Home | History | Annotate | Line # | Download | only in sdmmc
      1 /*	$NetBSD: sdhc.c,v 1.122 2025/09/02 22:22:14 jmcneill Exp $	*/
      2 /*	$OpenBSD: sdhc.c,v 1.25 2009/01/13 19:44:20 grange Exp $	*/
      3 
      4 /*
      5  * Copyright (c) 2006 Uwe Stuehler <uwe (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 /*
     21  * SD Host Controller driver based on the SD Host Controller Standard
     22  * Simplified Specification Version 1.00 (www.sdcard.com).
     23  */
     24 
     25 #include <sys/cdefs.h>
     26 __KERNEL_RCSID(0, "$NetBSD: sdhc.c,v 1.122 2025/09/02 22:22:14 jmcneill Exp $");
     27 
     28 #ifdef _KERNEL_OPT
     29 #include "opt_sdmmc.h"
     30 #endif
     31 
     32 #include <sys/param.h>
     33 #include <sys/device.h>
     34 #include <sys/kernel.h>
     35 #include <sys/malloc.h>
     36 #include <sys/systm.h>
     37 #include <sys/mutex.h>
     38 #include <sys/condvar.h>
     39 #include <sys/atomic.h>
     40 
     41 #include <dev/sdmmc/sdhcreg.h>
     42 #include <dev/sdmmc/sdhcvar.h>
     43 #include <dev/sdmmc/sdmmcchip.h>
     44 #include <dev/sdmmc/sdmmcreg.h>
     45 #include <dev/sdmmc/sdmmcvar.h>
     46 
     47 #ifdef SDHC_DEBUG
     48 int sdhcdebug = 1;
     49 #define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
     50 void	sdhc_dump_regs(struct sdhc_host *);
     51 #else
     52 #define DPRINTF(n,s)	do {} while (0)
     53 #endif
     54 
     55 #define SDHC_COMMAND_TIMEOUT	hz
     56 #define SDHC_BUFFER_TIMEOUT	hz
     57 #define SDHC_TRANSFER_TIMEOUT	hz
     58 #define SDHC_DMA_TIMEOUT	(hz*3)
     59 #define SDHC_TUNING_TIMEOUT	hz
     60 
     61 struct sdhc_host {
     62 	struct sdhc_softc *sc;		/* host controller device */
     63 
     64 	bus_space_tag_t iot;		/* host register set tag */
     65 	bus_space_handle_t ioh;		/* host register set handle */
     66 	bus_size_t ios;			/* host register space size */
     67 	bus_dma_tag_t dmat;		/* host DMA tag */
     68 
     69 	device_t sdmmc;			/* generic SD/MMC device */
     70 
     71 	u_int clkbase;			/* base clock frequency in KHz */
     72 	int maxblklen;			/* maximum block length */
     73 	uint32_t ocr;			/* OCR value from capabilities */
     74 
     75 	uint8_t regs[14];		/* host controller state */
     76 
     77 	uint16_t intr_status;		/* soft interrupt status */
     78 	uint16_t intr_error_status;	/* soft error status */
     79 	kmutex_t intr_lock;
     80 	kmutex_t bus_clock_lock;
     81 	kcondvar_t intr_cv;
     82 
     83 	callout_t tuning_timer;
     84 	int tuning_timing;
     85 	u_int tuning_timer_count;
     86 	u_int tuning_timer_pending;
     87 
     88 	int specver;			/* spec. version */
     89 
     90 	uint32_t flags;			/* flags for this host */
     91 #define SHF_USE_DMA		0x0001
     92 #define SHF_USE_4BIT_MODE	0x0002
     93 #define SHF_USE_8BIT_MODE	0x0004
     94 #define SHF_MODE_DMAEN		0x0008 /* needs SDHC_DMA_ENABLE in mode */
     95 #define SHF_USE_ADMA2_32	0x0010
     96 #define SHF_USE_ADMA2_64	0x0020
     97 #define SHF_USE_ADMA2_MASK	0x0030
     98 
     99 	bus_dmamap_t		adma_map;
    100 	bus_dma_segment_t	adma_segs[1];
    101 	void			*adma2;
    102 
    103 	uint8_t			vdd;	/* last vdd setting */
    104 };
    105 
    106 #define HDEVNAME(hp)	(device_xname((hp)->sc->sc_dev))
    107 
    108 static uint8_t
    109 hread1(struct sdhc_host *hp, bus_size_t reg)
    110 {
    111 
    112 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    113 		return bus_space_read_1(hp->iot, hp->ioh, reg);
    114 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 3));
    115 }
    116 
    117 static uint16_t
    118 hread2(struct sdhc_host *hp, bus_size_t reg)
    119 {
    120 
    121 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS))
    122 		return bus_space_read_2(hp->iot, hp->ioh, reg);
    123 	return bus_space_read_4(hp->iot, hp->ioh, reg & -4) >> (8 * (reg & 2));
    124 }
    125 
    126 #define HREAD1(hp, reg)		hread1(hp, reg)
    127 #define HREAD2(hp, reg)		hread2(hp, reg)
    128 #define HREAD4(hp, reg)		\
    129 	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
    130 
    131 
    132 static void
    133 hwrite1(struct sdhc_host *hp, bus_size_t o, uint8_t val)
    134 {
    135 
    136 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    137 		bus_space_write_1(hp->iot, hp->ioh, o, val);
    138 	} else {
    139 		const size_t shift = 8 * (o & 3);
    140 		o &= -4;
    141 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    142 		tmp = (val << shift) | (tmp & ~(0xffU << shift));
    143 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    144 	}
    145 }
    146 
    147 static void
    148 hwrite2(struct sdhc_host *hp, bus_size_t o, uint16_t val)
    149 {
    150 
    151 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    152 		bus_space_write_2(hp->iot, hp->ioh, o, val);
    153 	} else {
    154 		const size_t shift = 8 * (o & 2);
    155 		o &= -4;
    156 		uint32_t tmp = bus_space_read_4(hp->iot, hp->ioh, o);
    157 		tmp = (val << shift) | (tmp & ~(0xffffU << shift));
    158 		bus_space_write_4(hp->iot, hp->ioh, o, tmp);
    159 	}
    160 }
    161 
    162 static void
    163 hwrite4(struct sdhc_host *hp, bus_size_t o, uint32_t val)
    164 {
    165 
    166 	bus_space_write_4(hp->iot, hp->ioh, o, val);
    167 }
    168 
    169 #define HWRITE1(hp, reg, val)		hwrite1(hp, reg, val)
    170 #define HWRITE2(hp, reg, val)		hwrite2(hp, reg, val)
    171 #define HWRITE4(hp, reg, val)		hwrite4(hp, reg, val)
    172 
    173 #define HCLR1(hp, reg, bits)						\
    174 	do if ((bits) != 0) HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)); while (0)
    175 #define HCLR2(hp, reg, bits)						\
    176 	do if ((bits) != 0) HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)); while (0)
    177 #define HCLR4(hp, reg, bits)						\
    178 	do if ((bits) != 0) HWRITE4((hp), (reg), HREAD4((hp), (reg)) & ~(bits)); while (0)
    179 #define HSET1(hp, reg, bits)						\
    180 	do if ((bits) != 0) HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)); while (0)
    181 #define HSET2(hp, reg, bits)						\
    182 	do if ((bits) != 0) HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)); while (0)
    183 #define HSET4(hp, reg, bits)						\
    184 	do if ((bits) != 0) HWRITE4((hp), (reg), HREAD4((hp), (reg)) | (bits)); while (0)
    185 
    186 static int	sdhc_host_reset(sdmmc_chipset_handle_t);
    187 static int	sdhc_host_reset1(sdmmc_chipset_handle_t);
    188 static uint32_t	sdhc_host_ocr(sdmmc_chipset_handle_t);
    189 static int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
    190 static int	sdhc_card_detect(sdmmc_chipset_handle_t);
    191 static int	sdhc_write_protect(sdmmc_chipset_handle_t);
    192 static int	sdhc_bus_power(sdmmc_chipset_handle_t, uint32_t);
    193 static int	sdhc_bus_clock_ddr(sdmmc_chipset_handle_t, int, bool);
    194 static int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
    195 static int	sdhc_bus_rod(sdmmc_chipset_handle_t, int);
    196 static void	sdhc_card_enable_intr(sdmmc_chipset_handle_t, int);
    197 static void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
    198 static void	sdhc_exec_command(sdmmc_chipset_handle_t,
    199 		    struct sdmmc_command *);
    200 static int	sdhc_signal_voltage(sdmmc_chipset_handle_t, int);
    201 static int	sdhc_execute_tuning1(struct sdhc_host *, int);
    202 static int	sdhc_execute_tuning(sdmmc_chipset_handle_t, int);
    203 static void	sdhc_tuning_timer(void *);
    204 static void	sdhc_hw_reset(sdmmc_chipset_handle_t);
    205 static int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
    206 static int	sdhc_wait_state(struct sdhc_host *, uint32_t, uint32_t);
    207 static int	sdhc_soft_reset(struct sdhc_host *, int);
    208 static int	sdhc_wait_intr(struct sdhc_host *, int, int, bool);
    209 static void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
    210 static int	sdhc_transfer_data_dma(struct sdhc_host *, struct sdmmc_command *);
    211 static int	sdhc_transfer_data_pio(struct sdhc_host *, struct sdmmc_command *);
    212 static void	sdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    213 static void	sdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    214 static void	esdhc_read_data_pio(struct sdhc_host *, uint8_t *, u_int);
    215 static void	esdhc_write_data_pio(struct sdhc_host *, uint8_t *, u_int);
    216 
    217 static struct sdmmc_chip_functions sdhc_functions = {
    218 	/* host controller reset */
    219 	.host_reset = sdhc_host_reset,
    220 
    221 	/* host controller capabilities */
    222 	.host_ocr = sdhc_host_ocr,
    223 	.host_maxblklen = sdhc_host_maxblklen,
    224 
    225 	/* card detection */
    226 	.card_detect = sdhc_card_detect,
    227 
    228 	/* write protect */
    229 	.write_protect = sdhc_write_protect,
    230 
    231 	/* bus power, clock frequency, width and ROD(OpenDrain/PushPull) */
    232 	.bus_power = sdhc_bus_power,
    233 	.bus_clock = NULL,	/* see sdhc_bus_clock_ddr */
    234 	.bus_width = sdhc_bus_width,
    235 	.bus_rod = sdhc_bus_rod,
    236 
    237 	/* command execution */
    238 	.exec_command = sdhc_exec_command,
    239 
    240 	/* card interrupt */
    241 	.card_enable_intr = sdhc_card_enable_intr,
    242 	.card_intr_ack = sdhc_card_intr_ack,
    243 
    244 	/* UHS functions */
    245 	.signal_voltage = sdhc_signal_voltage,
    246 	.bus_clock_ddr = sdhc_bus_clock_ddr,
    247 	.execute_tuning = sdhc_execute_tuning,
    248 	.hw_reset = sdhc_hw_reset,
    249 };
    250 
    251 static int
    252 sdhc_cfprint(void *aux, const char *pnp)
    253 {
    254 	const struct sdmmcbus_attach_args * const saa = aux;
    255 	const struct sdhc_host * const hp = saa->saa_sch;
    256 
    257 	if (pnp) {
    258 		aprint_normal("sdmmc at %s", pnp);
    259 	}
    260 	for (size_t host = 0; host < hp->sc->sc_nhosts; host++) {
    261 		if (hp->sc->sc_host[host] == hp) {
    262 			aprint_normal(" slot %zu", host);
    263 		}
    264 	}
    265 
    266 	return UNCONF;
    267 }
    268 
    269 /*
    270  * Called by attachment driver.  For each SD card slot there is one SD
    271  * host controller standard register set. (1.3)
    272  */
    273 int
    274 sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
    275     bus_space_handle_t ioh, bus_size_t iosize)
    276 {
    277 	struct sdmmcbus_attach_args saa;
    278 	struct sdhc_host *hp;
    279 	uint32_t caps, caps2;
    280 	uint16_t sdhcver;
    281 	int error;
    282 
    283 	/* Allocate one more host structure. */
    284 	hp = malloc(sizeof(struct sdhc_host), M_DEVBUF, M_WAITOK|M_ZERO);
    285 	if (hp == NULL) {
    286 		aprint_error_dev(sc->sc_dev,
    287 		    "couldn't alloc memory (sdhc host)\n");
    288 		goto err1;
    289 	}
    290 	sc->sc_host[sc->sc_nhosts++] = hp;
    291 
    292 	/* Fill in the new host structure. */
    293 	hp->sc = sc;
    294 	hp->iot = iot;
    295 	hp->ioh = ioh;
    296 	hp->ios = iosize;
    297 	hp->dmat = sc->sc_dmat;
    298 
    299 	mutex_init(&hp->intr_lock, MUTEX_DEFAULT, IPL_SDMMC);
    300 	mutex_init(&hp->bus_clock_lock, MUTEX_DEFAULT, IPL_NONE);
    301 	cv_init(&hp->intr_cv, "sdhcintr");
    302 	callout_init(&hp->tuning_timer, CALLOUT_MPSAFE);
    303 	callout_setfunc(&hp->tuning_timer, sdhc_tuning_timer, hp);
    304 
    305 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    306 		sdhcver = SDHC_SPEC_VERS_300 << SDHC_SPEC_VERS_SHIFT;
    307 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    308 		sdhcver = HREAD4(hp, SDHC_ESDHC_HOST_CTL_VERSION);
    309 	} else if (iosize <= SDHC_HOST_CTL_VERSION) {
    310 		sdhcver = SDHC_SPEC_NOVERS << SDHC_SPEC_VERS_SHIFT;
    311 	} else {
    312 		sdhcver = HREAD2(hp, SDHC_HOST_CTL_VERSION);
    313 	}
    314 	aprint_normal_dev(sc->sc_dev, "SDHC ");
    315 	hp->specver = SDHC_SPEC_VERSION(sdhcver);
    316 	switch (SDHC_SPEC_VERSION(sdhcver)) {
    317 	case SDHC_SPEC_VERS_100:
    318 		aprint_normal("1.0");
    319 		break;
    320 	case SDHC_SPEC_VERS_200:
    321 		aprint_normal("2.0");
    322 		break;
    323 	case SDHC_SPEC_VERS_300:
    324 		aprint_normal("3.0");
    325 		break;
    326 	case SDHC_SPEC_VERS_400:
    327 		aprint_normal("4.0");
    328 		break;
    329 	case SDHC_SPEC_VERS_410:
    330 		aprint_normal("4.1");
    331 		break;
    332 	case SDHC_SPEC_VERS_420:
    333 		aprint_normal("4.2");
    334 		break;
    335 	case SDHC_SPEC_NOVERS:
    336 		hp->specver = -1;
    337 		aprint_normal("NO-VERS");
    338 		break;
    339 	default:
    340 		aprint_normal("unknown version(0x%x)",
    341 		    SDHC_SPEC_VERSION(sdhcver));
    342 		break;
    343 	}
    344 	if (SDHC_SPEC_VERSION(sdhcver) != SDHC_SPEC_NOVERS)
    345 		aprint_normal(", rev %u", SDHC_VENDOR_VERSION(sdhcver));
    346 
    347 	/*
    348 	 * Reset the host controller and enable interrupts.
    349 	 */
    350 	(void)sdhc_host_reset(hp);
    351 
    352 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    353 		/* init uSDHC registers */
    354 		HWRITE4(hp, SDHC_MMC_BOOT, 0);
    355 		HWRITE4(hp, SDHC_HOST_CTL, SDHC_USDHC_BURST_LEN_EN |
    356 		    SDHC_USDHC_HOST_CTL_RESV23 | SDHC_USDHC_EMODE_LE);
    357 		HWRITE4(hp, SDHC_WATERMARK_LEVEL,
    358 		    (0x10 << SDHC_WATERMARK_WR_BRST_SHIFT) |
    359 		    (0x40 << SDHC_WATERMARK_WRITE_SHIFT) |
    360 		    (0x10 << SDHC_WATERMARK_RD_BRST_SHIFT) |
    361 		    (0x40 << SDHC_WATERMARK_READ_SHIFT));
    362 		HSET4(hp, SDHC_VEND_SPEC,
    363 		    SDHC_VEND_SPEC_MBO |
    364 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
    365 		    SDHC_VEND_SPEC_IPG_PERCLK_SOFT_EN |
    366 		    SDHC_VEND_SPEC_HCLK_SOFT_EN |
    367 		    SDHC_VEND_SPEC_IPG_CLK_SOFT_EN |
    368 		    SDHC_VEND_SPEC_AC12_WR_CHKBUSY_EN |
    369 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
    370 	}
    371 
    372 	/* Determine host capabilities. */
    373 	if (ISSET(sc->sc_flags, SDHC_FLAG_HOSTCAPS)) {
    374 		caps = sc->sc_caps;
    375 		caps2 = sc->sc_caps2;
    376 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
    377 		/* uSDHC capability register is little bit different */
    378 		caps = HREAD4(hp, SDHC_CAPABILITIES);
    379 		caps |= SDHC_8BIT_SUPP;
    380 		if (caps & SDHC_ADMA1_SUPP)
    381 			caps |= SDHC_ADMA2_SUPP;
    382 		sc->sc_caps = caps;
    383 		/* uSDHC has no SDHC_CAPABILITIES2 register */
    384 		caps2 = sc->sc_caps2 = SDHC_SDR50_SUPP | SDHC_DDR50_SUPP;
    385 	} else {
    386 		caps = sc->sc_caps = HREAD4(hp, SDHC_CAPABILITIES);
    387 		if (hp->specver >= SDHC_SPEC_VERS_300) {
    388 			caps2 = sc->sc_caps2 = HREAD4(hp, SDHC_CAPABILITIES2);
    389 		} else {
    390 			caps2 = sc->sc_caps2 = 0;
    391 		}
    392 	}
    393 
    394 	aprint_verbose(", caps <%08x/%08x>", caps, caps2);
    395 
    396 	const u_int retuning_mode = (caps2 >> SDHC_RETUNING_MODES_SHIFT) &
    397 	    SDHC_RETUNING_MODES_MASK;
    398 	if (retuning_mode == SDHC_RETUNING_MODE_1) {
    399 		hp->tuning_timer_count = (caps2 >> SDHC_TIMER_COUNT_SHIFT) &
    400 		    SDHC_TIMER_COUNT_MASK;
    401 		if (hp->tuning_timer_count == 0xf)
    402 			hp->tuning_timer_count = 0;
    403 		if (hp->tuning_timer_count)
    404 			hp->tuning_timer_count =
    405 			    1 << (hp->tuning_timer_count - 1);
    406 	}
    407 
    408 	/*
    409 	 * Use DMA if the host system and the controller support it.
    410 	 * Supports integrated or external DMA egine, with or without
    411 	 * SDHC_DMA_ENABLE in the command.
    412 	 */
    413 	if (ISSET(sc->sc_flags, SDHC_FLAG_FORCE_DMA) ||
    414 	    (ISSET(sc->sc_flags, SDHC_FLAG_USE_DMA &&
    415 	     ISSET(caps, SDHC_DMA_SUPPORT)))) {
    416 		SET(hp->flags, SHF_USE_DMA);
    417 
    418 		if (ISSET(caps, SDHC_ADMA2_SUPP) &&
    419 		    !ISSET(sc->sc_flags, SDHC_FLAG_BROKEN_ADMA)) {
    420 			SET(hp->flags, SHF_MODE_DMAEN);
    421 			/*
    422 			 * 64-bit mode was present in the 2.00 spec, removed
    423 			 * from 3.00, and re-added in 4.00 with a different
    424 			 * descriptor layout. We only support 2.00 and 3.00
    425 			 * descriptors for now.
    426 			 */
    427 			if (hp->specver == SDHC_SPEC_VERS_200 &&
    428 			    ISSET(caps, SDHC_64BIT_SYS_BUS)) {
    429 				SET(hp->flags, SHF_USE_ADMA2_64);
    430 				aprint_normal(", 64-bit ADMA2");
    431 			} else {
    432 				SET(hp->flags, SHF_USE_ADMA2_32);
    433 				aprint_normal(", 32-bit ADMA2");
    434 			}
    435 		} else {
    436 			if (!ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA) ||
    437 			    ISSET(sc->sc_flags, SDHC_FLAG_EXTDMA_DMAEN))
    438 				SET(hp->flags, SHF_MODE_DMAEN);
    439 			if (sc->sc_vendor_transfer_data_dma) {
    440 				aprint_normal(", platform DMA");
    441 			} else {
    442 				aprint_normal(", SDMA");
    443 			}
    444 		}
    445 	} else {
    446 		aprint_normal(", PIO");
    447 	}
    448 
    449 	/*
    450 	 * Determine the base clock frequency. (2.2.24)
    451 	 */
    452 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    453 		hp->clkbase = SDHC_BASE_V3_FREQ_KHZ(caps);
    454 	} else {
    455 		hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
    456 	}
    457 	if (hp->clkbase == 0 ||
    458 	    ISSET(sc->sc_flags, SDHC_FLAG_NO_CLKBASE)) {
    459 		if (sc->sc_clkbase == 0) {
    460 			/* The attachment driver must tell us. */
    461 			aprint_error_dev(sc->sc_dev,
    462 			    "unknown base clock frequency\n");
    463 			goto err;
    464 		}
    465 		hp->clkbase = sc->sc_clkbase;
    466 	}
    467 	if (hp->clkbase < 10000 || hp->clkbase > 10000 * 256) {
    468 		/* SDHC 1.0 supports only 10-63 MHz. */
    469 		aprint_error_dev(sc->sc_dev,
    470 		    "base clock frequency out of range: %u MHz\n",
    471 		    hp->clkbase / 1000);
    472 		goto err;
    473 	}
    474 	aprint_normal(", %u kHz", hp->clkbase);
    475 
    476 	/*
    477 	 * XXX Set the data timeout counter value according to
    478 	 * capabilities. (2.2.15)
    479 	 */
    480 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    481 #if 1
    482 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    483 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    484 #endif
    485 
    486 	if (ISSET(caps, SDHC_EMBEDDED_SLOT))
    487 		aprint_normal(", embedded slot");
    488 
    489 	/*
    490 	 * Determine SD bus voltage levels supported by the controller.
    491 	 */
    492 	aprint_normal(",");
    493 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) {
    494 		SET(hp->ocr, MMC_OCR_HCS);
    495 		aprint_normal(" HS");
    496 	}
    497 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_1_8_V)) {
    498 		if (ISSET(caps2, SDHC_SDR50_SUPP)) {
    499 			SET(hp->ocr, MMC_OCR_S18A);
    500 			aprint_normal(" SDR50");
    501 		}
    502 		if (ISSET(caps2, SDHC_DDR50_SUPP)) {
    503 			SET(hp->ocr, MMC_OCR_S18A);
    504 			aprint_normal(" DDR50");
    505 		}
    506 		if (ISSET(caps2, SDHC_SDR104_SUPP)) {
    507 			SET(hp->ocr, MMC_OCR_S18A);
    508 			aprint_normal(" SDR104 HS200");
    509 		}
    510 		if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) {
    511 			SET(hp->ocr, MMC_OCR_1_65V_1_95V);
    512 			aprint_normal(" 1.8V");
    513 		}
    514 	}
    515 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) {
    516 		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
    517 		aprint_normal(" 3.0V");
    518 	}
    519 	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) {
    520 		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
    521 		aprint_normal(" 3.3V");
    522 	}
    523 	if (hp->specver >= SDHC_SPEC_VERS_300) {
    524 		aprint_normal(", re-tuning mode %d", retuning_mode + 1);
    525 		if (hp->tuning_timer_count)
    526 			aprint_normal(" (%us timer)", hp->tuning_timer_count);
    527 	}
    528 
    529 	/*
    530 	 * Determine the maximum block length supported by the host
    531 	 * controller. (2.2.24)
    532 	 */
    533 	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
    534 	case SDHC_MAX_BLK_LEN_512:
    535 		hp->maxblklen = 512;
    536 		break;
    537 
    538 	case SDHC_MAX_BLK_LEN_1024:
    539 		hp->maxblklen = 1024;
    540 		break;
    541 
    542 	case SDHC_MAX_BLK_LEN_2048:
    543 		hp->maxblklen = 2048;
    544 		break;
    545 
    546 	case SDHC_MAX_BLK_LEN_4096:
    547 		hp->maxblklen = 4096;
    548 		break;
    549 
    550 	default:
    551 		aprint_error_dev(sc->sc_dev, "max block length unknown\n");
    552 		goto err;
    553 	}
    554 	aprint_normal(", %u byte blocks", hp->maxblklen);
    555 	aprint_normal("\n");
    556 
    557 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
    558 		int rseg;
    559 
    560 		/* Allocate ADMA2 descriptor memory */
    561 		error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
    562 		    PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK);
    563 		if (error) {
    564 			aprint_error_dev(sc->sc_dev,
    565 			    "ADMA2 dmamem_alloc failed (%d)\n", error);
    566 			goto adma_done;
    567 		}
    568 		error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
    569 		    PAGE_SIZE, (void **)&hp->adma2, BUS_DMA_WAITOK);
    570 		if (error) {
    571 			aprint_error_dev(sc->sc_dev,
    572 			    "ADMA2 dmamem_map failed (%d)\n", error);
    573 			goto adma_done;
    574 		}
    575 		error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
    576 		    0, BUS_DMA_WAITOK, &hp->adma_map);
    577 		if (error) {
    578 			aprint_error_dev(sc->sc_dev,
    579 			    "ADMA2 dmamap_create failed (%d)\n", error);
    580 			goto adma_done;
    581 		}
    582 		error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
    583 		    hp->adma2, PAGE_SIZE, NULL,
    584 		    BUS_DMA_WAITOK|BUS_DMA_WRITE);
    585 		if (error) {
    586 			aprint_error_dev(sc->sc_dev,
    587 			    "ADMA2 dmamap_load failed (%d)\n", error);
    588 			goto adma_done;
    589 		}
    590 
    591 		memset(hp->adma2, 0, PAGE_SIZE);
    592 
    593 adma_done:
    594 		if (error)
    595 			CLR(hp->flags, SHF_USE_ADMA2_MASK);
    596 	}
    597 
    598 	/*
    599 	 * Attach the generic SD/MMC bus driver.  (The bus driver must
    600 	 * not invoke any chipset functions before it is attached.)
    601 	 */
    602 	memset(&saa, 0, sizeof(saa));
    603 	saa.saa_busname = "sdmmc";
    604 	saa.saa_sct = &sdhc_functions;
    605 	saa.saa_sch = hp;
    606 	saa.saa_dmat = hp->dmat;
    607 	saa.saa_clkmax = hp->clkbase;
    608 	if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_CGM))
    609 		saa.saa_clkmin = hp->clkbase / 256 / 2046;
    610 	else if (ISSET(sc->sc_flags, SDHC_FLAG_HAVE_DVS))
    611 		saa.saa_clkmin = hp->clkbase / 256 / 16;
    612 	else if (hp->sc->sc_clkmsk != 0)
    613 		saa.saa_clkmin = hp->clkbase / (hp->sc->sc_clkmsk >>
    614 		    (ffs(hp->sc->sc_clkmsk) - 1));
    615 	else if (hp->specver >= SDHC_SPEC_VERS_300)
    616 		saa.saa_clkmin = hp->clkbase / 0x3ff;
    617 	else
    618 		saa.saa_clkmin = hp->clkbase / 256;
    619 	if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP))
    620 		saa.saa_caps |= SMC_CAPS_AUTO_STOP;
    621 	saa.saa_caps |= SMC_CAPS_4BIT_MODE;
    622 	if (ISSET(sc->sc_flags, SDHC_FLAG_8BIT_MODE))
    623 		saa.saa_caps |= SMC_CAPS_8BIT_MODE;
    624 	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
    625 		saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED |
    626 				SMC_CAPS_MMC_HIGHSPEED;
    627 	if (ISSET(caps2, SDHC_SDR104_SUPP))
    628 		saa.saa_caps |= SMC_CAPS_UHS_SDR104 |
    629 				SMC_CAPS_UHS_SDR50 |
    630 				SMC_CAPS_MMC_HS200;
    631 	if (ISSET(caps2, SDHC_SDR50_SUPP))
    632 		saa.saa_caps |= SMC_CAPS_UHS_SDR50;
    633 	if (ISSET(caps2, SDHC_DDR50_SUPP))
    634 		saa.saa_caps |= SMC_CAPS_UHS_DDR50;
    635 	if (ISSET(hp->flags, SHF_USE_DMA)) {
    636 		saa.saa_caps |= SMC_CAPS_DMA;
    637 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    638 			saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
    639 	}
    640 	if (ISSET(sc->sc_flags, SDHC_FLAG_SINGLE_ONLY))
    641 		saa.saa_caps |= SMC_CAPS_SINGLE_ONLY;
    642 	if (ISSET(sc->sc_flags, SDHC_FLAG_POLL_CARD_DET))
    643 		saa.saa_caps |= SMC_CAPS_POLL_CARD_DET;
    644 
    645 	if (ISSET(sc->sc_flags, SDHC_FLAG_BROKEN_ADMA2_ZEROLEN))
    646 		saa.saa_max_seg = 65535;
    647 
    648 	hp->sdmmc = config_found(sc->sc_dev, &saa, sdhc_cfprint, CFARGS_NONE);
    649 
    650 	return 0;
    651 
    652 err:
    653 	callout_destroy(&hp->tuning_timer);
    654 	cv_destroy(&hp->intr_cv);
    655 	mutex_destroy(&hp->bus_clock_lock);
    656 	mutex_destroy(&hp->intr_lock);
    657 	free(hp, M_DEVBUF);
    658 	sc->sc_host[--sc->sc_nhosts] = NULL;
    659 err1:
    660 	return 1;
    661 }
    662 
    663 int
    664 sdhc_detach(struct sdhc_softc *sc, int flags)
    665 {
    666 	struct sdhc_host *hp;
    667 	int rv = 0;
    668 
    669 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    670 		hp = sc->sc_host[n];
    671 		if (hp == NULL)
    672 			continue;
    673 		if (hp->sdmmc != NULL) {
    674 			rv = config_detach(hp->sdmmc, flags);
    675 			if (rv)
    676 				break;
    677 			hp->sdmmc = NULL;
    678 		}
    679 		/* disable interrupts */
    680 		if ((flags & DETACH_FORCE) == 0) {
    681 			mutex_enter(&hp->intr_lock);
    682 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    683 				HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    684 			} else {
    685 				HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    686 			}
    687 			sdhc_soft_reset(hp, SDHC_RESET_ALL);
    688 			mutex_exit(&hp->intr_lock);
    689 		}
    690 		callout_halt(&hp->tuning_timer, NULL);
    691 		callout_destroy(&hp->tuning_timer);
    692 		cv_destroy(&hp->intr_cv);
    693 		mutex_destroy(&hp->intr_lock);
    694 		if (hp->ios > 0) {
    695 			bus_space_unmap(hp->iot, hp->ioh, hp->ios);
    696 			hp->ios = 0;
    697 		}
    698 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
    699 			bus_dmamap_unload(sc->sc_dmat, hp->adma_map);
    700 			bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
    701 			bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
    702 			bus_dmamem_free(sc->sc_dmat, hp->adma_segs, 1);
    703 		}
    704 		free(hp, M_DEVBUF);
    705 		sc->sc_host[n] = NULL;
    706 	}
    707 
    708 	return rv;
    709 }
    710 
    711 bool
    712 sdhc_suspend(device_t dev, const pmf_qual_t *qual)
    713 {
    714 	struct sdhc_softc *sc = device_private(dev);
    715 	struct sdhc_host *hp;
    716 	size_t i;
    717 
    718 	/* XXX poll for command completion or suspend command
    719 	 * in progress */
    720 
    721 	/* Save the host controller state. */
    722 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    723 		hp = sc->sc_host[n];
    724 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    725 			for (i = 0; i < sizeof hp->regs; i += 4) {
    726 				uint32_t v = HREAD4(hp, i);
    727 				hp->regs[i + 0] = (v >> 0);
    728 				hp->regs[i + 1] = (v >> 8);
    729 				if (i + 3 < sizeof hp->regs) {
    730 					hp->regs[i + 2] = (v >> 16);
    731 					hp->regs[i + 3] = (v >> 24);
    732 				}
    733 			}
    734 		} else {
    735 			for (i = 0; i < sizeof hp->regs; i++) {
    736 				hp->regs[i] = HREAD1(hp, i);
    737 			}
    738 		}
    739 	}
    740 	return true;
    741 }
    742 
    743 bool
    744 sdhc_resume(device_t dev, const pmf_qual_t *qual)
    745 {
    746 	struct sdhc_softc *sc = device_private(dev);
    747 	struct sdhc_host *hp;
    748 	size_t i;
    749 
    750 	/* Restore the host controller state. */
    751 	for (size_t n = 0; n < sc->sc_nhosts; n++) {
    752 		hp = sc->sc_host[n];
    753 		(void)sdhc_host_reset(hp);
    754 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    755 			for (i = 0; i < sizeof hp->regs; i += 4) {
    756 				if (i + 3 < sizeof hp->regs) {
    757 					HWRITE4(hp, i,
    758 					    (hp->regs[i + 0] << 0)
    759 					    | (hp->regs[i + 1] << 8)
    760 					    | (hp->regs[i + 2] << 16)
    761 					    | (hp->regs[i + 3] << 24));
    762 				} else {
    763 					HWRITE4(hp, i,
    764 					    (hp->regs[i + 0] << 0)
    765 					    | (hp->regs[i + 1] << 8));
    766 				}
    767 			}
    768 		} else {
    769 			for (i = 0; i < sizeof hp->regs; i++) {
    770 				HWRITE1(hp, i, hp->regs[i]);
    771 			}
    772 		}
    773 	}
    774 	return true;
    775 }
    776 
    777 bool
    778 sdhc_shutdown(device_t dev, int flags)
    779 {
    780 	struct sdhc_softc *sc = device_private(dev);
    781 	struct sdhc_host *hp;
    782 
    783 	/* XXX chip locks up if we don't disable it before reboot. */
    784 	for (size_t i = 0; i < sc->sc_nhosts; i++) {
    785 		hp = sc->sc_host[i];
    786 		(void)sdhc_host_reset(hp);
    787 	}
    788 	return true;
    789 }
    790 
    791 /*
    792  * Reset the host controller.  Called during initialization, when
    793  * cards are removed, upon resume, and during error recovery.
    794  */
    795 static int
    796 sdhc_host_reset1(sdmmc_chipset_handle_t sch)
    797 {
    798 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    799 	uint32_t sdhcimask;
    800 	int error;
    801 
    802 	KASSERT(mutex_owned(&hp->intr_lock));
    803 
    804 	/* Disable all interrupts. */
    805 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    806 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, 0);
    807 	} else {
    808 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
    809 	}
    810 
    811 	/* Let sdhc_bus_power restore power */
    812 	hp->vdd = 0;
    813 
    814 	/*
    815 	 * Reset the entire host controller and wait up to 100ms for
    816 	 * the controller to clear the reset bit.
    817 	 */
    818 	error = sdhc_soft_reset(hp, SDHC_RESET_ALL);
    819 	if (error)
    820 		goto out;
    821 
    822 	/* Set data timeout counter value to max for now. */
    823 	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
    824 #if 1
    825 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
    826 		HWRITE4(hp, SDHC_NINTR_STATUS, SDHC_CMD_TIMEOUT_ERROR << 16);
    827 #endif
    828 
    829 	/* Enable interrupts. */
    830 	sdhcimask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
    831 	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
    832 	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
    833 	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
    834 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
    835 		sdhcimask |= SDHC_EINTR_STATUS_MASK << 16;
    836 		HWRITE4(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    837 		sdhcimask ^=
    838 		    (SDHC_EINTR_STATUS_MASK ^ SDHC_EINTR_SIGNAL_MASK) << 16;
    839 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    840 		HWRITE4(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    841 	} else {
    842 		HWRITE2(hp, SDHC_NINTR_STATUS_EN, sdhcimask);
    843 		HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
    844 		sdhcimask ^= SDHC_BUFFER_READ_READY ^ SDHC_BUFFER_WRITE_READY;
    845 		HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, sdhcimask);
    846 		HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
    847 	}
    848 
    849 out:
    850 	return error;
    851 }
    852 
    853 static int
    854 sdhc_host_reset(sdmmc_chipset_handle_t sch)
    855 {
    856 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    857 	int error;
    858 
    859 	mutex_enter(&hp->intr_lock);
    860 	error = sdhc_host_reset1(sch);
    861 	mutex_exit(&hp->intr_lock);
    862 
    863 	return error;
    864 }
    865 
    866 static uint32_t
    867 sdhc_host_ocr(sdmmc_chipset_handle_t sch)
    868 {
    869 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    870 
    871 	return hp->ocr;
    872 }
    873 
    874 static int
    875 sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
    876 {
    877 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    878 
    879 	return hp->maxblklen;
    880 }
    881 
    882 /*
    883  * Return non-zero if the card is currently inserted.
    884  */
    885 static int
    886 sdhc_card_detect(sdmmc_chipset_handle_t sch)
    887 {
    888 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    889 	int r;
    890 
    891 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NON_REMOVABLE))
    892 		return 1;
    893 
    894 	if (hp->sc->sc_vendor_card_detect)
    895 		return (*hp->sc->sc_vendor_card_detect)(hp->sc);
    896 
    897 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED);
    898 
    899 	return r ? 1 : 0;
    900 }
    901 
    902 /*
    903  * Return non-zero if the card is currently write-protected.
    904  */
    905 static int
    906 sdhc_write_protect(sdmmc_chipset_handle_t sch)
    907 {
    908 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    909 	int r;
    910 
    911 	if (hp->sc->sc_vendor_write_protect)
    912 		return (*hp->sc->sc_vendor_write_protect)(hp->sc);
    913 
    914 	r = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_WRITE_PROTECT_SWITCH);
    915 
    916 	return r ? 0 : 1;
    917 }
    918 
    919 /*
    920  * Set or change SD bus voltage and enable or disable SD bus power.
    921  * Return zero on success.
    922  */
    923 static int
    924 sdhc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
    925 {
    926 	struct sdhc_host *hp = (struct sdhc_host *)sch;
    927 	uint8_t vdd;
    928 	int error = 0;
    929 	const uint32_t pcmask =
    930 	    ~(SDHC_BUS_POWER | (SDHC_VOLTAGE_MASK << SDHC_VOLTAGE_SHIFT));
    931 	uint32_t reg;
    932 
    933 	mutex_enter(&hp->intr_lock);
    934 
    935 	/*
    936 	 * Disable bus power before voltage change.
    937 	 */
    938 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_PWR0)) {
    939 		hp->vdd = 0;
    940 		HWRITE1(hp, SDHC_POWER_CTL, 0);
    941 	}
    942 
    943 	/* If power is disabled, reset the host and return now. */
    944 	if (ocr == 0) {
    945 		(void)sdhc_host_reset1(hp);
    946 		callout_halt(&hp->tuning_timer, &hp->intr_lock);
    947 		goto out;
    948 	}
    949 
    950 	/*
    951 	 * Select the lowest voltage according to capabilities.
    952 	 */
    953 	ocr &= hp->ocr;
    954 	if (ISSET(ocr, MMC_OCR_1_65V_1_95V)) {
    955 		vdd = SDHC_VOLTAGE_1_8V;
    956 	} else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) {
    957 		vdd = SDHC_VOLTAGE_3_0V;
    958 	} else if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) {
    959 		vdd = SDHC_VOLTAGE_3_3V;
    960 	} else {
    961 		/* Unsupported voltage level requested. */
    962 		error = EINVAL;
    963 		goto out;
    964 	}
    965 
    966 	/*
    967 	 * Did voltage change ?
    968 	 */
    969 	if (vdd == hp->vdd)
    970 		goto out;
    971 
    972 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
    973 		/*
    974 		 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
    975 		 * voltage ramp until power rises.
    976 		 */
    977 
    978 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SINGLE_POWER_WRITE)) {
    979 			HWRITE1(hp, SDHC_POWER_CTL,
    980 			    (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER);
    981 		} else {
    982 			reg = HREAD1(hp, SDHC_POWER_CTL) & pcmask;
    983 			HWRITE1(hp, SDHC_POWER_CTL, reg);
    984 			sdmmc_delay(1);
    985 			reg |= (vdd << SDHC_VOLTAGE_SHIFT);
    986 			HWRITE1(hp, SDHC_POWER_CTL, reg);
    987 			sdmmc_delay(1);
    988 			reg |= SDHC_BUS_POWER;
    989 			HWRITE1(hp, SDHC_POWER_CTL, reg);
    990 			sdmmc_delay(10000);
    991 		}
    992 
    993 		/*
    994 		 * The host system may not power the bus due to battery low,
    995 		 * etc.  In that case, the host controller should clear the
    996 		 * bus power bit.
    997 		 */
    998 		if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
    999 			error = ENXIO;
   1000 			goto out;
   1001 		}
   1002 	}
   1003 
   1004 	/* power successfully changed */
   1005 	hp->vdd = vdd;
   1006 
   1007 out:
   1008 	mutex_exit(&hp->intr_lock);
   1009 
   1010 	return error;
   1011 }
   1012 
   1013 /*
   1014  * Return the smallest possible base clock frequency divisor value
   1015  * for the CLOCK_CTL register to produce `freq' (KHz).
   1016  */
   1017 static bool
   1018 sdhc_clock_divisor(struct sdhc_host *hp, u_int freq, u_int *divp)
   1019 {
   1020 	u_int div;
   1021 
   1022 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_CGM)) {
   1023 		for (div = hp->clkbase / freq; div <= 0x3ff; div++) {
   1024 			if ((hp->clkbase / div) <= freq) {
   1025 				*divp = SDHC_SDCLK_CGM
   1026 				    | ((div & 0x300) << SDHC_SDCLK_XDIV_SHIFT)
   1027 				    | ((div & 0x0ff) << SDHC_SDCLK_DIV_SHIFT);
   1028 				//freq = hp->clkbase / div;
   1029 				return true;
   1030 			}
   1031 		}
   1032 		/* No divisor found. */
   1033 		return false;
   1034 	}
   1035 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_HAVE_DVS)) {
   1036 		u_int dvs = (hp->clkbase + freq - 1) / freq;
   1037 		u_int roundup = dvs & 1;
   1038 		for (dvs >>= 1, div = 1; div <= 256; div <<= 1, dvs >>= 1) {
   1039 			if (dvs + roundup <= 16) {
   1040 				dvs += roundup - 1;
   1041 				*divp = (div << SDHC_SDCLK_DIV_SHIFT)
   1042 				    |   (dvs << SDHC_SDCLK_DVS_SHIFT);
   1043 				DPRINTF(2,
   1044 				    ("%s: divisor for freq %u is %u * %u\n",
   1045 				    HDEVNAME(hp), freq, div * 2, dvs + 1));
   1046 				//freq = hp->clkbase / (div * 2) * (dvs + 1);
   1047 				return true;
   1048 			}
   1049 			/*
   1050 			 * If we drop bits, we need to round up the divisor.
   1051 			 */
   1052 			roundup |= dvs & 1;
   1053 		}
   1054 		/* No divisor found. */
   1055 		return false;
   1056 	}
   1057 	if (hp->sc->sc_clkmsk != 0) {
   1058 		div = howmany(hp->clkbase, freq);
   1059 		if (div > (hp->sc->sc_clkmsk >> (ffs(hp->sc->sc_clkmsk) - 1)))
   1060 			return false;
   1061 		*divp = div << (ffs(hp->sc->sc_clkmsk) - 1);
   1062 		//freq = hp->clkbase / div;
   1063 		return true;
   1064 	}
   1065 	if (hp->specver >= SDHC_SPEC_VERS_300) {
   1066 		div = howmany(hp->clkbase, freq);
   1067 		div = div > 1 ? howmany(div, 2) : 0;
   1068 		if (div > 0x3ff)
   1069 			return false;
   1070 		*divp = (((div >> 8) & SDHC_SDCLK_XDIV_MASK)
   1071 			 << SDHC_SDCLK_XDIV_SHIFT) |
   1072 			(((div >> 0) & SDHC_SDCLK_DIV_MASK)
   1073 			 << SDHC_SDCLK_DIV_SHIFT);
   1074 		//freq = hp->clkbase / (div ? div * 2 : 1);
   1075 		return true;
   1076 	} else {
   1077 		for (div = 1; div <= 256; div *= 2) {
   1078 			if ((hp->clkbase / div) <= freq) {
   1079 				*divp = (div / 2) << SDHC_SDCLK_DIV_SHIFT;
   1080 				//freq = hp->clkbase / div;
   1081 				return true;
   1082 			}
   1083 		}
   1084 		/* No divisor found. */
   1085 		return false;
   1086 	}
   1087 	/* No divisor found. */
   1088 	return false;
   1089 }
   1090 
   1091 /*
   1092  * Set or change SDCLK frequency or disable the SD clock.
   1093  * Return zero on success.
   1094  */
   1095 static int
   1096 sdhc_bus_clock_ddr(sdmmc_chipset_handle_t sch, int freq, bool ddr)
   1097 {
   1098 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1099 	u_int div;
   1100 	u_int timo;
   1101 	int16_t reg;
   1102 	int error = 0;
   1103 	bool present __diagused;
   1104 
   1105 #ifdef DIAGNOSTIC
   1106 	present = ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK);
   1107 
   1108 	/* Must not stop the clock if commands are in progress. */
   1109 	if (present && sdhc_card_detect(hp)) {
   1110 		aprint_normal_dev(hp->sc->sc_dev,
   1111 		    "%s: command in progress\n", __func__);
   1112 	}
   1113 #endif
   1114 
   1115 	if (hp->sc->sc_vendor_bus_clock) {
   1116 		mutex_enter(&hp->bus_clock_lock);
   1117 		error = (*hp->sc->sc_vendor_bus_clock)(hp->sc, freq);
   1118 		mutex_exit(&hp->bus_clock_lock);
   1119 		if (error != 0)
   1120 			return error;
   1121 	}
   1122 
   1123 	mutex_enter(&hp->intr_lock);
   1124 
   1125 	/*
   1126 	 * Stop SD clock before changing the frequency.
   1127 	 */
   1128 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1129 		HCLR4(hp, SDHC_VEND_SPEC,
   1130 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1131 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1132 		if (freq == SDMMC_SDCLK_OFF) {
   1133 			goto out;
   1134 		}
   1135 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1136 		HCLR4(hp, SDHC_CLOCK_CTL, 0xfff8);
   1137 		if (freq == SDMMC_SDCLK_OFF) {
   1138 			HSET4(hp, SDHC_CLOCK_CTL, 0x80f0);
   1139 			goto out;
   1140 		}
   1141 	} else {
   1142 		HCLR2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1143 		if (freq == SDMMC_SDCLK_OFF)
   1144 			goto out;
   1145 	}
   1146 
   1147 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1148 		if (ddr)
   1149 			HSET4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
   1150 		else
   1151 			HCLR4(hp, SDHC_MIX_CTRL, SDHC_USDHC_DDR_EN);
   1152 	} else if (hp->specver >= SDHC_SPEC_VERS_300) {
   1153 		HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK);
   1154 		if (freq > 100000) {
   1155 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR104);
   1156 		} else if (freq > 50000) {
   1157 			if (ddr) {
   1158 				HSET2(hp, SDHC_HOST_CTL2,
   1159 				    SDHC_UHS_MODE_SELECT_DDR50);
   1160 			} else {
   1161 				HSET2(hp, SDHC_HOST_CTL2,
   1162 				    SDHC_UHS_MODE_SELECT_SDR50);
   1163 			}
   1164 		} else if (freq > 25000) {
   1165 			if (ddr) {
   1166 				HSET2(hp, SDHC_HOST_CTL2,
   1167 				    SDHC_UHS_MODE_SELECT_DDR50);
   1168 			} else {
   1169 				HSET2(hp, SDHC_HOST_CTL2,
   1170 				    SDHC_UHS_MODE_SELECT_SDR25);
   1171 			}
   1172 		} else if (freq > 400) {
   1173 			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_SDR12);
   1174 		}
   1175 	}
   1176 
   1177 	/*
   1178 	 * Slow down Ricoh 5U823 controller that isn't reliable
   1179 	 * at 100MHz bus clock.
   1180 	 */
   1181 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_SLOW_SDR50)) {
   1182 		if (freq == 100000)
   1183 			--freq;
   1184 	}
   1185 
   1186 	/*
   1187 	 * Set the minimum base clock frequency divisor.
   1188 	 */
   1189 	if (!sdhc_clock_divisor(hp, freq, &div)) {
   1190 		/* Invalid base clock frequency or `freq' value. */
   1191 		aprint_error_dev(hp->sc->sc_dev,
   1192 			"Invalid bus clock %d kHz\n", freq);
   1193 		error = EINVAL;
   1194 		goto out;
   1195 	}
   1196 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1197 		if (ddr) {
   1198 			/* in ddr mode, divisor >>= 1 */
   1199 			div = ((div >> 1) & (SDHC_SDCLK_DIV_MASK <<
   1200 			    SDHC_SDCLK_DIV_SHIFT)) |
   1201 			    (div & (SDHC_SDCLK_DVS_MASK <<
   1202 			    SDHC_SDCLK_DVS_SHIFT));
   1203 		}
   1204 		for (timo = 1000; timo > 0; timo--) {
   1205 			if (ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_SDSTB))
   1206 				break;
   1207 			sdmmc_delay(10);
   1208 		}
   1209 		HWRITE4(hp, SDHC_CLOCK_CTL,
   1210 		    div | (SDHC_TIMEOUT_MAX << 16) | 0x0f);
   1211 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1212 		HWRITE4(hp, SDHC_CLOCK_CTL,
   1213 		    div | (SDHC_TIMEOUT_MAX << 16));
   1214 	} else {
   1215 		reg = HREAD2(hp, SDHC_CLOCK_CTL);
   1216 		reg &= (SDHC_INTCLK_STABLE | SDHC_INTCLK_ENABLE);
   1217 		HWRITE2(hp, SDHC_CLOCK_CTL, reg | div);
   1218 	}
   1219 
   1220 	/*
   1221 	 * Start internal clock.  Wait 10ms for stabilization.
   1222 	 */
   1223 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1224 		HSET4(hp, SDHC_VEND_SPEC,
   1225 		    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1226 		    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1227 	} else if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1228 		sdmmc_delay(10000);
   1229 		HSET4(hp, SDHC_CLOCK_CTL,
   1230 		    8 | SDHC_INTCLK_ENABLE | SDHC_INTCLK_STABLE);
   1231 	} else {
   1232 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
   1233 		for (timo = 1000; timo > 0; timo--) {
   1234 			if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL),
   1235 			    SDHC_INTCLK_STABLE))
   1236 				break;
   1237 			sdmmc_delay(10);
   1238 		}
   1239 		if (timo == 0) {
   1240 			error = ETIMEDOUT;
   1241 			DPRINTF(1,("%s: timeout\n", __func__));
   1242 			goto out;
   1243 		}
   1244 	}
   1245 
   1246 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1247 		HSET1(hp, SDHC_SOFTWARE_RESET, SDHC_INIT_ACTIVE);
   1248 		/*
   1249 		 * Sending 80 clocks at 400kHz takes 200us.
   1250 		 * So delay for that time + slop and then
   1251 		 * check a few times for completion.
   1252 		 */
   1253 		sdmmc_delay(210);
   1254 		for (timo = 10; timo > 0; timo--) {
   1255 			if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET),
   1256 			    SDHC_INIT_ACTIVE))
   1257 				break;
   1258 			sdmmc_delay(10);
   1259 		}
   1260 		DPRINTF(2,("%s: %u init spins\n", __func__, 10 - timo));
   1261 
   1262 		/*
   1263 		 * Enable SD clock.
   1264 		 */
   1265 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1266 			HSET4(hp, SDHC_VEND_SPEC,
   1267 			    SDHC_VEND_SPEC_CARD_CLK_SOFT_EN |
   1268 			    SDHC_VEND_SPEC_FRC_SDCLK_ON);
   1269 		} else {
   1270 			HSET4(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1271 		}
   1272 	} else {
   1273 		/*
   1274 		 * Enable SD clock.
   1275 		 */
   1276 		HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
   1277 
   1278 		if (freq > 25000 &&
   1279 		    !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_HS_BIT))
   1280 			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
   1281 		else
   1282 			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
   1283 	}
   1284 
   1285 	mutex_exit(&hp->intr_lock);
   1286 
   1287 	if (hp->sc->sc_vendor_bus_clock_post) {
   1288 		mutex_enter(&hp->bus_clock_lock);
   1289 		error = (*hp->sc->sc_vendor_bus_clock_post)(hp->sc, freq);
   1290 		mutex_exit(&hp->bus_clock_lock);
   1291 	}
   1292 	return error;
   1293 
   1294 out:
   1295 	mutex_exit(&hp->intr_lock);
   1296 
   1297 	return error;
   1298 }
   1299 
   1300 static int
   1301 sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
   1302 {
   1303 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1304 	int reg;
   1305 
   1306 	switch (width) {
   1307 	case 1:
   1308 	case 4:
   1309 		break;
   1310 
   1311 	case 8:
   1312 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_8BIT_MODE))
   1313 			break;
   1314 		/* FALLTHROUGH */
   1315 	default:
   1316 		DPRINTF(0,("%s: unsupported bus width (%d)\n",
   1317 		    HDEVNAME(hp), width));
   1318 		return 1;
   1319 	}
   1320 
   1321 	if (hp->sc->sc_vendor_bus_width) {
   1322 		const int error = hp->sc->sc_vendor_bus_width(hp->sc, width);
   1323 		if (error != 0)
   1324 			return error;
   1325 	}
   1326 
   1327 	mutex_enter(&hp->intr_lock);
   1328 
   1329 	reg = HREAD1(hp, SDHC_HOST_CTL);
   1330 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1331 		reg &= ~(SDHC_4BIT_MODE|SDHC_ESDHC_8BIT_MODE);
   1332 		if (width == 4)
   1333 			reg |= SDHC_4BIT_MODE;
   1334 		else if (width == 8)
   1335 			reg |= SDHC_ESDHC_8BIT_MODE;
   1336 	} else {
   1337 		reg &= ~SDHC_4BIT_MODE;
   1338 		if (hp->specver >= SDHC_SPEC_VERS_300) {
   1339 			reg &= ~SDHC_8BIT_MODE;
   1340 		}
   1341 		if (width == 4) {
   1342 			reg |= SDHC_4BIT_MODE;
   1343 		} else if (width == 8 && hp->specver >= SDHC_SPEC_VERS_300) {
   1344 			reg |= SDHC_8BIT_MODE;
   1345 		}
   1346 	}
   1347 	HWRITE1(hp, SDHC_HOST_CTL, reg);
   1348 
   1349 	mutex_exit(&hp->intr_lock);
   1350 
   1351 	return 0;
   1352 }
   1353 
   1354 static int
   1355 sdhc_bus_rod(sdmmc_chipset_handle_t sch, int on)
   1356 {
   1357 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1358 
   1359 	if (hp->sc->sc_vendor_rod)
   1360 		return (*hp->sc->sc_vendor_rod)(hp->sc, on);
   1361 
   1362 	return 0;
   1363 }
   1364 
   1365 static void
   1366 sdhc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
   1367 {
   1368 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1369 
   1370 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1371 		mutex_enter(&hp->intr_lock);
   1372 		if (enable) {
   1373 			HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1374 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1375 		} else {
   1376 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
   1377 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1378 		}
   1379 		mutex_exit(&hp->intr_lock);
   1380 	}
   1381 }
   1382 
   1383 static void
   1384 sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
   1385 {
   1386 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1387 
   1388 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1389 		mutex_enter(&hp->intr_lock);
   1390 		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   1391 		mutex_exit(&hp->intr_lock);
   1392 	}
   1393 }
   1394 
   1395 static int
   1396 sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
   1397 {
   1398 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1399 	int error = 0;
   1400 
   1401 	if (hp->specver < SDHC_SPEC_VERS_300)
   1402 		return EINVAL;
   1403 
   1404 	mutex_enter(&hp->intr_lock);
   1405 	switch (signal_voltage) {
   1406 	case SDMMC_SIGNAL_VOLTAGE_180:
   1407 		if (hp->sc->sc_vendor_signal_voltage != NULL) {
   1408 			error = hp->sc->sc_vendor_signal_voltage(hp->sc,
   1409 			    signal_voltage);
   1410 			if (error != 0)
   1411 				break;
   1412 		}
   1413 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
   1414 			HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
   1415 		break;
   1416 	case SDMMC_SIGNAL_VOLTAGE_330:
   1417 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC))
   1418 			HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
   1419 		if (hp->sc->sc_vendor_signal_voltage != NULL) {
   1420 			error = hp->sc->sc_vendor_signal_voltage(hp->sc,
   1421 			    signal_voltage);
   1422 			if (error != 0)
   1423 				break;
   1424 		}
   1425 		break;
   1426 	default:
   1427 		error = EINVAL;
   1428 		break;
   1429 	}
   1430 	mutex_exit(&hp->intr_lock);
   1431 
   1432 	return error;
   1433 }
   1434 
   1435 /*
   1436  * Sampling clock tuning procedure (UHS)
   1437  */
   1438 static int
   1439 sdhc_execute_tuning1(struct sdhc_host *hp, int timing)
   1440 {
   1441 	struct sdmmc_command cmd;
   1442 	uint8_t hostctl;
   1443 	int opcode, error, retry = 40;
   1444 
   1445 	KASSERT(mutex_owned(&hp->intr_lock));
   1446 
   1447 	hp->tuning_timing = timing;
   1448 
   1449 	switch (timing) {
   1450 	case SDMMC_TIMING_MMC_HS200:
   1451 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
   1452 		break;
   1453 	case SDMMC_TIMING_UHS_SDR50:
   1454 		if (!ISSET(hp->sc->sc_caps2, SDHC_TUNING_SDR50))
   1455 			return 0;
   1456 		/* FALLTHROUGH */
   1457 	case SDMMC_TIMING_UHS_SDR104:
   1458 		opcode = MMC_SEND_TUNING_BLOCK;
   1459 		break;
   1460 	default:
   1461 		return EINVAL;
   1462 	}
   1463 
   1464 	hostctl = HREAD1(hp, SDHC_HOST_CTL);
   1465 
   1466 	/* enable buffer read ready interrupt */
   1467 	HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
   1468 	HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
   1469 
   1470 	/* disable DMA */
   1471 	HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
   1472 
   1473 	/* reset tuning circuit */
   1474 	HCLR2(hp, SDHC_HOST_CTL2, SDHC_SAMPLING_CLOCK_SEL);
   1475 
   1476 	/* start of tuning */
   1477 	HWRITE2(hp, SDHC_HOST_CTL2, SDHC_EXECUTE_TUNING);
   1478 
   1479 	do {
   1480 		memset(&cmd, 0, sizeof(cmd));
   1481 		cmd.c_opcode = opcode;
   1482 		cmd.c_arg = 0;
   1483 		cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1;
   1484 		if (ISSET(hostctl, SDHC_8BIT_MODE)) {
   1485 			cmd.c_blklen = cmd.c_datalen = 128;
   1486 		} else {
   1487 			cmd.c_blklen = cmd.c_datalen = 64;
   1488 		}
   1489 
   1490 		error = sdhc_start_command(hp, &cmd);
   1491 		if (error)
   1492 			break;
   1493 
   1494 		if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY,
   1495 		    SDHC_TUNING_TIMEOUT, false)) {
   1496 			break;
   1497 		}
   1498 
   1499 		delay(1000);
   1500 	} while (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING && --retry);
   1501 
   1502 	/* disable buffer read ready interrupt */
   1503 	HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_BUFFER_READ_READY);
   1504 	HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_BUFFER_READ_READY);
   1505 
   1506 	if (HREAD2(hp, SDHC_HOST_CTL2) & SDHC_EXECUTE_TUNING) {
   1507 		HCLR2(hp, SDHC_HOST_CTL2,
   1508 		    SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
   1509 		sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1510 		aprint_error_dev(hp->sc->sc_dev,
   1511 		    "tuning did not complete, using fixed sampling clock\n");
   1512 		return 0;		/* tuning did not complete */
   1513 	}
   1514 
   1515 	if ((HREAD2(hp, SDHC_HOST_CTL2) & SDHC_SAMPLING_CLOCK_SEL) == 0) {
   1516 		HCLR2(hp, SDHC_HOST_CTL2,
   1517 		    SDHC_SAMPLING_CLOCK_SEL|SDHC_EXECUTE_TUNING);
   1518 		sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1519 		aprint_error_dev(hp->sc->sc_dev,
   1520 		    "tuning failed, using fixed sampling clock\n");
   1521 		return 0;		/* tuning failed */
   1522 	}
   1523 
   1524 	if (hp->tuning_timer_count) {
   1525 		callout_schedule(&hp->tuning_timer,
   1526 		    hz * hp->tuning_timer_count);
   1527 	}
   1528 
   1529 	return 0;		/* tuning completed */
   1530 }
   1531 
   1532 static int
   1533 sdhc_execute_tuning(sdmmc_chipset_handle_t sch, int timing)
   1534 {
   1535 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1536 	int error;
   1537 
   1538 	mutex_enter(&hp->intr_lock);
   1539 	error = sdhc_execute_tuning1(hp, timing);
   1540 	mutex_exit(&hp->intr_lock);
   1541 	return error;
   1542 }
   1543 
   1544 static void
   1545 sdhc_tuning_timer(void *arg)
   1546 {
   1547 	struct sdhc_host *hp = arg;
   1548 
   1549 	atomic_swap_uint(&hp->tuning_timer_pending, 1);
   1550 }
   1551 
   1552 static void
   1553 sdhc_hw_reset(sdmmc_chipset_handle_t sch)
   1554 {
   1555 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1556 	struct sdhc_softc *sc = hp->sc;
   1557 
   1558 	if (sc->sc_vendor_hw_reset != NULL)
   1559 		sc->sc_vendor_hw_reset(sc, hp);
   1560 }
   1561 
   1562 static int
   1563 sdhc_wait_state(struct sdhc_host *hp, uint32_t mask, uint32_t value)
   1564 {
   1565 	struct timeval start, diff;
   1566 	uint32_t state;
   1567 
   1568 	microuptime(&start);
   1569 	for (;;) {
   1570 		state = HREAD4(hp, SDHC_PRESENT_STATE);
   1571 		if ((state & mask) == value) {
   1572 			return 0;
   1573 		}
   1574 		microuptime(&diff);
   1575 		timersub(&diff, &start, &diff);
   1576 		if (diff.tv_sec != 0) {
   1577 			aprint_error_dev(hp->sc->sc_dev,
   1578 			    "timeout waiting for mask %#x value %#x "
   1579 			    "(state=%#x)\n",
   1580 			    mask, value, state);
   1581 			return ETIMEDOUT;
   1582 		}
   1583 	}
   1584 }
   1585 
   1586 static void
   1587 sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
   1588 {
   1589 	struct sdhc_host *hp = (struct sdhc_host *)sch;
   1590 	int error;
   1591 	bool probing;
   1592 
   1593 	mutex_enter(&hp->intr_lock);
   1594 
   1595 	if (atomic_cas_uint(&hp->tuning_timer_pending, 1, 0) == 1) {
   1596 		(void)sdhc_execute_tuning1(hp, hp->tuning_timing);
   1597 	}
   1598 
   1599 	if (cmd->c_data &&
   1600 	    ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1601 		const uint16_t ready = SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY;
   1602 		if (ISSET(hp->flags, SHF_USE_DMA)) {
   1603 			HCLR2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1604 			HCLR2(hp, SDHC_NINTR_STATUS_EN, ready);
   1605 		} else {
   1606 			HSET2(hp, SDHC_NINTR_SIGNAL_EN, ready);
   1607 			HSET2(hp, SDHC_NINTR_STATUS_EN, ready);
   1608 		}
   1609 	}
   1610 
   1611 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_TIMEOUT)) {
   1612 		const uint16_t eintr = SDHC_CMD_TIMEOUT_ERROR;
   1613 		if (cmd->c_data != NULL) {
   1614 			HCLR2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
   1615 			HCLR2(hp, SDHC_EINTR_STATUS_EN, eintr);
   1616 		} else {
   1617 			HSET2(hp, SDHC_EINTR_SIGNAL_EN, eintr);
   1618 			HSET2(hp, SDHC_EINTR_STATUS_EN, eintr);
   1619 		}
   1620 	}
   1621 
   1622 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_STOP_WITH_TC)) {
   1623 		if (cmd->c_opcode == MMC_STOP_TRANSMISSION)
   1624 			SET(cmd->c_flags, SCF_RSP_BSY);
   1625 	}
   1626 
   1627 	/*
   1628 	 * Start the MMC command, or mark `cmd' as failed and return.
   1629 	 */
   1630 	error = sdhc_start_command(hp, cmd);
   1631 	if (error) {
   1632 		cmd->c_error = error;
   1633 		goto out;
   1634 	}
   1635 
   1636 	/*
   1637 	 * Wait until the command phase is done, or until the command
   1638 	 * is marked done for any other reason.
   1639 	 */
   1640 	probing = (cmd->c_flags & SCF_TOUT_OK) != 0;
   1641 	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT*3, probing)) {
   1642 		DPRINTF(1,("%s: timeout for command\n", __func__));
   1643 		sdmmc_delay(50);
   1644 		cmd->c_error = ETIMEDOUT;
   1645 		goto out;
   1646 	}
   1647 
   1648 	/*
   1649 	 * The host controller removes bits [0:7] from the response
   1650 	 * data (CRC) and we pass the data up unchanged to the bus
   1651 	 * driver (without padding).
   1652 	 */
   1653 	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
   1654 		cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE + 0);
   1655 		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
   1656 			cmd->c_resp[1] = HREAD4(hp, SDHC_RESPONSE + 4);
   1657 			cmd->c_resp[2] = HREAD4(hp, SDHC_RESPONSE + 8);
   1658 			cmd->c_resp[3] = HREAD4(hp, SDHC_RESPONSE + 12);
   1659 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_RSP136_CRC)) {
   1660 				cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
   1661 				    (cmd->c_resp[1] << 24);
   1662 				cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
   1663 				    (cmd->c_resp[2] << 24);
   1664 				cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
   1665 				    (cmd->c_resp[3] << 24);
   1666 				cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
   1667 			}
   1668 		}
   1669 	}
   1670 	DPRINTF(1,("%s: resp = %08x\n", HDEVNAME(hp), cmd->c_resp[0]));
   1671 
   1672 	/*
   1673 	 * If the command has data to transfer in any direction,
   1674 	 * execute the transfer now.
   1675 	 */
   1676 	if (cmd->c_error == 0 && cmd->c_data != NULL)
   1677 		sdhc_transfer_data(hp, cmd);
   1678 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) {
   1679 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_BUSY_INTR) &&
   1680 		    !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, hz * 10, false)) {
   1681 			DPRINTF(1,("%s: sdhc_exec_command: RSP_BSY\n",
   1682 			    HDEVNAME(hp)));
   1683 			cmd->c_error = ETIMEDOUT;
   1684 			goto out;
   1685 		}
   1686 	}
   1687 
   1688 out:
   1689 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)
   1690 	    && !ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_LED_ON)) {
   1691 		/* Turn off the LED. */
   1692 		HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1693 	}
   1694 	SET(cmd->c_flags, SCF_ITSDONE);
   1695 
   1696 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP) &&
   1697 	    cmd->c_opcode == MMC_STOP_TRANSMISSION)
   1698 		(void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
   1699 
   1700 	mutex_exit(&hp->intr_lock);
   1701 
   1702 	DPRINTF(1,("%s: cmd %d %s (flags=%08x error=%d)\n", HDEVNAME(hp),
   1703 	    cmd->c_opcode, (cmd->c_error == 0) ? "done" : "abort",
   1704 	    cmd->c_flags, cmd->c_error));
   1705 }
   1706 
   1707 static int
   1708 sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1709 {
   1710 	struct sdhc_softc * const sc = hp->sc;
   1711 	uint16_t blksize = 0;
   1712 	uint16_t blkcount = 0;
   1713 	uint16_t mode;
   1714 	uint16_t command;
   1715 	uint32_t pmask;
   1716 	int error;
   1717 
   1718 	KASSERT(mutex_owned(&hp->intr_lock));
   1719 
   1720 	DPRINTF(1,("%s: start cmd %d arg=%08x data=%p dlen=%d flags=%08x, status=%#x\n",
   1721 	    HDEVNAME(hp), cmd->c_opcode, cmd->c_arg, cmd->c_data,
   1722 	    cmd->c_datalen, cmd->c_flags, HREAD4(hp, SDHC_NINTR_STATUS)));
   1723 
   1724 	/*
   1725 	 * The maximum block length for commands should be the minimum
   1726 	 * of the host buffer size and the card buffer size. (1.7.2)
   1727 	 */
   1728 
   1729 	/* Fragment the data into proper blocks. */
   1730 	if (cmd->c_datalen > 0) {
   1731 		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
   1732 		blkcount = cmd->c_datalen / blksize;
   1733 		if (cmd->c_datalen % blksize > 0) {
   1734 			/* XXX: Split this command. (1.7.4) */
   1735 			aprint_error_dev(sc->sc_dev,
   1736 			    "data not a multiple of %u bytes\n", blksize);
   1737 			return EINVAL;
   1738 		}
   1739 	}
   1740 
   1741 	/* Check limit imposed by 9-bit block count. (1.7.2) */
   1742 	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
   1743 		aprint_error_dev(sc->sc_dev, "too much data\n");
   1744 		return EINVAL;
   1745 	}
   1746 
   1747 	/* Prepare transfer mode register value. (2.2.5) */
   1748 	mode = 0;
   1749 	if (ISSET(cmd->c_flags, SCF_CMD_READ))
   1750 		mode |= SDHC_READ_MODE;
   1751 	if (blkcount > 0) {
   1752 		mode |= SDHC_BLOCK_COUNT_ENABLE;
   1753 		if (blkcount > 1) {
   1754 			mode |= SDHC_MULTI_BLOCK_MODE;
   1755 			if (!ISSET(sc->sc_flags, SDHC_FLAG_NO_AUTO_STOP)
   1756 			    && !ISSET(cmd->c_flags, SCF_NO_STOP))
   1757 				mode |= SDHC_AUTO_CMD12_ENABLE;
   1758 		}
   1759 	}
   1760 	if (cmd->c_dmamap != NULL && cmd->c_datalen > 0 &&
   1761 	    ISSET(hp->flags,  SHF_MODE_DMAEN)) {
   1762 		mode |= SDHC_DMA_ENABLE;
   1763 	}
   1764 
   1765 	/*
   1766 	 * Prepare command register value. (2.2.6)
   1767 	 */
   1768 	command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT;
   1769 
   1770 	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
   1771 		command |= SDHC_CRC_CHECK_ENABLE;
   1772 	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
   1773 		command |= SDHC_INDEX_CHECK_ENABLE;
   1774 	if (cmd->c_datalen > 0)
   1775 		command |= SDHC_DATA_PRESENT_SELECT;
   1776 
   1777 	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
   1778 		command |= SDHC_NO_RESPONSE;
   1779 	else if (ISSET(cmd->c_flags, SCF_RSP_136))
   1780 		command |= SDHC_RESP_LEN_136;
   1781 	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
   1782 		command |= SDHC_RESP_LEN_48_CHK_BUSY;
   1783 	else
   1784 		command |= SDHC_RESP_LEN_48;
   1785 
   1786 	/* Wait until command and optionally data inhibit bits are clear. (1.5) */
   1787 	pmask = SDHC_CMD_INHIBIT_CMD;
   1788 	if (cmd->c_flags & (SCF_CMD_ADTC|SCF_RSP_BSY))
   1789 		pmask |= SDHC_CMD_INHIBIT_DAT;
   1790 	error = sdhc_wait_state(hp, pmask, 0);
   1791 	if (error) {
   1792 		(void) sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
   1793 		device_printf(sc->sc_dev, "command or data phase inhibited\n");
   1794 		return error;
   1795 	}
   1796 
   1797 	DPRINTF(1,("%s: writing cmd: blksize=%d blkcnt=%d mode=%04x cmd=%04x\n",
   1798 	    HDEVNAME(hp), blksize, blkcount, mode, command));
   1799 
   1800 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   1801 		blksize |= (MAX(0, PAGE_SHIFT - 12) & SDHC_DMA_BOUNDARY_MASK) <<
   1802 		    SDHC_DMA_BOUNDARY_SHIFT;	/* PAGE_SIZE DMA boundary */
   1803 	}
   1804 
   1805 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   1806 		/* Alert the user not to remove the card. */
   1807 		HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
   1808 	}
   1809 
   1810 	/* Set DMA start address. */
   1811 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK) && cmd->c_data != NULL) {
   1812 		for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
   1813 			bus_addr_t paddr =
   1814 			    cmd->c_dmamap->dm_segs[seg].ds_addr;
   1815 			uint16_t len =
   1816 			    cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
   1817 			    0 : cmd->c_dmamap->dm_segs[seg].ds_len;
   1818 			uint16_t attr =
   1819 			    SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
   1820 			if (seg == cmd->c_dmamap->dm_nsegs - 1) {
   1821 				attr |= SDHC_ADMA2_END;
   1822 			}
   1823 			if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
   1824 				struct sdhc_adma2_descriptor32 *desc =
   1825 				    hp->adma2;
   1826 				desc[seg].attribute = htole16(attr);
   1827 				desc[seg].length = htole16(len);
   1828 				desc[seg].address = htole32(paddr);
   1829 			} else {
   1830 				struct sdhc_adma2_descriptor64 *desc =
   1831 				    hp->adma2;
   1832 				desc[seg].attribute = htole16(attr);
   1833 				desc[seg].length = htole16(len);
   1834 				desc[seg].address = htole32(paddr & 0xffffffff);
   1835 				desc[seg].address_hi = htole32(
   1836 				    (uint64_t)paddr >> 32);
   1837 			}
   1838 		}
   1839 		if (ISSET(hp->flags, SHF_USE_ADMA2_32)) {
   1840 			struct sdhc_adma2_descriptor32 *desc = hp->adma2;
   1841 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
   1842 		} else {
   1843 			struct sdhc_adma2_descriptor64 *desc = hp->adma2;
   1844 			desc[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
   1845 		}
   1846 		bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
   1847 		    BUS_DMASYNC_PREWRITE);
   1848 
   1849 		const bus_addr_t desc_addr = hp->adma_map->dm_segs[0].ds_addr;
   1850 		HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, desc_addr & 0xffffffff);
   1851 		if (ISSET(hp->flags, SHF_USE_ADMA2_64)) {
   1852 			HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR + 4,
   1853 			    (uint64_t)desc_addr >> 32);
   1854 		}
   1855 
   1856 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1857 			HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
   1858 			HSET4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT_ADMA2);
   1859 		} else {
   1860 			HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
   1861 			HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA2);
   1862 		}
   1863 	} else if (ISSET(mode, SDHC_DMA_ENABLE) &&
   1864 	    !ISSET(sc->sc_flags, SDHC_FLAG_EXTERNAL_DMA)) {
   1865 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1866 			HCLR4(hp, SDHC_HOST_CTL, SDHC_USDHC_DMA_SELECT);
   1867 		}
   1868 		HWRITE4(hp, SDHC_DMA_ADDR, cmd->c_dmamap->dm_segs[0].ds_addr);
   1869 	}
   1870 
   1871 	/*
   1872 	 * Start a CPU data transfer.  Writing to the high order byte
   1873 	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
   1874 	 */
   1875 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   1876 		HWRITE4(hp, SDHC_BLOCK_SIZE, blksize | (blkcount << 16));
   1877 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1878 		if (ISSET(hp->sc->sc_flags, SDHC_FLAG_USDHC)) {
   1879 			/* mode bits is in MIX_CTRL register on uSDHC */
   1880 			HWRITE4(hp, SDHC_MIX_CTRL, mode |
   1881 			    (HREAD4(hp, SDHC_MIX_CTRL) & ~SDHC_TRANSFER_MODE_MASK));
   1882 			if (cmd->c_opcode == MMC_STOP_TRANSMISSION)
   1883 				command |= SDHC_COMMAND_TYPE_ABORT;
   1884 			HWRITE4(hp, SDHC_TRANSFER_MODE, command << 16);
   1885 		} else {
   1886 			HWRITE4(hp, SDHC_TRANSFER_MODE, mode | (command << 16));
   1887 		}
   1888 	} else {
   1889 		HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
   1890 		HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
   1891 		HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
   1892 		HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
   1893 		HWRITE2(hp, SDHC_COMMAND, command);
   1894 	}
   1895 
   1896 	return 0;
   1897 }
   1898 
   1899 static void
   1900 sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1901 {
   1902 	struct sdhc_softc *sc = hp->sc;
   1903 	int error;
   1904 
   1905 	KASSERT(mutex_owned(&hp->intr_lock));
   1906 
   1907 	DPRINTF(1,("%s: data transfer: resp=%08x datalen=%u\n", HDEVNAME(hp),
   1908 	    MMC_R1(cmd->c_resp), cmd->c_datalen));
   1909 
   1910 #ifdef SDHC_DEBUG
   1911 	/* XXX I forgot why I wanted to know when this happens :-( */
   1912 	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
   1913 	    ISSET(MMC_R1(cmd->c_resp), 0xcb00)) {
   1914 		aprint_error_dev(hp->sc->sc_dev,
   1915 		    "CMD52/53 error response flags %#x\n",
   1916 		    MMC_R1(cmd->c_resp) & 0xff00);
   1917 	}
   1918 #endif
   1919 
   1920 	if (cmd->c_dmamap != NULL) {
   1921 		if (hp->sc->sc_vendor_transfer_data_dma != NULL) {
   1922 			error = hp->sc->sc_vendor_transfer_data_dma(sc, cmd);
   1923 			if (error == 0 && !sdhc_wait_intr(hp,
   1924 			    SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT, false)) {
   1925 				DPRINTF(1,("%s: timeout\n", __func__));
   1926 				error = ETIMEDOUT;
   1927 			}
   1928 		} else {
   1929 			error = sdhc_transfer_data_dma(hp, cmd);
   1930 		}
   1931 	} else
   1932 		error = sdhc_transfer_data_pio(hp, cmd);
   1933 	if (error)
   1934 		cmd->c_error = error;
   1935 	SET(cmd->c_flags, SCF_ITSDONE);
   1936 
   1937 	DPRINTF(1,("%s: data transfer done (error=%d)\n",
   1938 	    HDEVNAME(hp), cmd->c_error));
   1939 }
   1940 
   1941 static int
   1942 sdhc_transfer_data_dma(struct sdhc_host *hp, struct sdmmc_command *cmd)
   1943 {
   1944 	bus_dma_segment_t *dm_segs = cmd->c_dmamap->dm_segs;
   1945 	bus_addr_t posaddr;
   1946 	bus_addr_t segaddr;
   1947 	bus_size_t seglen;
   1948 	u_int seg = 0;
   1949 	int error = 0;
   1950 	int status;
   1951 
   1952 	KASSERT(mutex_owned(&hp->intr_lock));
   1953 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_DMA_INTERRUPT);
   1954 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_DMA_INTERRUPT);
   1955 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   1956 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   1957 
   1958 	for (;;) {
   1959 		status = sdhc_wait_intr(hp,
   1960 		    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
   1961 		    SDHC_DMA_TIMEOUT, false);
   1962 
   1963 		if (status & SDHC_TRANSFER_COMPLETE) {
   1964 			break;
   1965 		}
   1966 		if (!status) {
   1967 			DPRINTF(1,("%s: timeout\n", __func__));
   1968 			error = ETIMEDOUT;
   1969 			break;
   1970 		}
   1971 
   1972 		if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
   1973 			continue;
   1974 		}
   1975 
   1976 		if ((status & SDHC_DMA_INTERRUPT) == 0) {
   1977 			continue;
   1978 		}
   1979 
   1980 		/* DMA Interrupt (boundary crossing) */
   1981 
   1982 		segaddr = dm_segs[seg].ds_addr;
   1983 		seglen = dm_segs[seg].ds_len;
   1984 		posaddr = HREAD4(hp, SDHC_DMA_ADDR);
   1985 
   1986 		if ((seg == (cmd->c_dmamap->dm_nsegs-1)) && (posaddr == (segaddr + seglen))) {
   1987 			continue;
   1988 		}
   1989 		if ((posaddr >= segaddr) && (posaddr < (segaddr + seglen)))
   1990 			HWRITE4(hp, SDHC_DMA_ADDR, posaddr);
   1991 		else if ((posaddr >= segaddr) && (posaddr == (segaddr + seglen)) && (seg + 1) < cmd->c_dmamap->dm_nsegs)
   1992 			HWRITE4(hp, SDHC_DMA_ADDR, dm_segs[++seg].ds_addr);
   1993 		KASSERT(seg < cmd->c_dmamap->dm_nsegs);
   1994 	}
   1995 
   1996 	if (ISSET(hp->flags, SHF_USE_ADMA2_MASK)) {
   1997 		bus_dmamap_sync(hp->sc->sc_dmat, hp->adma_map, 0,
   1998 		    PAGE_SIZE, BUS_DMASYNC_POSTWRITE);
   1999 	}
   2000 
   2001 	return error;
   2002 }
   2003 
   2004 static int
   2005 sdhc_transfer_data_pio(struct sdhc_host *hp, struct sdmmc_command *cmd)
   2006 {
   2007 	uint8_t *data = cmd->c_data;
   2008 	void (*pio_func)(struct sdhc_host *, uint8_t *, u_int);
   2009 	u_int len, datalen;
   2010 	u_int imask;
   2011 	u_int pmask;
   2012 	int error = 0;
   2013 
   2014 	KASSERT(mutex_owned(&hp->intr_lock));
   2015 
   2016 	if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
   2017 		imask = SDHC_BUFFER_READ_READY;
   2018 		pmask = SDHC_BUFFER_READ_ENABLE;
   2019 		if (ISSET(hp->sc->sc_flags,
   2020 		    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2021 			pio_func = esdhc_read_data_pio;
   2022 		} else {
   2023 			pio_func = sdhc_read_data_pio;
   2024 		}
   2025 	} else {
   2026 		imask = SDHC_BUFFER_WRITE_READY;
   2027 		pmask = SDHC_BUFFER_WRITE_ENABLE;
   2028 		if (ISSET(hp->sc->sc_flags,
   2029 		    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2030 			pio_func = esdhc_write_data_pio;
   2031 		} else {
   2032 			pio_func = sdhc_write_data_pio;
   2033 		}
   2034 	}
   2035 	datalen = cmd->c_datalen;
   2036 
   2037 	KASSERT(mutex_owned(&hp->intr_lock));
   2038 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & imask);
   2039 	KASSERT(HREAD2(hp, SDHC_NINTR_STATUS_EN) & SDHC_TRANSFER_COMPLETE);
   2040 	KASSERT(HREAD2(hp, SDHC_NINTR_SIGNAL_EN) & SDHC_TRANSFER_COMPLETE);
   2041 
   2042 	while (datalen > 0) {
   2043 		if (!ISSET(HREAD4(hp, SDHC_PRESENT_STATE), pmask)) {
   2044 			if (ISSET(hp->sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   2045 				HSET4(hp, SDHC_NINTR_SIGNAL_EN, imask);
   2046 			} else {
   2047 				HSET2(hp, SDHC_NINTR_SIGNAL_EN, imask);
   2048 			}
   2049 			if (!sdhc_wait_intr(hp, imask, SDHC_BUFFER_TIMEOUT, false)) {
   2050 				DPRINTF(1,("%s: timeout\n", __func__));
   2051 				error = ETIMEDOUT;
   2052 				break;
   2053 			}
   2054 
   2055 			error = sdhc_wait_state(hp, pmask, pmask);
   2056 			if (error)
   2057 				break;
   2058 		}
   2059 
   2060 		len = MIN(datalen, cmd->c_blklen);
   2061 		(*pio_func)(hp, data, len);
   2062 		DPRINTF(2,("%s: pio data transfer %u @ %p\n",
   2063 		    HDEVNAME(hp), len, data));
   2064 
   2065 		data += len;
   2066 		datalen -= len;
   2067 	}
   2068 
   2069 	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
   2070 	    SDHC_TRANSFER_TIMEOUT, false)) {
   2071 		DPRINTF(1,("%s: timeout for transfer\n", __func__));
   2072 		error = ETIMEDOUT;
   2073 	}
   2074 
   2075 	return error;
   2076 }
   2077 
   2078 static void
   2079 sdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2080 {
   2081 
   2082 	if (((__uintptr_t)data & 3) == 0) {
   2083 		while (datalen > 3) {
   2084 			*(uint32_t *)data = le32toh(HREAD4(hp, SDHC_DATA));
   2085 			data += 4;
   2086 			datalen -= 4;
   2087 		}
   2088 		if (datalen > 1) {
   2089 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   2090 			data += 2;
   2091 			datalen -= 2;
   2092 		}
   2093 		if (datalen > 0) {
   2094 			*data = HREAD1(hp, SDHC_DATA);
   2095 			data += 1;
   2096 			datalen -= 1;
   2097 		}
   2098 	} else if (((__uintptr_t)data & 1) == 0) {
   2099 		while (datalen > 1) {
   2100 			*(uint16_t *)data = le16toh(HREAD2(hp, SDHC_DATA));
   2101 			data += 2;
   2102 			datalen -= 2;
   2103 		}
   2104 		if (datalen > 0) {
   2105 			*data = HREAD1(hp, SDHC_DATA);
   2106 			data += 1;
   2107 			datalen -= 1;
   2108 		}
   2109 	} else {
   2110 		while (datalen > 0) {
   2111 			*data = HREAD1(hp, SDHC_DATA);
   2112 			data += 1;
   2113 			datalen -= 1;
   2114 		}
   2115 	}
   2116 }
   2117 
   2118 static void
   2119 sdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2120 {
   2121 
   2122 	if (((__uintptr_t)data & 3) == 0) {
   2123 		while (datalen > 3) {
   2124 			HWRITE4(hp, SDHC_DATA, htole32(*(uint32_t *)data));
   2125 			data += 4;
   2126 			datalen -= 4;
   2127 		}
   2128 		if (datalen > 1) {
   2129 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   2130 			data += 2;
   2131 			datalen -= 2;
   2132 		}
   2133 		if (datalen > 0) {
   2134 			HWRITE1(hp, SDHC_DATA, *data);
   2135 			data += 1;
   2136 			datalen -= 1;
   2137 		}
   2138 	} else if (((__uintptr_t)data & 1) == 0) {
   2139 		while (datalen > 1) {
   2140 			HWRITE2(hp, SDHC_DATA, htole16(*(uint16_t *)data));
   2141 			data += 2;
   2142 			datalen -= 2;
   2143 		}
   2144 		if (datalen > 0) {
   2145 			HWRITE1(hp, SDHC_DATA, *data);
   2146 			data += 1;
   2147 			datalen -= 1;
   2148 		}
   2149 	} else {
   2150 		while (datalen > 0) {
   2151 			HWRITE1(hp, SDHC_DATA, *data);
   2152 			data += 1;
   2153 			datalen -= 1;
   2154 		}
   2155 	}
   2156 }
   2157 
   2158 static void
   2159 esdhc_read_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2160 {
   2161 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   2162 	uint32_t v;
   2163 
   2164 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_READ_SHIFT) & SDHC_WATERMARK_READ_MASK;
   2165 	size_t count = 0;
   2166 
   2167 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2168 		if (count == 0) {
   2169 			/*
   2170 			 * If we've drained "watermark" words, we need to wait
   2171 			 * a little bit so the read FIFO can refill.
   2172 			 */
   2173 			sdmmc_delay(10);
   2174 			count = watermark;
   2175 		}
   2176 		v = HREAD4(hp, SDHC_DATA);
   2177 		v = le32toh(v);
   2178 		*(uint32_t *)data = v;
   2179 		data += 4;
   2180 		datalen -= 4;
   2181 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   2182 		count--;
   2183 	}
   2184 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2185 		if (count == 0) {
   2186 			sdmmc_delay(10);
   2187 		}
   2188 		v = HREAD4(hp, SDHC_DATA);
   2189 		v = le32toh(v);
   2190 		do {
   2191 			*data++ = v;
   2192 			v >>= 8;
   2193 		} while (--datalen > 0);
   2194 	}
   2195 }
   2196 
   2197 static void
   2198 esdhc_write_data_pio(struct sdhc_host *hp, uint8_t *data, u_int datalen)
   2199 {
   2200 	uint16_t status = HREAD2(hp, SDHC_NINTR_STATUS);
   2201 	uint32_t v;
   2202 
   2203 	const size_t watermark = (HREAD4(hp, SDHC_WATERMARK_LEVEL) >> SDHC_WATERMARK_WRITE_SHIFT) & SDHC_WATERMARK_WRITE_MASK;
   2204 	size_t count = watermark;
   2205 
   2206 	while (datalen > 3 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2207 		if (count == 0) {
   2208 			sdmmc_delay(10);
   2209 			count = watermark;
   2210 		}
   2211 		v = *(uint32_t *)data;
   2212 		v = htole32(v);
   2213 		HWRITE4(hp, SDHC_DATA, v);
   2214 		data += 4;
   2215 		datalen -= 4;
   2216 		status = HREAD2(hp, SDHC_NINTR_STATUS);
   2217 		count--;
   2218 	}
   2219 	if (datalen > 0 && !ISSET(status, SDHC_TRANSFER_COMPLETE)) {
   2220 		if (count == 0) {
   2221 			sdmmc_delay(10);
   2222 		}
   2223 		v = *(uint32_t *)data;
   2224 		v = htole32(v);
   2225 		HWRITE4(hp, SDHC_DATA, v);
   2226 	}
   2227 }
   2228 
   2229 /* Prepare for another command. */
   2230 static int
   2231 sdhc_soft_reset(struct sdhc_host *hp, int mask)
   2232 {
   2233 	int timo;
   2234 
   2235 	KASSERT(mutex_owned(&hp->intr_lock));
   2236 
   2237 	DPRINTF(1,("%s: software reset reg=%08x\n", HDEVNAME(hp), mask));
   2238 
   2239 	/* Request the reset.  */
   2240 	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
   2241 
   2242 	/*
   2243 	 * If necessary, wait for the controller to set the bits to
   2244 	 * acknowledge the reset.
   2245 	 */
   2246 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_WAIT_RESET) &&
   2247 	    ISSET(mask, (SDHC_RESET_DAT | SDHC_RESET_CMD))) {
   2248 		for (timo = 10000; timo > 0; timo--) {
   2249 			if (ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   2250 				break;
   2251 			/* Short delay because I worry we may miss it...  */
   2252 			sdmmc_delay(1);
   2253 		}
   2254 		if (timo == 0) {
   2255 			DPRINTF(1,("%s: timeout for reset on\n", __func__));
   2256 			return ETIMEDOUT;
   2257 		}
   2258 	}
   2259 
   2260 	/*
   2261 	 * Wait for the controller to clear the bits to indicate that
   2262 	 * the reset has completed.
   2263 	 */
   2264 	for (timo = 10; timo > 0; timo--) {
   2265 		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
   2266 			break;
   2267 		sdmmc_delay(10000);
   2268 	}
   2269 	if (timo == 0) {
   2270 		DPRINTF(1,("%s: timeout reg=%08x\n", HDEVNAME(hp),
   2271 		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
   2272 		return ETIMEDOUT;
   2273 	}
   2274 
   2275 	if (ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED)) {
   2276 		HSET4(hp, SDHC_DMA_CTL, SDHC_DMA_SNOOP);
   2277 	}
   2278 
   2279 	return 0;
   2280 }
   2281 
   2282 static int
   2283 sdhc_wait_intr(struct sdhc_host *hp, int mask, int timo, bool probing)
   2284 {
   2285 	int status, error, nointr;
   2286 
   2287 	KASSERT(mutex_owned(&hp->intr_lock));
   2288 
   2289 	mask |= SDHC_ERROR_INTERRUPT;
   2290 
   2291 	nointr = 0;
   2292 	status = hp->intr_status & mask;
   2293 	while (status == 0) {
   2294 		if (cv_timedwait(&hp->intr_cv, &hp->intr_lock, timo)
   2295 		    == EWOULDBLOCK) {
   2296 			nointr = 1;
   2297 			break;
   2298 		}
   2299 		status = hp->intr_status & mask;
   2300 	}
   2301 	error = hp->intr_error_status;
   2302 
   2303 	DPRINTF(2,("%s: intr status %#x error %#x\n", HDEVNAME(hp), status,
   2304 	    error));
   2305 
   2306 	hp->intr_status &= ~status;
   2307 	hp->intr_error_status &= ~error;
   2308 
   2309 	if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   2310 		if (ISSET(error, SDHC_DMA_ERROR))
   2311 			device_printf(hp->sc->sc_dev,"dma error\n");
   2312 		if (ISSET(error, SDHC_ADMA_ERROR))
   2313 			device_printf(hp->sc->sc_dev,"adma error\n");
   2314 		if (ISSET(error, SDHC_AUTO_CMD12_ERROR))
   2315 			device_printf(hp->sc->sc_dev,"auto_cmd12 error\n");
   2316 		if (ISSET(error, SDHC_CURRENT_LIMIT_ERROR))
   2317 			device_printf(hp->sc->sc_dev,"current limit error\n");
   2318 		if (ISSET(error, SDHC_DATA_END_BIT_ERROR))
   2319 			device_printf(hp->sc->sc_dev,"data end bit error\n");
   2320 		if (ISSET(error, SDHC_DATA_CRC_ERROR))
   2321 			device_printf(hp->sc->sc_dev,"data crc error\n");
   2322 		if (ISSET(error, SDHC_DATA_TIMEOUT_ERROR))
   2323 			device_printf(hp->sc->sc_dev,"data timeout error\n");
   2324 		if (ISSET(error, SDHC_CMD_INDEX_ERROR))
   2325 			device_printf(hp->sc->sc_dev,"cmd index error\n");
   2326 		if (ISSET(error, SDHC_CMD_END_BIT_ERROR))
   2327 			device_printf(hp->sc->sc_dev,"cmd end bit error\n");
   2328 		if (ISSET(error, SDHC_CMD_CRC_ERROR))
   2329 			device_printf(hp->sc->sc_dev,"cmd crc error\n");
   2330 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR)) {
   2331 			if (!probing)
   2332 				device_printf(hp->sc->sc_dev,"cmd timeout error\n");
   2333 #ifdef SDHC_DEBUG
   2334 			else if (sdhcdebug > 0)
   2335 				device_printf(hp->sc->sc_dev,"cmd timeout (expected)\n");
   2336 #endif
   2337 		}
   2338 		if ((error & ~SDHC_EINTR_STATUS_MASK) != 0)
   2339 			device_printf(hp->sc->sc_dev,"vendor error %#x\n",
   2340 				(error & ~SDHC_EINTR_STATUS_MASK));
   2341 		if (error == 0)
   2342 			device_printf(hp->sc->sc_dev,"no error\n");
   2343 
   2344 		/* Command timeout has higher priority than command complete. */
   2345 		if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR))
   2346 			CLR(status, SDHC_COMMAND_COMPLETE);
   2347 
   2348 		/* Transfer complete has higher priority than data timeout. */
   2349 		if (ISSET(status, SDHC_TRANSFER_COMPLETE))
   2350 			CLR(error, SDHC_DATA_TIMEOUT_ERROR);
   2351 	}
   2352 
   2353 	if (nointr ||
   2354 	    (ISSET(status, SDHC_ERROR_INTERRUPT) && error)) {
   2355 		if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   2356 			(void)sdhc_soft_reset(hp, SDHC_RESET_CMD|SDHC_RESET_DAT);
   2357 		hp->intr_error_status = 0;
   2358 		status = 0;
   2359 	}
   2360 
   2361 	return status;
   2362 }
   2363 
   2364 /*
   2365  * Established by attachment driver at interrupt priority IPL_SDMMC.
   2366  */
   2367 int
   2368 sdhc_intr(void *arg)
   2369 {
   2370 	struct sdhc_softc *sc = (struct sdhc_softc *)arg;
   2371 	struct sdhc_host *hp;
   2372 	int done = 0;
   2373 	uint16_t status;
   2374 	uint16_t error;
   2375 
   2376 	/* We got an interrupt, but we don't know from which slot. */
   2377 	for (size_t host = 0; host < sc->sc_nhosts; host++) {
   2378 		hp = sc->sc_host[host];
   2379 		if (hp == NULL)
   2380 			continue;
   2381 
   2382 		mutex_enter(&hp->intr_lock);
   2383 
   2384 		if (ISSET(sc->sc_flags, SDHC_FLAG_32BIT_ACCESS)) {
   2385 			/* Find out which interrupts are pending. */
   2386 			uint32_t xstatus = HREAD4(hp, SDHC_NINTR_STATUS);
   2387 			status = xstatus;
   2388 			error = xstatus >> 16;
   2389 			if (ISSET(sc->sc_flags, SDHC_FLAG_USDHC) &&
   2390 			    (xstatus & SDHC_TRANSFER_COMPLETE) &&
   2391 			    !(xstatus & SDHC_DMA_INTERRUPT)) {
   2392 				/* read again due to uSDHC errata */
   2393 				status = xstatus = HREAD4(hp,
   2394 				    SDHC_NINTR_STATUS);
   2395 				error = xstatus >> 16;
   2396 			}
   2397 			if (ISSET(sc->sc_flags,
   2398 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2399 				if ((error & SDHC_NINTR_STATUS_MASK) != 0)
   2400 					SET(status, SDHC_ERROR_INTERRUPT);
   2401 			}
   2402 			if (error)
   2403 				xstatus |= SDHC_ERROR_INTERRUPT;
   2404 			else if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   2405 				goto next_port; /* no interrupt for us */
   2406 			/* Acknowledge the interrupts we are about to handle. */
   2407 			HWRITE4(hp, SDHC_NINTR_STATUS, xstatus);
   2408 		} else {
   2409 			/* Find out which interrupts are pending. */
   2410 			error = 0;
   2411 			status = HREAD2(hp, SDHC_NINTR_STATUS);
   2412 			if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
   2413 				goto next_port; /* no interrupt for us */
   2414 			/* Acknowledge the interrupts we are about to handle. */
   2415 			HWRITE2(hp, SDHC_NINTR_STATUS, status);
   2416 			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
   2417 				/* Acknowledge error interrupts. */
   2418 				error = HREAD2(hp, SDHC_EINTR_STATUS);
   2419 				HWRITE2(hp, SDHC_EINTR_STATUS, error);
   2420 			}
   2421 		}
   2422 
   2423 		DPRINTF(2,("%s: interrupt status=%x error=%x\n", HDEVNAME(hp),
   2424 		    status, error));
   2425 
   2426 		/* Claim this interrupt. */
   2427 		done = 1;
   2428 
   2429 		if (ISSET(status, SDHC_ERROR_INTERRUPT) &&
   2430 		    ISSET(error, SDHC_ADMA_ERROR)) {
   2431 			uint8_t adma_err = HREAD1(hp, SDHC_ADMA_ERROR_STATUS);
   2432 			printf("%s: ADMA error, status %02x\n", HDEVNAME(hp),
   2433 			    adma_err);
   2434 		}
   2435 
   2436 		/*
   2437 		 * Wake up the sdmmc event thread to scan for cards.
   2438 		 */
   2439 		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) {
   2440 			if (hp->sdmmc != NULL) {
   2441 				sdmmc_needs_discover(hp->sdmmc);
   2442 			}
   2443 			if (ISSET(sc->sc_flags,
   2444 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2445 				HCLR4(hp, SDHC_NINTR_STATUS_EN,
   2446 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   2447 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   2448 				    status & (SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION));
   2449 			}
   2450 		}
   2451 
   2452 		/*
   2453 		 * Schedule re-tuning process (UHS).
   2454 		 */
   2455 		if (ISSET(status, SDHC_RETUNING_EVENT)) {
   2456 			atomic_swap_uint(&hp->tuning_timer_pending, 1);
   2457 		}
   2458 
   2459 		/*
   2460 		 * Wake up the blocking process to service command
   2461 		 * related interrupt(s).
   2462 		 */
   2463 		if (ISSET(status, SDHC_COMMAND_COMPLETE|SDHC_ERROR_INTERRUPT|
   2464 		    SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY|
   2465 		    SDHC_TRANSFER_COMPLETE|SDHC_DMA_INTERRUPT)) {
   2466 			hp->intr_error_status |= error;
   2467 			hp->intr_status |= status;
   2468 			if (ISSET(sc->sc_flags,
   2469 			    SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)) {
   2470 				HCLR4(hp, SDHC_NINTR_SIGNAL_EN,
   2471 				    status & (SDHC_BUFFER_READ_READY|SDHC_BUFFER_WRITE_READY));
   2472 			}
   2473 			cv_broadcast(&hp->intr_cv);
   2474 		}
   2475 
   2476 		/*
   2477 		 * Service SD card interrupts.
   2478 		 */
   2479 		if (!ISSET(sc->sc_flags, SDHC_FLAG_ENHANCED | SDHC_FLAG_USDHC)
   2480 		    && ISSET(status, SDHC_CARD_INTERRUPT)) {
   2481 			DPRINTF(0,("%s: card interrupt\n", HDEVNAME(hp)));
   2482 			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
   2483 			sdmmc_card_intr(hp->sdmmc);
   2484 		}
   2485 next_port:
   2486 		mutex_exit(&hp->intr_lock);
   2487 	}
   2488 
   2489 	return done;
   2490 }
   2491 
   2492 kmutex_t *
   2493 sdhc_host_lock(struct sdhc_host *hp)
   2494 {
   2495 	return &hp->intr_lock;
   2496 }
   2497 
   2498 uint8_t
   2499 sdhc_host_read_1(struct sdhc_host *hp, int reg)
   2500 {
   2501 	return HREAD1(hp, reg);
   2502 }
   2503 
   2504 uint16_t
   2505 sdhc_host_read_2(struct sdhc_host *hp, int reg)
   2506 {
   2507 	return HREAD2(hp, reg);
   2508 }
   2509 
   2510 uint32_t
   2511 sdhc_host_read_4(struct sdhc_host *hp, int reg)
   2512 {
   2513 	return HREAD4(hp, reg);
   2514 }
   2515 
   2516 void
   2517 sdhc_host_write_1(struct sdhc_host *hp, int reg, uint8_t val)
   2518 {
   2519 	HWRITE1(hp, reg, val);
   2520 }
   2521 
   2522 void
   2523 sdhc_host_write_2(struct sdhc_host *hp, int reg, uint16_t val)
   2524 {
   2525 	HWRITE2(hp, reg, val);
   2526 }
   2527 
   2528 void
   2529 sdhc_host_write_4(struct sdhc_host *hp, int reg, uint32_t val)
   2530 {
   2531 	HWRITE4(hp, reg, val);
   2532 }
   2533 
   2534 #ifdef SDHC_DEBUG
   2535 void
   2536 sdhc_dump_regs(struct sdhc_host *hp)
   2537 {
   2538 
   2539 	printf("0x%02x PRESENT_STATE:    %x\n", SDHC_PRESENT_STATE,
   2540 	    HREAD4(hp, SDHC_PRESENT_STATE));
   2541 	if (!ISSET(hp->sc->sc_flags, SDHC_FLAG_ENHANCED))
   2542 		printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
   2543 		    HREAD1(hp, SDHC_POWER_CTL));
   2544 	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
   2545 	    HREAD2(hp, SDHC_NINTR_STATUS));
   2546 	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
   2547 	    HREAD2(hp, SDHC_EINTR_STATUS));
   2548 	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
   2549 	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
   2550 	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
   2551 	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
   2552 	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
   2553 	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
   2554 	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
   2555 	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
   2556 	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
   2557 	    HREAD4(hp, SDHC_CAPABILITIES));
   2558 	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
   2559 	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
   2560 }
   2561 #endif
   2562