	 * file creation/destruction from other threads.
   2344 	 */
   2345 	mutex_spin_exit(&kq->kq_lock);
   2346 relock:
   2347 	mutex_enter(&fdp->fd_lock);
   2348 	mutex_spin_enter(&kq->kq_lock);
   2349 
   2350 	while (count != 0) {
   2351 		/*
   2352 		 * Get next knote.  We are guaranteed this will never
   2353 		 * be NULL because of the marker we inserted above.
   2354 		 */
   2355 		kn = TAILQ_FIRST(&kq->kq_head);
   2356 
   2357 		bool kn_is_other_marker =
   2358 		    (kn->kn_status & KN_MARKER) != 0 && kn != marker;
   2359 		bool kn_is_detaching = (kn->kn_status & KN_WILLDETACH) != 0;
   2360 		bool kn_is_in_flux = kn_in_flux(kn);
   2361 
   2362 		/*
   2363 		 * If we found a marker that's not ours, or this knote
   2364 		 * is in a state of flux, then wait for everything to
   2365 		 * settle down and go around again.
   2366 		 */
   2367 		if (kn_is_other_marker || kn_is_detaching || kn_is_in_flux) {
   2368 			if (influx) {
   2369 				influx = 0;
   2370 				KQ_FLUX_WAKEUP(kq);
   2371 			}
   2372 			mutex_exit(&fdp->fd_lock);
   2373 			if (kn_is_other_marker || kn_is_in_flux) {
   2374 				KQ_FLUX_WAIT(kq);
   2375 				mutex_spin_exit(&kq->kq_lock);
   2376 			} else {
   2377 				/*
   2378 				 * Detaching but not in-flux?  Someone is
   2379 				 * actively trying to finish the job; just
   2380 				 * go around and try again.
   2381 				 */
   2382 				KASSERT(kn_is_detaching);
   2383 				mutex_spin_exit(&kq->kq_lock);
   2384 				preempt_point();
   2385 			}
   2386 			goto relock;
   2387 		}
   2388 
   2389 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   2390 		if (kn == marker) {
   2391 			/* it's our marker, stop */
   2392 			KQ_FLUX_WAKEUP(kq);
   2393 			if (count == maxevents) {
   2394 				mutex_exit(&fdp->fd_lock);
   2395 				goto retry;
   2396 			}
   2397 			break;
   2398 		}
   2399 		KASSERT((kn->kn_status & KN_BUSY) == 0);
   2400 
   2401 		kq_check(kq);
   2402 		kn->kn_status &= ~KN_QUEUED;
   2403 		kn->kn_status |= KN_BUSY;
   2404 		kq_check(kq);
   2405 		if (kn->kn_status & KN_DISABLED) {
   2406 			kn->kn_status &= ~KN_BUSY;
   2407 			kq->kq_count--;
   2408 			/* don't want disabled events */
   2409 			continue;
   2410 		}
   2411 		if ((kn->kn_flags & EV_ONESHOT) == 0) {
   2412 			mutex_spin_exit(&kq->kq_lock);
   2413 			KASSERT(mutex_owned(&fdp->fd_lock));
   2414 			knote_foplock_enter(kn);
   2415 			rv = filter_event(kn, 0, false);
   2416 			knote_foplock_exit(kn);
   2417 			mutex_spin_enter(&kq->kq_lock);
   2418 			/* Re-poll if note was re-enqueued. */
   2419 			if ((kn->kn_status & KN_QUEUED) != 0) {
   2420 				kn->kn_status &= ~KN_BUSY;
   2421 				/* Re-enqueue raised kq_count, lower it again */
   2422 				kq->kq_count--;
   2423 				influx = 1;
   2424 				continue;
   2425 			}
   2426 			if (rv == 0) {
   2427 				/*
   2428 				 * non-ONESHOT event that hasn't triggered
   2429 				 * again, so it will remain de-queued.
   2430 				 */
   2431 				kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
   2432 				kq->kq_count--;
   2433 				influx = 1;
   2434 				continue;
   2435 			}
   2436 		} else {
   2437 			/*
   2438 			 * Must NOT drop kq_lock until we can do
   2439 			 * the KNOTE_WILLDETACH() below.
   2440 			 */
   2441 		}
   2442 		KASSERT(kn->kn_fop != NULL);
   2443 		touch = (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
   2444 				kn->kn_fop->f_touch != NULL);
   2445 		/* XXXAD should be got from f_event if !oneshot. */
   2446 		KASSERT((kn->kn_status & KN_WILLDETACH) == 0);
   2447 		if (touch) {
   2448 			(void)filter_touch(kn, kevp, EVENT_PROCESS);
   2449 		} else {
   2450 			*kevp = kn->kn_kevent;
   2451 		}
   2452 		kevp++;
   2453 		nkev++;
   2454 		influx = 1;
   2455 		if (kn->kn_flags & EV_ONESHOT) {
   2456 			/* delete ONESHOT events after retrieval */
   2457 			KNOTE_WILLDETACH(kn);
   2458 			kn->kn_status &= ~KN_BUSY;
   2459 			kq->kq_count--;
   2460 			KASSERT(kn_in_flux(kn) == false);
   2461 			KASSERT((kn->kn_status & KN_WILLDETACH) != 0);
   2462 			KASSERT(kn->kn_kevent.udata == curlwp);
   2463 			mutex_spin_exit(&kq->kq_lock);
   2464 			knote_detach(kn, fdp, true);
   2465 			mutex_enter(&fdp->fd_lock);
   2466 			mutex_spin_enter(&kq->kq_lock);
   2467 		} else if (kn->kn_flags & EV_CLEAR) {
   2468 			/* clear state after retrieval */
   2469 			kn->kn_data = 0;
   2470 			kn->kn_fflags = 0;
   2471 			/*
   2472 			 * Manually clear knotes who weren't
   2473 			 * 'touch'ed.
   2474 			 */
   2475 			if (touch == 0) {
   2476 				kn->kn_data = 0;
   2477 				kn->kn_fflags = 0;
   2478 			}
   2479 			kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
   2480 			kq->kq_count--;
   2481 		} else if (kn->kn_flags & EV_DISPATCH) {
   2482 			kn->kn_status |= KN_DISABLED;
   2483 			kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
   2484 			kq->kq_count--;
   2485 		} else {
   2486 			/* add event back on list */
   2487 			kq_check(kq);
   2488 			kn->kn_status |= KN_QUEUED;
   2489 			kn->kn_status &= ~KN_BUSY;
   2490 			TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   2491 			kq_check(kq);
   2492 		}
   2493 
   2494 		if (nkev == kevcnt) {
   2495 			/* do copyouts in kevcnt chunks */
   2496 			influx = 0;
   2497 			KQ_FLUX_WAKEUP(kq);
   2498 			mutex_spin_exit(&kq->kq_lock);
   2499 			mutex_exit(&fdp->fd_lock);
   2500 			error = (*keops->keo_put_events)
   2501 			    (keops->keo_private,
   2502 			    kevbuf, ulistp, nevents, nkev);
   2503 			mutex_enter(&fdp->fd_lock);
   2504 			mutex_spin_enter(&kq->kq_lock);
   2505 			nevents += nkev;
   2506 			nkev = 0;
   2507 			kevp = kevbuf;
   2508 		}
   2509 		count--;
   2510 		if (error != 0 || count == 0) {
   2511 			/* remove marker */
   2512 			TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
   2513 			break;
   2514 		}
   2515 	}
   2516 	KQ_FLUX_WAKEUP(kq);
   2517 	mutex_spin_exit(&kq->kq_lock);
   2518 	mutex_exit(&fdp->fd_lock);
   2519 
   2520 done:
   2521 	if (nkev != 0) {
   2522 		/* copyout remaining events */
   2523 		error = (*keops->keo_put_events)(keops->keo_private,
   2524 		    kevbuf, ulistp, nevents, nkev);
   2525 	}
   2526 	*retval = maxevents - count;
   2527 
   2528 	return error;
   2529 }
   2530 
   2531 /*
   2532  * fileops ioctl method for a kqueue descriptor.
   2533  *
   2534  * Two ioctls are currently supported. They both use struct kfilter_mapping:
   2535  *	KFILTER_BYNAME		find name for filter, and return result in
   2536  *				name, which is of size len.
   2537  *	KFILTER_BYFILTER	find filter for name. len is ignored.
   2538  */
   2539 /*ARGSUSED*/
   2540 static int
   2541 kqueue_ioctl(file_t *fp, u_long com, void *data)
   2542 {
   2543 	struct kfilter_mapping	*km;
   2544 	const struct kfilter	*kfilter;
   2545 	char			*name;
   2546 	int			error;
   2547 
   2548 	km = data;
   2549 	error = 0;
   2550 	name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
   2551 
   2552 	switch (com) {
   2553 	case KFILTER_BYFILTER:	/* convert filter -> name */
   2554 		rw_enter(&kqueue_filter_lock, RW_READER);
   2555 		kfilter = kfilter_byfilter(km->filter);
   2556 		if (kfilter != NULL) {
   2557 			strlcpy(name, kfilter->name, KFILTER_MAXNAME);
   2558 			rw_exit(&kqueue_filter_lock);
   2559 			error = copyoutstr(name, km->name, km->len, NULL);
   2560 		} else {
   2561 			rw_exit(&kqueue_filter_lock);
   2562 			error = ENOENT;
   2563 		}
   2564 		break;
   2565 
   2566 	case KFILTER_BYNAME:	/* convert name -> filter */
   2567 		error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
   2568 		if (error) {
   2569 			break;
   2570 		}
   2571 		rw_enter(&kqueue_filter_lock, RW_READER);
   2572 		kfilter = kfilter_byname(name);
   2573 		if (kfilter != NULL)
   2574 			km->filter = kfilter->filter;
   2575 		else
   2576 			error = ENOENT;
   2577 		rw_exit(&kqueue_filter_lock);
   2578 		break;
   2579 
   2580 	default:
   2581 		error = ENOTTY;
   2582 		break;
   2583 
   2584 	}
   2585 	kmem_free(name, KFILTER_MAXNAME);
   2586 	return (error);
   2587 }
   2588 
   2589 /*
   2590  * fileops fcntl method for a kqueue descriptor.
   2591  */
   2592 static int
   2593 kqueue_fcntl(file_t *fp, u_int com, void *data)
   2594 {
   2595 
   2596 	return (ENOTTY);
   2597 }
   2598 
   2599 /*
   2600  * fileops poll method for a kqueue descriptor.
   2601  * Determine if kqueue has events pending.
   2602  */
   2603 static int
   2604 kqueue_poll(file_t *fp, int events)
   2605 {
   2606 	struct kqueue	*kq;
   2607 	int		revents;
   2608 
   2609 	kq = fp->f_kqueue;
   2610 
   2611 	revents = 0;
   2612 	if (events & (POLLIN | POLLRDNORM)) {
   2613 		mutex_spin_enter(&kq->kq_lock);
   2614 		if (KQ_COUNT(kq) != 0) {
   2615 			revents |= events & (POLLIN | POLLRDNORM);
   2616 		} else {
   2617 			selrecord(curlwp, &kq->kq_sel);
   2618 		}
   2619 		kq_check(kq);
   2620 		mutex_spin_exit(&kq->kq_lock);
   2621 	}
   2622 
   2623 	return revents;
   2624 }
   2625 
   2626 /*
   2627  * fileops stat method for a kqueue descriptor.
   2628  * Returns dummy info, with st_size being number of events pending.
   2629  */
   2630 static int
   2631 kqueue_stat(file_t *fp, struct stat *st)
   2632 {
   2633 	struct kqueue *kq;
   2634 
   2635 	kq = fp->f_kqueue;
   2636 
   2637 	memset(st, 0, sizeof(*st));
   2638 	st->st_size = KQ_COUNT(kq);
   2639 	st->st_blksize = sizeof(struct kevent);
   2640 	st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
   2641 	st->st_blocks = 1;
   2642 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
   2643 	st->st_gid = kauth_cred_getegid(fp->f_cred);
   2644 
   2645 	return 0;
   2646 }
   2647 
   2648 static void
   2649 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
   2650 {
   2651 	struct knote *kn;
   2652 	filedesc_t *fdp;
   2653 
   2654 	fdp = kq->kq_fdp;
   2655 
   2656 	KASSERT(mutex_owned(&fdp->fd_lock));
   2657 
   2658  again:
   2659 	for (kn = SLIST_FIRST(list); kn != NULL;) {
   2660 		if (kq != kn->kn_kq) {
   2661 			kn = SLIST_NEXT(kn, kn_link);
   2662 			continue;
   2663 		}
   2664 		if (knote_detach_quiesce(kn)) {
   2665 			mutex_enter(&fdp->fd_lock);
   2666 			goto again;
   2667 		}
   2668 		knote_detach(kn, fdp, true);
   2669 		mutex_enter(&fdp->fd_lock);
   2670 		kn = SLIST_FIRST(list);
   2671 	}
   2672 }
   2673 
   2674 /*
   2675  * fileops close method for a kqueue descriptor.
   2676  */
   2677 static int
   2678 kqueue_close(file_t *fp)
   2679 {
   2680 	struct kqueue *kq;
   2681 	filedesc_t *fdp;
   2682 	fdfile_t *ff;
   2683 	int i;
   2684 
   2685 	kq = fp->f_kqueue;
   2686 	fp->f_kqueue = NULL;
   2687 	fp->f_type = 0;
   2688 	fdp = curlwp->l_fd;
   2689 
   2690 	KASSERT(kq->kq_fdp == fdp);
   2691 
   2692 	mutex_enter(&fdp->fd_lock);
   2693 
   2694 	/*
   2695 	 * We're doing to drop the fd_lock multiple times while
   2696 	 * we detach knotes.  During this time, attempts to register
   2697 	 * knotes via the back door (e.g. knote_proc_fork_track())
   2698 	 * need to fail, lest they sneak in to attach a knote after
   2699 	 * we've already drained the list it's destined for.
   2700 	 *
   2701 	 * We must acquire kq_lock here to set KQ_CLOSING (to serialize
   2702 	 * with other code paths that modify kq_count without holding
   2703 	 * the fd_lock), but once this bit is set, it's only safe to
   2704 	 * test it while holding the fd_lock, and holding kq_lock while
   2705 	 * doing so is not necessary.
   2706 	 */
   2707 	mutex_enter(&kq->kq_lock);
   2708 	kq->kq_count |= KQ_CLOSING;
   2709 	mutex_exit(&kq->kq_lock);
   2710 
   2711 	for (i = 0; i <= fdp->fd_lastkqfile; i++) {
   2712 		if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
   2713 			continue;
   2714 		kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
   2715 	}
   2716 	if (fdp->fd_knhashmask != 0) {
   2717 		for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
   2718 			kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
   2719 		}
   2720 	}
   2721 
   2722 	mutex_exit(&fdp->fd_lock);
   2723 
   2724 #if defined(DEBUG)
   2725 	mutex_enter(&kq->kq_lock);
   2726 	kq_check(kq);
   2727 	mutex_exit(&kq->kq_lock);
   2728 #endif /* DEBUG */
   2729 	KASSERT(TAILQ_EMPTY(&kq->kq_head));
   2730 	KASSERT(KQ_COUNT(kq) == 0);
   2731 	mutex_destroy(&kq->kq_lock);
   2732 	cv_destroy(&kq->kq_cv);
   2733 	seldestroy(&kq->kq_sel);
   2734 	kmem_free(kq, sizeof(*kq));
   2735 
   2736 	return (0);
   2737 }
   2738 
   2739 /*
   2740  * struct fileops kqfilter method for a kqueue descriptor.
   2741  * Event triggered when monitored kqueue changes.
   2742  */
   2743 static int
   2744 kqueue_kqfilter(file_t *fp, struct knote *kn)
   2745 {
   2746 	struct kqueue *kq;
   2747 
   2748 	kq = ((file_t *)kn->kn_obj)->f_kqueue;
   2749 
   2750 	KASSERT(fp == kn->kn_obj);
   2751 
   2752 	if (kn->kn_filter != EVFILT_READ)
   2753 		return EINVAL;
   2754 
   2755 	kn->kn_fop = &kqread_filtops;
   2756 	mutex_enter(&kq->kq_lock);
   2757 	selrecord_knote(&kq->kq_sel, kn);
   2758 	mutex_exit(&kq->kq_lock);
   2759 
   2760 	return 0;
   2761 }
   2762 
   2763 
   2764 /*
   2765  * Walk down a list of knotes, activating them if their event has
   2766  * triggered.  The caller's object lock (e.g. device driver lock)
   2767  * must be held.
   2768  */
   2769 void
   2770 knote(struct klist *list, long hint)
   2771 {
   2772 	struct knote *kn, *tmpkn;
   2773 
   2774 	SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
   2775 		/*
   2776 		 * We assume here that the backing object's lock is
   2777 		 * already held if we're traversing the klist, and
   2778 		 * so acquiring the knote foplock would create a
   2779 		 * deadlock scenario.  But we also know that the klist
   2780 		 * won't disappear on us while we're here, so not
   2781 		 * acquiring it is safe.
   2782 		 */
   2783 		if (filter_event(kn, hint, true)) {
   2784 			knote_activate(kn);
   2785 		}
   2786 	}
   2787 }
   2788 
   2789 /*
   2790  * Remove all knotes referencing a specified fd
   2791  */
   2792 void
   2793 knote_fdclose(int fd)
   2794 {
   2795 	struct klist *list;
   2796 	struct knote *kn;
   2797 	filedesc_t *fdp;
   2798 
   2799  again:
   2800 	fdp = curlwp->l_fd;
   2801 	mutex_enter(&fdp->fd_lock);
   2802 	list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
   2803 	while ((kn = SLIST_FIRST(list)) != NULL) {
   2804 		if (knote_detach_quiesce(kn)) {
   2805 			goto again;
   2806 		}
   2807 		knote_detach(kn, fdp, true);
   2808 		mutex_enter(&fdp->fd_lock);
   2809 	}
   2810 	mutex_exit(&fdp->fd_lock);
   2811 }
   2812 
   2813 /*
   2814  * Drop knote.  Called with fdp->fd_lock held, and will drop before
   2815  * returning.
   2816  */
   2817 static void
   2818 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
   2819 {
   2820 	struct klist *list;
   2821 	struct kqueue *kq;
   2822 
   2823 	kq = kn->kn_kq;
   2824 
   2825 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   2826 	KASSERT((kn->kn_status & KN_WILLDETACH) != 0);
   2827 	KASSERT(kn->kn_fop != NULL);
   2828 	KASSERT(mutex_owned(&fdp->fd_lock));
   2829 
   2830 	/* Remove from monitored object. */
   2831 	if (dofop) {
   2832 		knote_foplock_enter(kn);
   2833 		filter_detach(kn);
   2834 		knote_foplock_exit(kn);
   2835 	}
   2836 
   2837 	/* Remove from descriptor table. */
   2838 	if (kn->kn_fop->f_flags & FILTEROP_ISFD)
   2839 		list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
   2840 	else
   2841 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
   2842 
   2843 	SLIST_REMOVE(list, kn, knote, kn_link);
   2844 
   2845 	/* Remove from kqueue. */
   2846 again:
   2847 	mutex_spin_enter(&kq->kq_lock);
   2848 	KASSERT(kn_in_flux(kn) == false);
   2849 	if ((kn->kn_status & KN_QUEUED) != 0) {
   2850 		kq_check(kq);
   2851 		KASSERT(KQ_COUNT(kq) != 0);
   2852 		kq->kq_count--;
   2853 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   2854 		kn->kn_status &= ~KN_QUEUED;
   2855 		kq_check(kq);
   2856 	} else if (kn->kn_status & KN_BUSY) {
   2857 		mutex_spin_exit(&kq->kq_lock);
   2858 		goto again;
   2859 	}
   2860 	mutex_spin_exit(&kq->kq_lock);
   2861 
   2862 	mutex_exit(&fdp->fd_lock);
   2863 	if (kn->kn_fop->f_flags & FILTEROP_ISFD)
   2864 		fd_putfile(kn->kn_id);
   2865 	atomic_dec_uint(&kn->kn_kfilter->refcnt);
   2866 	knote_free(kn);
   2867 }
   2868 
   2869 /*
   2870  * Queue new event for knote.
   2871  */
   2872 static void
   2873 knote_enqueue(struct knote *kn)
   2874 {
   2875 	struct kqueue *kq;
   2876 
   2877 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   2878 
   2879 	kq = kn->kn_kq;
   2880 
   2881 	mutex_spin_enter(&kq->kq_lock);
   2882 	if (__predict_false(kn->kn_status & KN_WILLDETACH)) {
   2883 		/* Don't bother enqueueing a dying knote. */
   2884 		goto out;
   2885 	}
   2886 	if ((kn->kn_status & KN_DISABLED) != 0) {
   2887 		kn->kn_status &= ~KN_DISABLED;
   2888 	}
   2889 	if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
   2890 		kq_check(kq);
   2891 		kn->kn_status |= KN_QUEUED;
   2892 		TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   2893 		KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT);
   2894 		kq->kq_count++;
   2895 		kq_check(kq);
   2896 		cv_broadcast(&kq->kq_cv);
   2897 		selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
   2898 	}
   2899  out:
   2900 	mutex_spin_exit(&kq->kq_lock);
   2901 }
   2902 /*
   2903  * Queue new event for knote.
   2904  */
   2905 static void
   2906 knote_activate_locked(struct knote *kn)
   2907 {
   2908 	struct kqueue *kq;
   2909 
   2910 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   2911 
   2912 	kq = kn->kn_kq;
   2913 
   2914 	if (__predict_false(kn->kn_status & KN_WILLDETACH)) {
   2915 		/* Don't bother enqueueing a dying knote. */
   2916 		return;
   2917 	}
   2918 	kn->kn_status |= KN_ACTIVE;
   2919 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
   2920 		kq_check(kq);
   2921 		kn->kn_status |= KN_QUEUED;
   2922 		TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   2923 		KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT);
   2924 		kq->kq_count++;
   2925 		kq_check(kq);
   2926 		cv_broadcast(&kq->kq_cv);
   2927 		selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
   2928 	}
   2929 }
   2930 
   2931 static void
   2932 knote_activate(struct knote *kn)
   2933 {
   2934 	struct kqueue *kq = kn->kn_kq;
   2935 
   2936 	mutex_spin_enter(&kq->kq_lock);
   2937 	knote_activate_locked(kn);
   2938 	mutex_spin_exit(&kq->kq_lock);
   2939 }
   2940 
   2941 static void
   2942 knote_deactivate_locked(struct knote *kn)
   2943 {
   2944 	struct kqueue *kq = kn->kn_kq;
   2945 
   2946 	if (kn->kn_status & KN_QUEUED) {
   2947 		kq_check(kq);
   2948 		kn->kn_status &= ~KN_QUEUED;
   2949 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   2950 		KASSERT(KQ_COUNT(kq) > 0);
   2951 		kq->kq_count--;
   2952 		kq_check(kq);
   2953 	}
   2954 	kn->kn_status &= ~KN_ACTIVE;
   2955 }
   2956 
   2957 /*
   2958  * Set EV_EOF on the specified knote.  Also allows additional
   2959  * EV_* flags to be set (e.g. EV_ONESHOT).
   2960  */
   2961 void
   2962 knote_set_eof(struct knote *kn, uint32_t flags)
   2963 {
   2964 	struct kqueue *kq = kn->kn_kq;
   2965 
   2966 	mutex_spin_enter(&kq->kq_lock);
   2967 	kn->kn_flags |= EV_EOF | flags;
   2968 	mutex_spin_exit(&kq->kq_lock);
   2969 }
   2970 
   2971 /*
   2972  * Clear EV_EOF on the specified knote.
   2973  */
   2974 void
   2975 knote_clear_eof(struct knote *kn)
   2976 {
   2977 	struct kqueue *kq = kn->kn_kq;
   2978 
   2979 	mutex_spin_enter(&kq->kq_lock);
   2980 	kn->kn_flags &= ~EV_EOF;
   2981 	mutex_spin_exit(&kq->kq_lock);
   2982 }
   2983 
   2984 /*
   2985  * Initialize a klist.
   2986  */
   2987 void
   2988 klist_init(struct klist *list)
   2989 {
   2990 	SLIST_INIT(list);
   2991 }
   2992 
   2993 /*
   2994  * Finalize a klist.
   2995  */
   2996 void
   2997 klist_fini(struct klist *list)
   2998 {
   2999 	struct knote *kn;
   3000 
   3001 	/*
   3002 	 * Neuter all existing knotes on the klist because the list is
   3003 	 * being destroyed.  The caller has guaranteed that no additional
   3004 	 * knotes will be added to the list, that the backing object's
   3005 	 * locks are not held (otherwise there is a locking order issue
   3006 	 * with acquiring the knote foplock ), and that we can traverse
   3007 	 * the list safely in this state.
   3008 	 */
   3009 	SLIST_FOREACH(kn, list, kn_selnext) {
   3010 		knote_foplock_enter(kn);
   3011 		KASSERT(kn->kn_fop != NULL);
   3012 		if (kn->kn_fop->f_flags & FILTEROP_ISFD) {
   3013 			kn->kn_fop = &nop_fd_filtops;
   3014 		} else {
   3015 			kn->kn_fop = &nop_filtops;
   3016 		}
   3017 		knote_foplock_exit(kn);
   3018 	}
   3019 }
   3020 
   3021 /*
   3022  * Insert a knote into a klist.
   3023  */
   3024 void
   3025 klist_insert(struct klist *list, struct knote *kn)
   3026 {
   3027 	SLIST_INSERT_HEAD(list, kn, kn_selnext);
   3028 }
   3029 
   3030 /*
   3031  * Remove a knote from a klist.  Returns true if the last
   3032  * knote was removed and the list is now empty.
   3033  */
   3034 bool
   3035 klist_remove(struct klist *list, struct knote *kn)
   3036 {
   3037 	SLIST_REMOVE(list, kn, knote, kn_selnext);
   3038 	return SLIST_EMPTY(list);
   3039 }
   3040