Home | History | Annotate | Line # | Download | only in gen
      1 /*	$NetBSD: ptree.c,v 1.15 2025/04/25 21:12:31 andvar Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Matt Thomas <matt (at) 3am-software.com>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #define _PT_PRIVATE
     33 
     34 #if defined(PTCHECK) && !defined(PTDEBUG)
     35 #define PTDEBUG
     36 #endif
     37 
     38 #if defined(_KERNEL) || defined(_STANDALONE)
     39 #include <sys/param.h>
     40 #include <sys/types.h>
     41 #include <sys/systm.h>
     42 #include <lib/libkern/libkern.h>
     43 __KERNEL_RCSID(0, "$NetBSD: ptree.c,v 1.15 2025/04/25 21:12:31 andvar Exp $");
     44 #else
     45 #include <stddef.h>
     46 #include <stdint.h>
     47 #include <limits.h>
     48 #include <stdbool.h>
     49 #include <string.h>
     50 #ifdef PTDEBUG
     51 #include <assert.h>
     52 #define	KASSERT(e)	assert(e)
     53 #else
     54 #define	KASSERT(e)	do { } while (0)
     55 #endif
     56 __RCSID("$NetBSD: ptree.c,v 1.15 2025/04/25 21:12:31 andvar Exp $");
     57 #endif /* _KERNEL || _STANDALONE */
     58 
     59 #ifdef _LIBC
     60 #include "namespace.h"
     61 #endif
     62 
     63 #ifdef PTTEST
     64 #include "ptree.h"
     65 #else
     66 #include <sys/ptree.h>
     67 #endif
     68 
     69 /*
     70  * This is an implementation of a radix / PATRICIA tree.  As in a traditional
     71  * patricia tree, all the data is at the leaves of the tree.  An N-value
     72  * tree would have N leaves, N-1 branching nodes, and a root pointer.  Each
     73  * branching node would have left(0) and right(1) pointers that either point
     74  * to another branching node or a leaf node.  The root pointer would also
     75  * point to either the first branching node or a leaf node.  Leaf nodes
     76  * have no need for pointers.
     77  *
     78  * However, allocation for these branching nodes is problematic since the
     79  * allocation could fail.  This would cause insertions to fail for reasons
     80  * beyond the user's control.  So to prevent this, in this implementation
     81  * each node has two identities: its leaf identity and its branch identity.
     82  * Each is separate from the other.  Every branch is tagged as to whether
     83  * it points to a leaf or a branch.  This is not an attribute of the object
     84  * but of the pointer to the object.  The low bit of the pointer is used as
     85  * the tag to determine whether it points to a leaf or branch identity, with
     86  * branch identities having the low bit set.
     87  *
     88  * A node's branch identity has one rule: when traversing the tree from the
     89  * root to the node's leaf identity, one of the branches traversed will be via
     90  * the node's branch identity.  Of course, that has an exception: since to
     91  * store N leaves, you need N-1 branches.  That one node whose branch identity
     92  * isn't used is stored as "oddman"-out in the root.
     93  *
     94  * Branching nodes also has a bit offset and a bit length which determines
     95  * which branch slot is used.  The bit length can be zero resulting in a
     96  * one-way branch.  This happens in two special cases: the root and
     97  * interior mask nodes.
     98  *
     99  * To support longest match first lookups, when a mask node (one that only
    100  * match the first N bits) has children who first N bits match the mask nodes,
    101  * that mask node is converted from being a leaf node to being a one-way
    102  * branch-node.  The mask becomes fixed in position in the tree.  The mask
    103  * will always be the longest mask match for its descendants (unless they
    104  * traverse an even longer match).
    105  */
    106 
    107 #define	NODETOITEM(pt, ptn)	\
    108 	((void *)((uintptr_t)(ptn) - (pt)->pt_node_offset))
    109 #define	NODETOKEY(pt, ptn)	\
    110 	((void *)((uintptr_t)(ptn) - (pt)->pt_node_offset + pt->pt_key_offset))
    111 #define	ITEMTONODE(pt, ptn)	\
    112 	((pt_node_t *)((uintptr_t)(ptn) + (pt)->pt_node_offset))
    113 
    114 #if PTCHECK > 1
    115 #define	PTREE_CHECK(pt)		ptree_check(pt)
    116 #else
    117 #define	PTREE_CHECK(pt)		do { } while (0)
    118 #endif
    119 
    120 static inline bool
    121 ptree_matchnode(const pt_tree_t *pt, const pt_node_t *target,
    122 	const pt_node_t *ptn, pt_bitoff_t max_bitoff,
    123 	pt_bitoff_t *bitoff_p, pt_slot_t *slots_p)
    124 {
    125 	return (*pt->pt_ops->ptto_matchnode)(NODETOKEY(pt, target),
    126 	    (ptn != NULL ? NODETOKEY(pt, ptn) : NULL),
    127 	    max_bitoff, bitoff_p, slots_p, pt->pt_context);
    128 }
    129 
    130 static inline pt_slot_t
    131 ptree_testnode(const pt_tree_t *pt, const pt_node_t *target,
    132 	const pt_node_t *ptn)
    133 {
    134 	const pt_bitlen_t bitlen = PTN_BRANCH_BITLEN(ptn);
    135 	if (bitlen == 0)
    136 		return PT_SLOT_ROOT;	/* mask or root, doesn't matter */
    137 	return (*pt->pt_ops->ptto_testnode)(NODETOKEY(pt, target),
    138 	    PTN_BRANCH_BITOFF(ptn), bitlen, pt->pt_context);
    139 }
    140 
    141 static inline bool
    142 ptree_matchkey(const pt_tree_t *pt, const void *key,
    143 	const pt_node_t *ptn, pt_bitoff_t bitoff, pt_bitlen_t bitlen)
    144 {
    145 	return (*pt->pt_ops->ptto_matchkey)(key, NODETOKEY(pt, ptn),
    146 	    bitoff, bitlen, pt->pt_context);
    147 }
    148 
    149 static inline pt_slot_t
    150 ptree_testkey(const pt_tree_t *pt, const void *key, const pt_node_t *ptn)
    151 {
    152 	const pt_bitlen_t bitlen = PTN_BRANCH_BITLEN(ptn);
    153 	if (bitlen == 0)
    154 		return PT_SLOT_ROOT;	/* mask or root, doesn't matter */
    155 	return (*pt->pt_ops->ptto_testkey)(key, PTN_BRANCH_BITOFF(ptn),
    156 	    PTN_BRANCH_BITLEN(ptn), pt->pt_context);
    157 }
    158 
    159 static inline void
    160 ptree_set_position(uintptr_t node, pt_slot_t position)
    161 {
    162 	if (PT_LEAF_P(node))
    163 		PTN_SET_LEAF_POSITION(PT_NODE(node), position);
    164 	else
    165 		PTN_SET_BRANCH_POSITION(PT_NODE(node), position);
    166 }
    167 
    168 void
    169 ptree_init(pt_tree_t *pt, const pt_tree_ops_t *ops, void *context,
    170 	size_t node_offset, size_t key_offset)
    171 {
    172 	memset(pt, 0, sizeof(*pt));
    173 	pt->pt_node_offset = node_offset;
    174 	pt->pt_key_offset = key_offset;
    175 	pt->pt_context = context;
    176 	pt->pt_ops = ops;
    177 }
    178 
    179 typedef struct {
    180 	uintptr_t *id_insertp;
    181 	pt_node_t *id_parent;
    182 	uintptr_t id_node;
    183 	pt_slot_t id_parent_slot;
    184 	pt_bitoff_t id_bitoff;
    185 	pt_slot_t id_slot;
    186 } pt_insertdata_t;
    187 
    188 typedef bool (*pt_insertfunc_t)(pt_tree_t *, pt_node_t *, pt_insertdata_t *);
    189 
    190 /*
    191  * Move a branch identify from src to dst.  The leaves don't care since
    192  * nothing for them has changed.
    193  */
    194 /*ARGSUSED*/
    195 static uintptr_t
    196 ptree_move_branch(pt_tree_t * const pt, pt_node_t * const dst,
    197 	const pt_node_t * const src)
    198 {
    199 	KASSERT(PTN_BRANCH_BITLEN(src) == 1);
    200 	/* set branch bitlen and bitoff in one step.  */
    201 	dst->ptn_branchdata = src->ptn_branchdata;
    202 	PTN_SET_BRANCH_POSITION(dst, PTN_BRANCH_POSITION(src));
    203 	PTN_COPY_BRANCH_SLOTS(dst, src);
    204 	return PTN_BRANCH(dst);
    205 }
    206 
    207 #ifndef PTNOMASK
    208 static inline uintptr_t *
    209 ptree_find_branch(pt_tree_t * const pt, uintptr_t branch_node)
    210 {
    211 	pt_node_t * const branch = PT_NODE(branch_node);
    212 	pt_node_t *parent;
    213 
    214 	for (parent = &pt->pt_rootnode;;) {
    215 		uintptr_t *nodep =
    216 		    &PTN_BRANCH_SLOT(parent, ptree_testnode(pt, branch, parent));
    217 		if (*nodep == branch_node)
    218 			return nodep;
    219 		if (PT_LEAF_P(*nodep))
    220 			return NULL;
    221 		parent = PT_NODE(*nodep);
    222 	}
    223 }
    224 
    225 static bool
    226 ptree_insert_leaf_after_mask(pt_tree_t * const pt, pt_node_t * const target,
    227 	pt_insertdata_t * const id)
    228 {
    229 	const uintptr_t target_node = PTN_LEAF(target);
    230 	const uintptr_t mask_node = id->id_node;
    231 	pt_node_t * const mask = PT_NODE(mask_node);
    232 	const pt_bitlen_t mask_len = PTN_MASK_BITLEN(mask);
    233 
    234 	KASSERT(PT_LEAF_P(mask_node));
    235 	KASSERT(PTN_LEAF_POSITION(mask) == id->id_parent_slot);
    236 	KASSERT(mask_len <= id->id_bitoff);
    237 	KASSERT(PTN_ISMASK_P(mask));
    238 	KASSERT(!PTN_ISMASK_P(target) || mask_len < PTN_MASK_BITLEN(target));
    239 
    240 	if (mask_node == PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode)) {
    241 		KASSERT(id->id_parent != mask);
    242 		/*
    243 		 * Nice, mask was an oddman.  So just set the oddman to target.
    244 		 */
    245 		PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = target_node;
    246 	} else {
    247 		/*
    248 		 * We need to find out who's pointing to mask's branch
    249 		 * identity.  We know that between root and the leaf identity,
    250 		 * we must traverse the node's branch identity.
    251 		 */
    252 		uintptr_t * const mask_nodep = ptree_find_branch(pt, PTN_BRANCH(mask));
    253 		KASSERT(mask_nodep != NULL);
    254 		KASSERT(*mask_nodep == PTN_BRANCH(mask));
    255 		KASSERT(PTN_BRANCH_BITLEN(mask) == 1);
    256 
    257 		/*
    258 		 * Alas, mask was used as a branch.  Since the mask is becoming
    259 		 * a one-way branch, we need make target take over mask's
    260 		 * branching responsibilities.  Only then can we change it.
    261 		 */
    262 		*mask_nodep = ptree_move_branch(pt, target, mask);
    263 
    264 		/*
    265 		 * However, it's possible that mask's parent is itself.  If
    266 		 * that's true, update the insert point to use target since it
    267 		 * has taken over mask's branching duties.
    268 		 */
    269 		if (id->id_parent == mask)
    270 			id->id_insertp = &PTN_BRANCH_SLOT(target,
    271 			    id->id_parent_slot);
    272 	}
    273 
    274 	PTN_SET_BRANCH_BITLEN(mask, 0);
    275 	PTN_SET_BRANCH_BITOFF(mask, mask_len);
    276 
    277 	PTN_BRANCH_ROOT_SLOT(mask) = target_node;
    278 	PTN_BRANCH_ODDMAN_SLOT(mask) = PT_NULL;
    279 	PTN_SET_LEAF_POSITION(target, PT_SLOT_ROOT);
    280 	PTN_SET_BRANCH_POSITION(mask, id->id_parent_slot);
    281 
    282 	/*
    283 	 * Now that everything is done, to make target visible we need to
    284 	 * change mask from a leaf to a branch.
    285 	 */
    286 	*id->id_insertp = PTN_BRANCH(mask);
    287 	PTREE_CHECK(pt);
    288 	return true;
    289 }
    290 
    291 /*ARGSUSED*/
    292 static bool
    293 ptree_insert_mask_before_node(pt_tree_t * const pt, pt_node_t * const target,
    294 	pt_insertdata_t * const id)
    295 {
    296 	const uintptr_t node = id->id_node;
    297 	pt_node_t * const ptn = PT_NODE(node);
    298 	const pt_slot_t mask_len = PTN_MASK_BITLEN(target);
    299 	const pt_bitlen_t node_mask_len = PTN_MASK_BITLEN(ptn);
    300 
    301 	KASSERT(PT_LEAF_P(node) || id->id_parent_slot == PTN_BRANCH_POSITION(ptn));
    302 	KASSERT(PT_BRANCH_P(node) || id->id_parent_slot == PTN_LEAF_POSITION(ptn));
    303 	KASSERT(PTN_ISMASK_P(target));
    304 
    305 	/*
    306 	 * If the node we are placing ourself in front is a mask with the
    307 	 * same mask length as us, return failure.
    308 	 */
    309 	if (PTN_ISMASK_P(ptn) && node_mask_len == mask_len)
    310 		return false;
    311 
    312 	PTN_SET_BRANCH_BITLEN(target, 0);
    313 	PTN_SET_BRANCH_BITOFF(target, mask_len);
    314 
    315 	PTN_BRANCH_SLOT(target, PT_SLOT_ROOT) = node;
    316 	*id->id_insertp = PTN_BRANCH(target);
    317 
    318 	PTN_SET_BRANCH_POSITION(target, id->id_parent_slot);
    319 	ptree_set_position(node, PT_SLOT_ROOT);
    320 
    321 	PTREE_CHECK(pt);
    322 	return true;
    323 }
    324 #endif /* !PTNOMASK */
    325 
    326 /*ARGSUSED*/
    327 static bool
    328 ptree_insert_branch_at_node(pt_tree_t * const pt, pt_node_t * const target,
    329 	pt_insertdata_t * const id)
    330 {
    331 	const uintptr_t target_node = PTN_LEAF(target);
    332 	const uintptr_t node = id->id_node;
    333 	const pt_slot_t other_slot = id->id_slot ^ PT_SLOT_OTHER;
    334 
    335 	KASSERT(PT_BRANCH_P(node) || id->id_parent_slot == PTN_LEAF_POSITION(PT_NODE(node)));
    336 	KASSERT(PT_LEAF_P(node) || id->id_parent_slot == PTN_BRANCH_POSITION(PT_NODE(node)));
    337 	KASSERT((node == pt->pt_root) == (id->id_parent == &pt->pt_rootnode));
    338 #ifndef PTNOMASK
    339 	KASSERT(!PTN_ISMASK_P(target) || id->id_bitoff <= PTN_MASK_BITLEN(target));
    340 #endif
    341 	KASSERT(node == pt->pt_root || PTN_BRANCH_BITOFF(id->id_parent) + PTN_BRANCH_BITLEN(id->id_parent) <= id->id_bitoff);
    342 
    343 	PTN_SET_BRANCH_BITOFF(target, id->id_bitoff);
    344 	PTN_SET_BRANCH_BITLEN(target, 1);
    345 
    346 	PTN_BRANCH_SLOT(target, id->id_slot) = target_node;
    347 	PTN_BRANCH_SLOT(target, other_slot) = node;
    348 	*id->id_insertp = PTN_BRANCH(target);
    349 
    350 	PTN_SET_LEAF_POSITION(target, id->id_slot);
    351 	ptree_set_position(node, other_slot);
    352 
    353 	PTN_SET_BRANCH_POSITION(target, id->id_parent_slot);
    354 	PTREE_CHECK(pt);
    355 	return true;
    356 }
    357 
    358 static bool
    359 ptree_insert_leaf(pt_tree_t * const pt, pt_node_t * const target,
    360 	pt_insertdata_t * const id)
    361 {
    362 	const uintptr_t leaf_node = id->id_node;
    363 	pt_node_t * const leaf = PT_NODE(leaf_node);
    364 #ifdef PTNOMASK
    365 	const bool inserting_mask = false;
    366 	const bool at_mask = false;
    367 #else
    368 	const bool inserting_mask = PTN_ISMASK_P(target);
    369 	const bool at_mask = PTN_ISMASK_P(leaf);
    370 	const pt_bitlen_t leaf_masklen = PTN_MASK_BITLEN(leaf);
    371 	const pt_bitlen_t target_masklen = PTN_MASK_BITLEN(target);
    372 #endif
    373 	pt_insertfunc_t insertfunc = ptree_insert_branch_at_node;
    374 	bool matched;
    375 
    376 	/*
    377 	 * In all likelyhood we are going simply going to insert a branch
    378 	 * where this leaf is which will point to the old and new leaves.
    379 	 */
    380 	KASSERT(PT_LEAF_P(leaf_node));
    381 	KASSERT(PTN_LEAF_POSITION(leaf) == id->id_parent_slot);
    382 	matched = ptree_matchnode(pt, target, leaf, UINT_MAX,
    383 	    &id->id_bitoff, &id->id_slot);
    384 	if (__predict_false(!inserting_mask)) {
    385 		/*
    386 		 * We aren't inserting a mask nor is the leaf a mask, which
    387 		 * means we are trying to insert a duplicate leaf.  Can't do
    388 		 * that.
    389 		 */
    390 		if (!at_mask && matched)
    391 			return false;
    392 
    393 #ifndef PTNOMASK
    394 		/*
    395 		 * We are at a mask and the leaf we are about to insert
    396 		 * is at or beyond the mask, we need to convert the mask
    397 		 * from a leaf to a one-way branch interior mask.
    398 		 */
    399 		if (at_mask && id->id_bitoff >= leaf_masklen)
    400 			insertfunc = ptree_insert_leaf_after_mask;
    401 #endif /* PTNOMASK */
    402 	}
    403 #ifndef PTNOMASK
    404 	else {
    405 		/*
    406 		 * We are inserting a mask.
    407 		 */
    408 		if (matched) {
    409 			/*
    410 			 * If the leaf isn't a mask, we obviously have to
    411 			 * insert the new mask before non-mask leaf.  If the
    412 			 * leaf is a mask, and the new node has a LEQ mask
    413 			 * length it too needs to inserted before leaf (*).
    414 			 *
    415 			 * In other cases, we place the new mask as leaf after
    416 			 * leaf mask.  Which mask comes first will be a one-way
    417 			 * branch interior mask node which has the other mask
    418 			 * node as a child.
    419 			 *
    420 			 * (*) ptree_insert_mask_before_node can detect a
    421 			 * duplicate mask and return failure if needed.
    422 			 */
    423 			if (!at_mask || target_masklen <= leaf_masklen)
    424 				insertfunc = ptree_insert_mask_before_node;
    425 			else
    426 				insertfunc = ptree_insert_leaf_after_mask;
    427 		} else if (at_mask && id->id_bitoff >= leaf_masklen) {
    428 			/*
    429 			 * If the new mask has a bit offset GEQ than the leaf's
    430 			 * mask length, convert the left to a one-way branch
    431 			 * interior mask and make that point to the new [leaf]
    432 			 * mask.
    433 			 */
    434 			insertfunc = ptree_insert_leaf_after_mask;
    435 		} else {
    436 			/*
    437 			 * The new mask has a bit offset less than the leaf's
    438 			 * mask length or if the leaf isn't a mask at all, the
    439 			 * new mask deserves to be its own leaf so we use the
    440 			 * default insertfunc to do that.
    441 			 */
    442 		}
    443 	}
    444 #endif /* PTNOMASK */
    445 
    446 	return (*insertfunc)(pt, target, id);
    447 }
    448 
    449 static bool
    450 ptree_insert_node_common(pt_tree_t *pt, void *item)
    451 {
    452 	pt_node_t * const target = ITEMTONODE(pt, item);
    453 #ifndef PTNOMASK
    454 	const bool inserting_mask = PTN_ISMASK_P(target);
    455 	const pt_bitlen_t target_masklen = PTN_MASK_BITLEN(target);
    456 #endif
    457 	pt_insertfunc_t insertfunc;
    458 	pt_insertdata_t id;
    459 
    460 	/*
    461 	 * If this node already exists in the tree, return failure.
    462 	 */
    463 	if (target == PT_NODE(pt->pt_root))
    464 		return false;
    465 
    466 	/*
    467 	 * We need a leaf so we can match against.  Until we get a leaf
    468 	 * we having nothing to test against.
    469 	 */
    470 	if (__predict_false(PT_NULL_P(pt->pt_root))) {
    471 		PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode) = PTN_LEAF(target);
    472 		PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PTN_LEAF(target);
    473 		PTN_SET_LEAF_POSITION(target, PT_SLOT_ROOT);
    474 		PTREE_CHECK(pt);
    475 		return true;
    476 	}
    477 
    478 	id.id_bitoff = 0;
    479 	id.id_parent = &pt->pt_rootnode;
    480 	id.id_parent_slot = PT_SLOT_ROOT;
    481 	id.id_insertp = &PTN_BRANCH_ROOT_SLOT(id.id_parent);
    482 	for (;;) {
    483 		pt_bitoff_t branch_bitoff;
    484 		pt_node_t * const ptn = PT_NODE(*id.id_insertp);
    485 		id.id_node = *id.id_insertp;
    486 
    487 		/*
    488 		 * If this node already exists in the tree, return failure.
    489 		 */
    490 		if (target == ptn)
    491 			return false;
    492 
    493 		/*
    494 		 * If we hit a leaf, try to insert target at leaf.  We could
    495 		 * have inlined ptree_insert_leaf here but that would have
    496 		 * made this routine much harder to understand.  Trust the
    497 		 * compiler to optimize this properly.
    498 		 */
    499 		if (PT_LEAF_P(id.id_node)) {
    500 			KASSERT(PTN_LEAF_POSITION(ptn) == id.id_parent_slot);
    501 			insertfunc = ptree_insert_leaf;
    502 			break;
    503 		}
    504 
    505 		/*
    506 		 * If we aren't a leaf, we must be a branch.  Make sure we are
    507 		 * in the slot we think we are.
    508 		 */
    509 		KASSERT(PT_BRANCH_P(id.id_node));
    510 		KASSERT(PTN_BRANCH_POSITION(ptn) == id.id_parent_slot);
    511 
    512 		/*
    513 		 * Where is this branch?
    514 		 */
    515 		branch_bitoff = PTN_BRANCH_BITOFF(ptn);
    516 
    517 #ifndef PTNOMASK
    518 		/*
    519 		 * If this is a one-way mask node, its offset must equal
    520 		 * its mask's bitlen.
    521 		 */
    522 		KASSERT(!(PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0) || PTN_MASK_BITLEN(ptn) == branch_bitoff);
    523 
    524 		/*
    525 		 * If we are inserting a mask, and we know that at this point
    526 		 * all bits before the current bit offset match both the target
    527 		 * and the branch.  If the target's mask length is LEQ than
    528 		 * this branch's bit offset, then this is where the mask needs
    529 		 * to added to the tree.
    530 		 */
    531 		if (__predict_false(inserting_mask)
    532 		    && (PTN_ISROOT_P(pt, id.id_parent)
    533 			|| id.id_bitoff < target_masklen)
    534 		    && target_masklen <= branch_bitoff) {
    535 			/*
    536 			 * We don't know about the bits (if any) between
    537 			 * id.id_bitoff and the target's mask length match
    538 			 * both the target and the branch.  If the target's
    539 			 * mask length is greater than the current bit offset
    540 			 * make sure the untested bits match both the target
    541 			 * and the branch.
    542 			 */
    543 			if (target_masklen == id.id_bitoff
    544 			    || ptree_matchnode(pt, target, ptn, target_masklen,
    545 				    &id.id_bitoff, &id.id_slot)) {
    546 				/*
    547 				 * The bits matched, so insert the mask as a
    548 				 * one-way branch.
    549 				 */
    550 				insertfunc = ptree_insert_mask_before_node;
    551 				break;
    552 			} else if (id.id_bitoff < branch_bitoff) {
    553 				/*
    554 				 * They didn't match, so create a normal branch
    555 				 * because this mask needs to a be a new leaf.
    556 				 */
    557 				insertfunc = ptree_insert_branch_at_node;
    558 				break;
    559 			}
    560 		}
    561 #endif /* PTNOMASK */
    562 
    563 		/*
    564 		 * If we are skipping some bits, verify they match the node.
    565 		 * If they don't match, it means we have a leaf to insert.
    566 		 * Note that if we are advancing bit by bit, we'll skip
    567 		 * doing matchnode and walk the tree bit by bit via testnode.
    568 		 */
    569 		if (id.id_bitoff < branch_bitoff
    570 		    && !ptree_matchnode(pt, target, ptn, branch_bitoff,
    571 					&id.id_bitoff, &id.id_slot)) {
    572 			KASSERT(id.id_bitoff < branch_bitoff);
    573 			insertfunc = ptree_insert_branch_at_node;
    574 			break;
    575 		}
    576 
    577 		/*
    578 		 * At this point, all bits before branch_bitoff are known
    579 		 * to match the target.
    580 		 */
    581 		KASSERT(id.id_bitoff >= branch_bitoff);
    582 
    583 		/*
    584 		 * Descend the tree one level.
    585 		 */
    586 		id.id_parent = ptn;
    587 		id.id_parent_slot = ptree_testnode(pt, target, id.id_parent);
    588 		id.id_bitoff += PTN_BRANCH_BITLEN(id.id_parent);
    589 		id.id_insertp = &PTN_BRANCH_SLOT(id.id_parent, id.id_parent_slot);
    590 	}
    591 
    592 	/*
    593 	 * Do the actual insertion.
    594 	 */
    595 	return (*insertfunc)(pt, target, &id);
    596 }
    597 
    598 bool
    599 ptree_insert_node(pt_tree_t *pt, void *item)
    600 {
    601 	pt_node_t * const target = ITEMTONODE(pt, item);
    602 
    603 	memset(target, 0, sizeof(*target));
    604 	return ptree_insert_node_common(pt, target);
    605 }
    606 
    607 #ifndef PTNOMASK
    608 bool
    609 ptree_insert_mask_node(pt_tree_t *pt, void *item, pt_bitlen_t mask_len)
    610 {
    611 	pt_node_t * const target = ITEMTONODE(pt, item);
    612 	pt_bitoff_t bitoff = mask_len;
    613 	pt_slot_t slot;
    614 
    615 	memset(target, 0, sizeof(*target));
    616 	KASSERT(mask_len == 0 || (~PT__MASK(PTN_MASK_BITLEN) & mask_len) == 0);
    617 	/*
    618 	 * Only the first <mask_len> bits can be non-zero.
    619 	 * All other bits must be 0.
    620 	 */
    621 	if (!ptree_matchnode(pt, target, NULL, UINT_MAX, &bitoff, &slot))
    622 		return false;
    623 	PTN_SET_MASK_BITLEN(target, mask_len);
    624 	PTN_MARK_MASK(target);
    625 	return ptree_insert_node_common(pt, target);
    626 }
    627 #endif /* !PTNOMASH */
    628 
    629 void *
    630 ptree_find_filtered_node(pt_tree_t *pt, const void *key, pt_filter_t filter,
    631 	void *filter_arg)
    632 {
    633 #ifndef PTNOMASK
    634 	pt_node_t *mask = NULL;
    635 #endif
    636 	bool at_mask = false;
    637 	pt_node_t *ptn, *parent;
    638 	pt_bitoff_t bitoff;
    639 	pt_slot_t parent_slot;
    640 
    641 	if (PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode)))
    642 		return NULL;
    643 
    644 	bitoff = 0;
    645 	parent = &pt->pt_rootnode;
    646 	parent_slot = PT_SLOT_ROOT;
    647 	for (;;) {
    648 		const uintptr_t node = PTN_BRANCH_SLOT(parent, parent_slot);
    649 		const pt_slot_t branch_bitoff = PTN_BRANCH_BITOFF(PT_NODE(node));
    650 		ptn = PT_NODE(node);
    651 
    652 		if (PT_LEAF_P(node)) {
    653 #ifndef PTNOMASK
    654 			at_mask = PTN_ISMASK_P(ptn);
    655 #endif
    656 			break;
    657 		}
    658 
    659 		if (bitoff < branch_bitoff) {
    660 			if (!ptree_matchkey(pt, key, ptn, bitoff, branch_bitoff - bitoff)) {
    661 #ifndef PTNOMASK
    662 				if (mask != NULL)
    663 					return NODETOITEM(pt, mask);
    664 #endif
    665 				return NULL;
    666 			}
    667 			bitoff = branch_bitoff;
    668 		}
    669 
    670 #ifndef PTNOMASK
    671 		if (PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0
    672 		    && (!filter
    673 		        || (*filter)(filter_arg, NODETOITEM(pt, ptn),
    674 				     PT_FILTER_MASK)))
    675 			mask = ptn;
    676 #endif
    677 
    678 		parent = ptn;
    679 		parent_slot = ptree_testkey(pt, key, parent);
    680 		bitoff += PTN_BRANCH_BITLEN(parent);
    681 	}
    682 
    683 	KASSERT(PTN_ISROOT_P(pt, parent) || PTN_BRANCH_BITOFF(parent) + PTN_BRANCH_BITLEN(parent) == bitoff);
    684 	if (!filter || (*filter)(filter_arg, NODETOITEM(pt, ptn), at_mask ? PT_FILTER_MASK : 0)) {
    685 #ifndef PTNOMASK
    686 		if (PTN_ISMASK_P(ptn)) {
    687 			const pt_bitlen_t mask_len = PTN_MASK_BITLEN(ptn);
    688 			if (bitoff == PTN_MASK_BITLEN(ptn))
    689 				return NODETOITEM(pt, ptn);
    690 			if (ptree_matchkey(pt, key, ptn, bitoff, mask_len - bitoff))
    691 				return NODETOITEM(pt, ptn);
    692 		} else
    693 #endif /* !PTNOMASK */
    694 		if (ptree_matchkey(pt, key, ptn, bitoff, UINT_MAX))
    695 			return NODETOITEM(pt, ptn);
    696 	}
    697 
    698 #ifndef PTNOMASK
    699 	/*
    700 	 * By virtue of how the mask was placed in the tree,
    701 	 * all nodes descended from it will match it.  But the bits
    702 	 * before the mask still need to be checked and since the
    703 	 * mask was a branch, that was done implicitly.
    704 	 */
    705 	if (mask != NULL) {
    706 		KASSERT(ptree_matchkey(pt, key, mask, 0, PTN_MASK_BITLEN(mask)));
    707 		return NODETOITEM(pt, mask);
    708 	}
    709 #endif /* !PTNOMASK */
    710 
    711 	/*
    712 	 * Nothing matched.
    713 	 */
    714 	return NULL;
    715 }
    716 
    717 void *
    718 ptree_iterate(pt_tree_t *pt, const void *item, pt_direction_t direction)
    719 {
    720 	const pt_node_t * const target = ITEMTONODE(pt, item);
    721 	uintptr_t node, next_node;
    722 
    723 	if (direction != PT_ASCENDING && direction != PT_DESCENDING)
    724 		return NULL;
    725 
    726 	node = PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode);
    727 	if (PT_NULL_P(node))
    728 		return NULL;
    729 
    730 	if (item == NULL) {
    731 		pt_node_t * const ptn = PT_NODE(node);
    732 		if (direction == PT_ASCENDING
    733 		    && PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0)
    734 			return NODETOITEM(pt, ptn);
    735 		next_node = node;
    736 	} else {
    737 #ifndef PTNOMASK
    738 		uintptr_t mask_node = PT_NULL;
    739 #endif /* !PTNOMASK */
    740 		next_node = PT_NULL;
    741 		while (!PT_LEAF_P(node)) {
    742 			pt_node_t * const ptn = PT_NODE(node);
    743 			pt_slot_t slot;
    744 #ifndef PTNOMASK
    745 			if (PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0) {
    746 				if (ptn == target)
    747 					break;
    748 				if (direction == PT_DESCENDING) {
    749 					mask_node = node;
    750 					next_node = PT_NULL;
    751 				}
    752 			}
    753 #endif /* !PTNOMASK */
    754 			slot = ptree_testnode(pt, target, ptn);
    755 			node = PTN_BRANCH_SLOT(ptn, slot);
    756 			if (direction == PT_ASCENDING) {
    757 				if (slot != (pt_slot_t)((1 << PTN_BRANCH_BITLEN(ptn)) - 1))
    758 					next_node = PTN_BRANCH_SLOT(ptn, slot + 1);
    759 			} else {
    760 				if (slot > 0) {
    761 #ifndef PTNOMASK
    762 					mask_node = PT_NULL;
    763 #endif /* !PTNOMASK */
    764 					next_node = PTN_BRANCH_SLOT(ptn, slot - 1);
    765 				}
    766 			}
    767 		}
    768 		if (PT_NODE(node) != target)
    769 			return NULL;
    770 #ifndef PTNOMASK
    771 		if (PT_BRANCH_P(node)) {
    772 			pt_node_t *ptn = PT_NODE(node);
    773 			KASSERT(PTN_ISMASK_P(PT_NODE(node)) && PTN_BRANCH_BITLEN(PT_NODE(node)) == 0);
    774 			if (direction == PT_ASCENDING) {
    775 				next_node = PTN_BRANCH_ROOT_SLOT(ptn);
    776 				ptn = PT_NODE(next_node);
    777 			}
    778 		}
    779 		/*
    780 		 * When descending, if we countered a mask node then that's
    781 		 * we want to return.
    782 		 */
    783 		if (direction == PT_DESCENDING && !PT_NULL_P(mask_node)) {
    784 			KASSERT(PT_NULL_P(next_node));
    785 			return NODETOITEM(pt, PT_NODE(mask_node));
    786 		}
    787 #endif /* !PTNOMASK */
    788 	}
    789 
    790 	node = next_node;
    791 	if (PT_NULL_P(node))
    792 		return NULL;
    793 
    794 	while (!PT_LEAF_P(node)) {
    795 		pt_node_t * const ptn = PT_NODE(node);
    796 		pt_slot_t slot;
    797 		if (direction == PT_ASCENDING) {
    798 #ifndef PTNOMASK
    799 			if (PT_BRANCH_P(node)
    800 			    && PTN_ISMASK_P(ptn)
    801 			    && PTN_BRANCH_BITLEN(ptn) == 0)
    802 				return NODETOITEM(pt, ptn);
    803 #endif /* !PTNOMASK */
    804 			slot = PT_SLOT_LEFT;
    805 		} else {
    806 			slot = (1 << PTN_BRANCH_BITLEN(ptn)) - 1;
    807 		}
    808 		node = PTN_BRANCH_SLOT(ptn, slot);
    809 	}
    810 	return NODETOITEM(pt, PT_NODE(node));
    811 }
    812 
    813 void
    814 ptree_remove_node(pt_tree_t *pt, void *item)
    815 {
    816 	pt_node_t * const target = ITEMTONODE(pt, item);
    817 	const pt_slot_t leaf_slot = PTN_LEAF_POSITION(target);
    818 	const pt_slot_t branch_slot = PTN_BRANCH_POSITION(target);
    819 	pt_node_t *ptn, *parent;
    820 	uintptr_t node;
    821 	uintptr_t *removep;
    822 	uintptr_t *nodep;
    823 	pt_bitoff_t bitoff;
    824 	pt_slot_t parent_slot;
    825 #ifndef PTNOMASK
    826 	bool at_mask;
    827 #endif
    828 
    829 	if (PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode))) {
    830 		KASSERT(!PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode)));
    831 		return;
    832 	}
    833 
    834 	bitoff = 0;
    835 	removep = NULL;
    836 	nodep = NULL;
    837 	parent = &pt->pt_rootnode;
    838 	parent_slot = PT_SLOT_ROOT;
    839 	for (;;) {
    840 		node = PTN_BRANCH_SLOT(parent, parent_slot);
    841 		ptn = PT_NODE(node);
    842 #ifndef PTNOMASK
    843 		at_mask = PTN_ISMASK_P(ptn);
    844 #endif
    845 
    846 		if (PT_LEAF_P(node))
    847 			break;
    848 
    849 		/*
    850 		 * If we are at the target, then we are looking at its branch
    851 		 * identity.  We need to remember who's pointing at it so we
    852 		 * stop them from doing that.
    853 		 */
    854 		if (__predict_false(ptn == target)) {
    855 			KASSERT(nodep == NULL);
    856 #ifndef PTNOMASK
    857 			/*
    858 			 * Interior mask nodes are trivial to get rid of.
    859 			 */
    860 			if (at_mask && PTN_BRANCH_BITLEN(ptn) == 0) {
    861 				PTN_BRANCH_SLOT(parent, parent_slot) =
    862 				    PTN_BRANCH_ROOT_SLOT(ptn);
    863 				KASSERT(PT_NULL_P(PTN_BRANCH_ODDMAN_SLOT(ptn)));
    864 				PTREE_CHECK(pt);
    865 				return;
    866 			}
    867 #endif /* !PTNOMASK */
    868 			nodep = &PTN_BRANCH_SLOT(parent, parent_slot);
    869 			KASSERT(*nodep == PTN_BRANCH(target));
    870 		}
    871 		/*
    872 		 * We need also need to know who's pointing at our parent.
    873 		 * After we remove ourselves from our parent, he'll only
    874 		 * have one child and that's unacceptable.  So we replace
    875 		 * the pointer to the parent with our abandoned sibling.
    876 		 */
    877 		removep = &PTN_BRANCH_SLOT(parent, parent_slot);
    878 
    879 		/*
    880 		 * Descend into the tree.
    881 		 */
    882 		parent = ptn;
    883 		parent_slot = ptree_testnode(pt, target, parent);
    884 		bitoff += PTN_BRANCH_BITLEN(parent);
    885 	}
    886 
    887 	/*
    888 	 * We better have found that the leaf we are looking for is target.
    889 	 */
    890 	if (target != ptn) {
    891 		KASSERT(target == ptn);
    892 		return;
    893 	}
    894 
    895 	/*
    896 	 * If we didn't encounter target as branch, then target must be the
    897 	 * oddman-out.
    898 	 */
    899 	if (nodep == NULL) {
    900 		KASSERT(PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) == PTN_LEAF(target));
    901 		KASSERT(nodep == NULL);
    902 		nodep = &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode);
    903 	}
    904 
    905 	KASSERT((removep == NULL) == (parent == &pt->pt_rootnode));
    906 
    907 	/*
    908 	 * We have to special remove the last leaf from the root since
    909 	 * the only time the tree can a PT_NULL node is when it's empty.
    910 	 */
    911 	if (__predict_false(PTN_ISROOT_P(pt, parent))) {
    912 		KASSERT(removep == NULL);
    913 		KASSERT(parent == &pt->pt_rootnode);
    914 		KASSERT(nodep == &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode));
    915 		KASSERT(*nodep == PTN_LEAF(target));
    916 		PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode) = PT_NULL;
    917 		PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PT_NULL;
    918 		return;
    919 	}
    920 
    921 	KASSERT((parent == target) == (removep == nodep));
    922 	if (PTN_BRANCH(parent) == PTN_BRANCH_SLOT(target, PTN_BRANCH_POSITION(parent))) {
    923 		/*
    924 		 * The pointer to the parent actually lives in the target's
    925 		 * branch identity.  We can't just move the target's branch
    926 		 * identity since that would result in the parent pointing
    927 		 * to its own branch identity and that's forbidden.
    928 		 */
    929 		const pt_slot_t slot = PTN_BRANCH_POSITION(parent);
    930 		const pt_slot_t other_slot = slot ^ PT_SLOT_OTHER;
    931 		const pt_bitlen_t parent_bitlen = PTN_BRANCH_BITLEN(parent);
    932 
    933 		KASSERT(PTN_BRANCH_BITOFF(target) < PTN_BRANCH_BITOFF(parent));
    934 
    935 		/*
    936 		 * This gets so confusing.  The target's branch identity
    937 		 * points to the branch identity of the parent of the target's
    938 		 * leaf identity:
    939 		 *
    940 		 * 	TB = { X, PB = { TL, Y } }
    941 		 *   or TB = { X, PB = { TL } }
    942 		 *
    943 		 * So we can't move the target's branch identity to the parent
    944 		 * because that would corrupt the tree.
    945 		 */
    946 		if (__predict_true(parent_bitlen > 0)) {
    947 			/*
    948 			 * The parent is a two-way branch.  We have to have
    949 			 * do to this change in two steps to keep internally
    950 			 * consistent.  First step is to copy our sibling from
    951 			 * our parent to where we are pointing to parent's
    952 			 * branch identity.  This remove all references to his
    953 			 * branch identity from the tree.  We then simply make
    954 			 * the parent assume the target's branching duties.
    955 			 *
    956 			 *   TB = { X, PB = { Y, TL } } --> PB = { X, Y }.
    957 			 *   TB = { X, PB = { TL, Y } } --> PB = { X, Y }.
    958 			 *   TB = { PB = { Y, TL }, X } --> PB = { Y, X }.
    959 			 *   TB = { PB = { TL, Y }, X } --> PB = { Y, X }.
    960 			 */
    961 			PTN_BRANCH_SLOT(target, slot) =
    962 			    PTN_BRANCH_SLOT(parent, parent_slot ^ PT_SLOT_OTHER);
    963 			*nodep = ptree_move_branch(pt, parent, target);
    964 			PTREE_CHECK(pt);
    965 			return;
    966 		} else {
    967 			/*
    968 			 * If parent was a one-way branch, it must have been
    969 			 * mask which pointed to a single leaf which we are
    970 			 * removing.  This means we have to convert the
    971 			 * parent back to a leaf node.  So in the same
    972 			 * position that target pointed to parent, we place
    973 			 * leaf pointer to parent.  In the other position,
    974 			 * we just put the other node from target.
    975 			 *
    976 			 *   TB = { X, PB = { TL } } --> PB = { X, PL }
    977 			 */
    978 			KASSERT(PTN_ISMASK_P(parent));
    979 			KASSERT(slot == ptree_testnode(pt, parent, target));
    980 			PTN_BRANCH_SLOT(parent, slot) = PTN_LEAF(parent);
    981 			PTN_BRANCH_SLOT(parent, other_slot) =
    982 			   PTN_BRANCH_SLOT(target, other_slot);
    983 			PTN_SET_LEAF_POSITION(parent,slot);
    984 			PTN_SET_BRANCH_BITLEN(parent, 1);
    985 		}
    986 		PTN_SET_BRANCH_BITOFF(parent, PTN_BRANCH_BITOFF(target));
    987 		PTN_SET_BRANCH_POSITION(parent, PTN_BRANCH_POSITION(target));
    988 
    989 		*nodep = PTN_BRANCH(parent);
    990 		PTREE_CHECK(pt);
    991 		return;
    992 	}
    993 
    994 #ifndef PTNOMASK
    995 	if (__predict_false(PTN_BRANCH_BITLEN(parent) == 0)) {
    996 		/*
    997 		 * Parent was a one-way branch which is changing back to a leaf.
    998 		 * Since parent is no longer a one-way branch, it can take over
    999 		 * target's branching duties.
   1000 		 *
   1001 		 *  GB = { PB = { TL } }	--> GB = { PL }
   1002 		 *  TB = { X, Y }		--> PB = { X, Y }
   1003 		 */
   1004 		KASSERT(PTN_ISMASK_P(parent));
   1005 		KASSERT(parent != target);
   1006 		*removep = PTN_LEAF(parent);
   1007 	} else
   1008 #endif /* !PTNOMASK */
   1009 	{
   1010 		/*
   1011 		 * Now we are the normal removal case.  Since after the
   1012 		 * target's leaf identity is removed from the its parent,
   1013 		 * that parent will only have one descendant.  So we can
   1014 		 * just as easily replace the node that has the parent's
   1015 		 * branch identity with the surviving node.  This freeing
   1016 		 * parent from its branching duties which means it can
   1017 		 * take over target's branching duties.
   1018 		 *
   1019 		 *  GB = { PB = { X, TL } }	--> GB = { X }
   1020 		 *  TB = { V, W }		--> PB = { V, W }
   1021 		 */
   1022 		const pt_slot_t other_slot = parent_slot ^ PT_SLOT_OTHER;
   1023 		uintptr_t other_node = PTN_BRANCH_SLOT(parent, other_slot);
   1024 		const pt_slot_t target_slot = (parent == target ? branch_slot : leaf_slot);
   1025 
   1026 		*removep = other_node;
   1027 
   1028 		ptree_set_position(other_node, target_slot);
   1029 
   1030 		/*
   1031 		 * If target's branch identity contained its leaf identity, we
   1032 		 * have nothing left to do.  We've already moved 'X' so there
   1033 		 * is no longer anything in the target's branch identity that
   1034 		 * has to be preserved.
   1035 		 */
   1036 		if (parent == target) {
   1037 			/*
   1038 			 *  GB = { TB = { X, TL } }	--> GB = { X }
   1039 			 *  TB = { X, TL }		--> don't care
   1040 			 */
   1041 			PTREE_CHECK(pt);
   1042 			return;
   1043 		}
   1044 	}
   1045 
   1046 	/*
   1047 	 * If target wasn't used as a branch, then it must have been the
   1048 	 * oddman-out of the tree (the one node that doesn't have a branch
   1049 	 * identity).  This makes parent the new oddman-out.
   1050 	 */
   1051 	if (*nodep == PTN_LEAF(target)) {
   1052 		KASSERT(nodep == &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode));
   1053 		PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PTN_LEAF(parent);
   1054 		PTREE_CHECK(pt);
   1055 		return;
   1056 	}
   1057 
   1058 	/*
   1059 	 * Finally move the target's branching duties to the parent.
   1060 	 */
   1061 	KASSERT(PTN_BRANCH_BITOFF(parent) > PTN_BRANCH_BITOFF(target));
   1062 	*nodep = ptree_move_branch(pt, parent, target);
   1063 	PTREE_CHECK(pt);
   1064 }
   1065 
   1066 #ifdef PTCHECK
   1067 static const pt_node_t *
   1068 ptree_check_find_node2(const pt_tree_t *pt, const pt_node_t *parent,
   1069 	uintptr_t target)
   1070 {
   1071 	const pt_bitlen_t slots = 1 << PTN_BRANCH_BITLEN(parent);
   1072 	pt_slot_t slot;
   1073 
   1074 	for (slot = 0; slot < slots; slot++) {
   1075 		const uintptr_t node = PTN_BRANCH_SLOT(parent, slot);
   1076 		if (PTN_BRANCH_SLOT(parent, slot) == node)
   1077 			return parent;
   1078 	}
   1079 	for (slot = 0; slot < slots; slot++) {
   1080 		const uintptr_t node = PTN_BRANCH_SLOT(parent, slot);
   1081 		const pt_node_t *branch;
   1082 		if (!PT_BRANCH_P(node))
   1083 			continue;
   1084 		branch = ptree_check_find_node2(pt, PT_NODE(node), target);
   1085 		if (branch != NULL)
   1086 			return branch;
   1087 	}
   1088 
   1089 	return NULL;
   1090 }
   1091 
   1092 static bool
   1093 ptree_check_leaf(const pt_tree_t *pt, const pt_node_t *parent,
   1094 	const pt_node_t *ptn)
   1095 {
   1096 	const pt_bitoff_t leaf_position = PTN_LEAF_POSITION(ptn);
   1097 	const pt_bitlen_t bitlen = PTN_BRANCH_BITLEN(ptn);
   1098 	const pt_bitlen_t mask_len = PTN_MASK_BITLEN(ptn);
   1099 	const uintptr_t leaf_node = PTN_LEAF(ptn);
   1100 	const bool is_parent_root = (parent == &pt->pt_rootnode);
   1101 	const bool is_mask = PTN_ISMASK_P(ptn);
   1102 	bool ok = true;
   1103 
   1104 	if (is_parent_root) {
   1105 		ok = ok && PTN_BRANCH_ODDMAN_SLOT(parent) == leaf_node;
   1106 		KASSERT(ok);
   1107 		return ok;
   1108 	}
   1109 
   1110 	if (is_mask && PTN_ISMASK_P(parent) && PTN_BRANCH_BITLEN(parent) == 0) {
   1111 		ok = ok && PTN_MASK_BITLEN(parent) < mask_len;
   1112 		KASSERT(ok);
   1113 		ok = ok && PTN_BRANCH_BITOFF(parent) < mask_len;
   1114 		KASSERT(ok);
   1115 	}
   1116 	ok = ok && PTN_BRANCH_SLOT(parent, leaf_position) == leaf_node;
   1117 	KASSERT(ok);
   1118 	ok = ok && leaf_position == ptree_testnode(pt, ptn, parent);
   1119 	KASSERT(ok);
   1120 	if (PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) != leaf_node) {
   1121 		ok = ok && bitlen > 0;
   1122 		KASSERT(ok);
   1123 		ok = ok && ptn == ptree_check_find_node2(pt, ptn, PTN_LEAF(ptn));
   1124 		KASSERT(ok);
   1125 	}
   1126 	return ok;
   1127 }
   1128 
   1129 static bool
   1130 ptree_check_branch(const pt_tree_t *pt, const pt_node_t *parent,
   1131 	const pt_node_t *ptn)
   1132 {
   1133 	const bool is_parent_root = (parent == &pt->pt_rootnode);
   1134 	const pt_slot_t branch_slot = PTN_BRANCH_POSITION(ptn);
   1135 	const pt_bitoff_t bitoff = PTN_BRANCH_BITOFF(ptn);
   1136 	const pt_bitoff_t bitlen = PTN_BRANCH_BITLEN(ptn);
   1137 	const pt_bitoff_t parent_bitoff = PTN_BRANCH_BITOFF(parent);
   1138 	const pt_bitoff_t parent_bitlen = PTN_BRANCH_BITLEN(parent);
   1139 	const bool is_parent_mask = PTN_ISMASK_P(parent) && parent_bitlen == 0;
   1140 	const bool is_mask = PTN_ISMASK_P(ptn) && bitlen == 0;
   1141 	const pt_bitoff_t parent_mask_len = PTN_MASK_BITLEN(parent);
   1142 	const pt_bitoff_t mask_len = PTN_MASK_BITLEN(ptn);
   1143 	const pt_bitlen_t slots = 1 << bitlen;
   1144 	pt_slot_t slot;
   1145 	bool ok = true;
   1146 
   1147 	ok = ok && PTN_BRANCH_SLOT(parent, branch_slot) == PTN_BRANCH(ptn);
   1148 	KASSERT(ok);
   1149 	ok = ok && branch_slot == ptree_testnode(pt, ptn, parent);
   1150 	KASSERT(ok);
   1151 
   1152 	if (is_mask) {
   1153 		ok = ok && bitoff == mask_len;
   1154 		KASSERT(ok);
   1155 		if (is_parent_mask) {
   1156 			ok = ok && parent_mask_len < mask_len;
   1157 			KASSERT(ok);
   1158 			ok = ok && parent_bitoff < bitoff;
   1159 			KASSERT(ok);
   1160 		}
   1161 	} else {
   1162 		if (is_parent_mask) {
   1163 			ok = ok && parent_bitoff <= bitoff;
   1164 		} else if (!is_parent_root) {
   1165 			ok = ok && parent_bitoff < bitoff;
   1166 		}
   1167 		KASSERT(ok);
   1168 	}
   1169 
   1170 	for (slot = 0; slot < slots; slot++) {
   1171 		const uintptr_t node = PTN_BRANCH_SLOT(ptn, slot);
   1172 		pt_bitoff_t tmp_bitoff = 0;
   1173 		pt_slot_t tmp_slot;
   1174 		ok = ok && node != PTN_BRANCH(ptn);
   1175 		KASSERT(ok);
   1176 		if (bitlen > 0) {
   1177 			ok = ok && ptree_matchnode(pt, PT_NODE(node), ptn, bitoff, &tmp_bitoff, &tmp_slot);
   1178 			KASSERT(ok);
   1179 			tmp_slot = ptree_testnode(pt, PT_NODE(node), ptn);
   1180 			ok = ok && slot == tmp_slot;
   1181 			KASSERT(ok);
   1182 		}
   1183 		if (PT_LEAF_P(node))
   1184 			ok = ok && ptree_check_leaf(pt, ptn, PT_NODE(node));
   1185 		else
   1186 			ok = ok && ptree_check_branch(pt, ptn, PT_NODE(node));
   1187 	}
   1188 
   1189 	return ok;
   1190 }
   1191 #endif /* PTCHECK */
   1192 
   1193 /*ARGSUSED*/
   1194 bool
   1195 ptree_check(const pt_tree_t *pt)
   1196 {
   1197 	bool ok = true;
   1198 #ifdef PTCHECK
   1199 	const pt_node_t * const parent = &pt->pt_rootnode;
   1200 	const uintptr_t node = pt->pt_root;
   1201 	const pt_node_t * const ptn = PT_NODE(node);
   1202 
   1203 	ok = ok && PTN_BRANCH_BITOFF(parent) == 0;
   1204 	ok = ok && !PTN_ISMASK_P(parent);
   1205 
   1206 	if (PT_NULL_P(node))
   1207 		return ok;
   1208 
   1209 	if (PT_LEAF_P(node))
   1210 		ok = ok && ptree_check_leaf(pt, parent, ptn);
   1211 	else
   1212 		ok = ok && ptree_check_branch(pt, parent, ptn);
   1213 #endif
   1214 	return ok;
   1215 }
   1216 
   1217 bool
   1218 ptree_mask_node_p(pt_tree_t *pt, const void *item, pt_bitlen_t *lenp)
   1219 {
   1220 	const pt_node_t * const mask = ITEMTONODE(pt, item);
   1221 
   1222 	if (!PTN_ISMASK_P(mask))
   1223 		return false;
   1224 
   1225 	if (lenp != NULL)
   1226 		*lenp = PTN_MASK_BITLEN(mask);
   1227 
   1228 	return true;
   1229 }
   1230