Home | History | Annotate | Line # | Download | only in raidframe
      1 /*	$NetBSD: rf_dagdegwr.c,v 1.37 2023/10/15 18:15:19 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30  * rf_dagdegwr.c
     31  *
     32  * code for creating degraded write DAGs
     33  *
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: rf_dagdegwr.c,v 1.37 2023/10/15 18:15:19 oster Exp $");
     38 
     39 #include <dev/raidframe/raidframevar.h>
     40 
     41 #include "rf_raid.h"
     42 #include "rf_dag.h"
     43 #include "rf_dagutils.h"
     44 #include "rf_dagfuncs.h"
     45 #include "rf_debugMem.h"
     46 #include "rf_general.h"
     47 #include "rf_dagdegwr.h"
     48 #include "rf_map.h"
     49 
     50 
     51 /******************************************************************************
     52  *
     53  * General comments on DAG creation:
     54  *
     55  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
     56  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
     57  * is reached, the execution engine will halt forward execution and work
     58  * backward through the graph, executing the undo functions.  Assuming that
     59  * each node in the graph prior to the Cmt node are undoable and atomic - or -
     60  * does not make changes to permanent state, the graph will fail atomically.
     61  * If an error occurs after the Cmt node executes, the engine will roll-forward
     62  * through the graph, blindly executing nodes until it reaches the end.
     63  * If a graph reaches the end, it is assumed to have completed successfully.
     64  *
     65  * A graph has only 1 Cmt node.
     66  *
     67  */
     68 
     69 
     70 /******************************************************************************
     71  *
     72  * The following wrappers map the standard DAG creation interface to the
     73  * DAG creation routines.  Additionally, these wrappers enable experimentation
     74  * with new DAG structures by providing an extra level of indirection, allowing
     75  * the DAG creation routines to be replaced at this single point.
     76  */
     77 
     78 static
     79 RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG)
     80 {
     81 	rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp,
     82 	    flags, allocList, 1, rf_RecoveryXorFunc, RF_TRUE);
     83 }
     84 
     85 void
     86 rf_CreateDegradedWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
     87 			  RF_DagHeader_t *dag_h, void *bp,
     88 			  RF_RaidAccessFlags_t flags,
     89 			  RF_AllocListElem_t *allocList)
     90 {
     91 
     92 	RF_ASSERT(asmap->numDataFailed == 1);
     93 	dag_h->creator = "DegradedWriteDAG";
     94 
     95 	/*
     96 	 * if the access writes only a portion of the failed unit, and also
     97 	 * writes some portion of at least one surviving unit, we create two
     98 	 * DAGs, one for the failed component and one for the non-failed
     99 	 * component, and do them sequentially.  Note that the fact that we're
    100 	 * accessing only a portion of the failed unit indicates that the
    101 	 * access either starts or ends in the failed unit, and hence we need
    102 	 * create only two dags.  This is inefficient in that the same data or
    103 	 * parity can get read and written twice using this structure.  I need
    104 	 * to fix this to do the access all at once.
    105 	 */
    106 	RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 &&
    107 		    asmap->failedPDAs[0]->numSector !=
    108 			raidPtr->Layout.sectorsPerStripeUnit));
    109 	rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
    110 	    allocList);
    111 }
    112 
    113 
    114 
    115 /******************************************************************************
    116  *
    117  * DAG creation code begins here
    118  */
    119 #define BUF_ALLOC(num) \
    120   RF_MallocAndAdd(rf_RaidAddressToByte(raidPtr, num), allocList)
    121 
    122 
    123 
    124 /******************************************************************************
    125  *
    126  * CommonCreateSimpleDegradedWriteDAG -- creates a DAG to do a degraded-mode
    127  * write, which is as follows
    128  *
    129  *                                        / {Wnq} --\
    130  * hdr -> blockNode ->  Rod -> Xor -> Cmt -> Wnp ----> unblock -> term
    131  *                  \  {Rod} /            \  Wnd ---/
    132  *                                        \ {Wnd} -/
    133  *
    134  * commit nodes: Xor, Wnd
    135  *
    136  * IMPORTANT:
    137  * This DAG generator does not work for double-degraded archs since it does not
    138  * generate Q
    139  *
    140  * This dag is essentially identical to the large-write dag, except that the
    141  * write to the failed data unit is suppressed.
    142  *
    143  * IMPORTANT:  this dag does not work in the case where the access writes only
    144  * a portion of the failed unit, and also writes some portion of at least one
    145  * surviving SU.  this case is handled in CreateDegradedWriteDAG above.
    146  *
    147  * The block & unblock nodes are leftovers from a previous version.  They
    148  * do nothing, but I haven't deleted them because it would be a tremendous
    149  * effort to put them back in.
    150  *
    151  * This dag is used whenever a one of the data units in a write has failed.
    152  * If it is the parity unit that failed, the nonredundant write dag (below)
    153  * is used.
    154  *****************************************************************************/
    155 
    156 void
    157 rf_CommonCreateSimpleDegradedWriteDAG(RF_Raid_t *raidPtr,
    158 				      RF_AccessStripeMap_t *asmap,
    159 				      RF_DagHeader_t *dag_h, void *bp,
    160 				      RF_RaidAccessFlags_t flags,
    161 				      RF_AllocListElem_t *allocList,
    162 				      int nfaults,
    163 				      void (*redFunc) (RF_DagNode_t *),
    164 				      int allowBufferRecycle)
    165 {
    166 	int     nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum,
    167 	        rdnodesFaked;
    168 	RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *termNode;
    169 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
    170 	RF_DagNode_t *wnqNode;
    171 #endif
    172 	RF_DagNode_t *wndNodes, *rrdNodes, *xorNode, *commitNode;
    173 	RF_DagNode_t *tmpNode, *tmpwndNode, *tmprrdNode;
    174 	RF_SectorCount_t sectorsPerSU;
    175 	RF_ReconUnitNum_t which_ru;
    176 	char   *xorTargetBuf = NULL;	/* the target buffer for the XOR
    177 					 * operation */
    178 	char   overlappingPDAs[RF_MAXCOL];/* a temporary array of flags */
    179 	RF_AccessStripeMapHeader_t *new_asm_h[2];
    180 	RF_PhysDiskAddr_t *pda, *parityPDA;
    181 	RF_StripeNum_t parityStripeID;
    182 	RF_PhysDiskAddr_t *failedPDA;
    183 	RF_RaidLayout_t *layoutPtr;
    184 
    185 	layoutPtr = &(raidPtr->Layout);
    186 	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
    187 	    &which_ru);
    188 	sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
    189 	/* failedPDA points to the pda within the asm that targets the failed
    190 	 * disk */
    191 	failedPDA = asmap->failedPDAs[0];
    192 
    193 #if RF_DEBUG_DAG
    194 	if (rf_dagDebug)
    195 		printf("[Creating degraded-write DAG]\n");
    196 #endif
    197 
    198 	RF_ASSERT(asmap->numDataFailed == 1);
    199 	dag_h->creator = "SimpleDegradedWriteDAG";
    200 
    201 	/*
    202          * Generate two ASMs identifying the surviving data
    203          * we need in order to recover the lost data.
    204          */
    205 	/* overlappingPDAs array must be zero'd */
    206 	memset(overlappingPDAs, 0, RF_MAXCOL);
    207 	rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h,
    208 	    &nXorBufs, NULL, overlappingPDAs, allocList);
    209 
    210 	/* create all the nodes at once */
    211 	nWndNodes = asmap->numStripeUnitsAccessed - 1;	/* no access is
    212 							 * generated for the
    213 							 * failed pda */
    214 
    215 	nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
    216 	    ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
    217 	/*
    218          * XXX
    219          *
    220          * There's a bug with a complete stripe overwrite- that means 0 reads
    221          * of old data, and the rest of the DAG generation code doesn't like
    222          * that. A release is coming, and I don't wanna risk breaking a critical
    223          * DAG generator, so here's what I'm gonna do- if there's no read nodes,
    224          * I'm gonna fake there being a read node, and I'm gonna swap in a
    225          * no-op node in its place (to make all the link-up code happy).
    226          * This should be fixed at some point.  --jimz
    227          */
    228 	if (nRrdNodes == 0) {
    229 		nRrdNodes = 1;
    230 		rdnodesFaked = 1;
    231 	} else {
    232 		rdnodesFaked = 0;
    233 	}
    234 
    235 	blockNode = rf_AllocDAGNode(raidPtr);
    236 	blockNode->list_next = dag_h->nodes;
    237 	dag_h->nodes = blockNode;
    238 
    239 	commitNode = rf_AllocDAGNode(raidPtr);
    240 	commitNode->list_next = dag_h->nodes;
    241 	dag_h->nodes = commitNode;
    242 
    243 	unblockNode = rf_AllocDAGNode(raidPtr);
    244 	unblockNode->list_next = dag_h->nodes;
    245 	dag_h->nodes = unblockNode;
    246 
    247 	termNode = rf_AllocDAGNode(raidPtr);
    248 	termNode->list_next = dag_h->nodes;
    249 	dag_h->nodes = termNode;
    250 
    251 	xorNode = rf_AllocDAGNode(raidPtr);
    252 	xorNode->list_next = dag_h->nodes;
    253 	dag_h->nodes = xorNode;
    254 
    255 	wnpNode = rf_AllocDAGNode(raidPtr);
    256 	wnpNode->list_next = dag_h->nodes;
    257 	dag_h->nodes = wnpNode;
    258 
    259 	for (i = 0; i < nWndNodes; i++) {
    260 		tmpNode = rf_AllocDAGNode(raidPtr);
    261 		tmpNode->list_next = dag_h->nodes;
    262 		dag_h->nodes = tmpNode;
    263 	}
    264 	wndNodes = dag_h->nodes;
    265 
    266 	for (i = 0; i < nRrdNodes; i++) {
    267 		tmpNode = rf_AllocDAGNode(raidPtr);
    268 		tmpNode->list_next = dag_h->nodes;
    269 		dag_h->nodes = tmpNode;
    270 	}
    271 	rrdNodes = dag_h->nodes;
    272 
    273 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
    274 	if (nfaults == 2) {
    275 		wnqNode = rf_AllocDAGNode(raidPtr);
    276 		wnqNode->list_next = dag_h->nodes;
    277 		dag_h->nodes = wnqNode;
    278 	} else {
    279 		wnqNode = NULL;
    280 	}
    281 #endif
    282 
    283 	/* this dag can not commit until all rrd and xor Nodes have completed */
    284 	dag_h->numCommitNodes = 1;
    285 	dag_h->numCommits = 0;
    286 	dag_h->numSuccedents = 1;
    287 
    288 	RF_ASSERT(nRrdNodes > 0);
    289 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    290 	    NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList);
    291 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    292 	    NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
    293 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    294 	    NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList);
    295 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    296 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    297 	rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
    298 	    nRrdNodes, 2 * nXorBufs + 2, nfaults, dag_h, "Xrc", allocList);
    299 
    300 	/*
    301          * Fill in the Rrd nodes. If any of the rrd buffers are the same size as
    302          * the failed buffer, save a pointer to it so we can use it as the target
    303          * of the XOR. The pdas in the rrd nodes have been range-restricted, so if
    304          * a buffer is the same size as the failed buffer, it must also be at the
    305          * same alignment within the SU.
    306          */
    307 	i = 0;
    308 	tmprrdNode = rrdNodes;
    309 	if (new_asm_h[0]) {
    310 		for (i = 0, pda = new_asm_h[0]->stripeMap->physInfo;
    311 		    i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    312 		    i++, pda = pda->next) {
    313 			rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    314 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
    315 			RF_ASSERT(pda);
    316 			tmprrdNode->params[0].p = pda;
    317 			tmprrdNode->params[1].p = pda->bufPtr;
    318 			tmprrdNode->params[2].v = parityStripeID;
    319 			tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    320 			tmprrdNode = tmprrdNode->list_next;
    321 		}
    322 	}
    323 	/* i now equals the number of stripe units accessed in new_asm_h[0] */
    324 	/* Note that for tmprrdNode, this means a continuation from above, so no need to
    325 	   assign it anything.. */
    326 	if (new_asm_h[1]) {
    327 		for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
    328 		    j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    329 		    j++, pda = pda->next) {
    330 			rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    331 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
    332 			RF_ASSERT(pda);
    333 			tmprrdNode->params[0].p = pda;
    334 			tmprrdNode->params[1].p = pda->bufPtr;
    335 			tmprrdNode->params[2].v = parityStripeID;
    336 			tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    337 			if (allowBufferRecycle && (pda->numSector == failedPDA->numSector))
    338 				xorTargetBuf = pda->bufPtr;
    339 			tmprrdNode = tmprrdNode->list_next;
    340 		}
    341 	}
    342 	if (rdnodesFaked) {
    343 		/*
    344 	         * This is where we'll init that fake noop read node
    345 	         * (XXX should the wakeup func be different?)
    346 	         */
    347 		/* node that rrdNodes will just be a single node... */
    348 		rf_InitNode(rrdNodes, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    349 		    NULL, 1, 1, 0, 0, dag_h, "RrN", allocList);
    350 	}
    351 	/*
    352          * Make a PDA for the parity unit.  The parity PDA should start at
    353          * the same offset into the SU as the failed PDA.
    354          */
    355 	/* Danner comment: I don't think this copy is really necessary. We are
    356 	 * in one of two cases here. (1) The entire failed unit is written.
    357 	 * Then asmap->parityInfo will describe the entire parity. (2) We are
    358 	 * only writing a subset of the failed unit and nothing else. Then the
    359 	 * asmap->parityInfo describes the failed unit and the copy can also
    360 	 * be avoided. */
    361 
    362 	parityPDA = rf_AllocPhysDiskAddr(raidPtr);
    363 	parityPDA->next = dag_h->pda_cleanup_list;
    364 	dag_h->pda_cleanup_list = parityPDA;
    365 	parityPDA->col = asmap->parityInfo->col;
    366 	parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
    367 	    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
    368 	parityPDA->numSector = failedPDA->numSector;
    369 
    370 	if (!xorTargetBuf) {
    371 		xorTargetBuf = rf_AllocBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, failedPDA->numSector));
    372 	}
    373 	/* init the Wnp node */
    374 	rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    375 	    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
    376 	wnpNode->params[0].p = parityPDA;
    377 	wnpNode->params[1].p = xorTargetBuf;
    378 	wnpNode->params[2].v = parityStripeID;
    379 	wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    380 
    381 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
    382 	/* fill in the Wnq Node */
    383 	if (nfaults == 2) {
    384 		{
    385 			parityPDA = RF_MallocAndAdd(sizeof(*parityPDA), allocList);
    386 			parityPDA->col = asmap->qInfo->col;
    387 			parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU)
    388 			    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
    389 			parityPDA->numSector = failedPDA->numSector;
    390 
    391 			rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    392 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
    393 			wnqNode->params[0].p = parityPDA;
    394 			xorNode->results[1] = BUF_ALLOC(failedPDA->numSector);
    395 			wnqNode->params[1].p = xorNode->results[1];
    396 			wnqNode->params[2].v = parityStripeID;
    397 			wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    398 		}
    399 	}
    400 #endif
    401 	/* fill in the Wnd nodes */
    402 	tmpwndNode = wndNodes;
    403 	for (pda = asmap->physInfo, i = 0; i < nWndNodes; i++, pda = pda->next) {
    404 		if (pda == failedPDA) {
    405 			i--;
    406 			continue;
    407 		}
    408 		rf_InitNode(tmpwndNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    409 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
    410 		RF_ASSERT(pda);
    411 		tmpwndNode->params[0].p = pda;
    412 		tmpwndNode->params[1].p = pda->bufPtr;
    413 		tmpwndNode->params[2].v = parityStripeID;
    414 		tmpwndNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    415 		tmpwndNode = tmpwndNode->list_next;
    416 	}
    417 
    418 	/* fill in the results of the xor node */
    419 	xorNode->results[0] = xorTargetBuf;
    420 
    421 	/* fill in the params of the xor node */
    422 
    423 	paramNum = 0;
    424 	if (rdnodesFaked == 0) {
    425 		tmprrdNode = rrdNodes;
    426 		for (i = 0; i < nRrdNodes; i++) {
    427 			/* all the Rrd nodes need to be xored together */
    428 			xorNode->params[paramNum++] = tmprrdNode->params[0];
    429 			xorNode->params[paramNum++] = tmprrdNode->params[1];
    430 			tmprrdNode = tmprrdNode->list_next;
    431 		}
    432 	}
    433 	tmpwndNode = wndNodes;
    434 	for (i = 0; i < nWndNodes; i++) {
    435 		/* any Wnd nodes that overlap the failed access need to be
    436 		 * xored in */
    437 		if (overlappingPDAs[i]) {
    438 			pda = rf_AllocPhysDiskAddr(raidPtr);
    439 			memcpy((char *) pda, (char *) tmpwndNode->params[0].p, sizeof(RF_PhysDiskAddr_t));
    440 			/* add it into the pda_cleanup_list *after* the copy, TYVM */
    441 			pda->next = dag_h->pda_cleanup_list;
    442 			dag_h->pda_cleanup_list = pda;
    443 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
    444 			xorNode->params[paramNum++].p = pda;
    445 			xorNode->params[paramNum++].p = pda->bufPtr;
    446 		}
    447 		tmpwndNode = tmpwndNode->list_next;
    448 	}
    449 
    450 	/*
    451          * Install the failed PDA into the xor param list so that the
    452          * new data gets xor'd in.
    453          */
    454 	xorNode->params[paramNum++].p = failedPDA;
    455 	xorNode->params[paramNum++].p = failedPDA->bufPtr;
    456 
    457 	/*
    458          * The last 2 params to the recovery xor node are always the failed
    459          * PDA and the raidPtr. install the failedPDA even though we have just
    460          * done so above. This allows us to use the same XOR function for both
    461          * degraded reads and degraded writes.
    462          */
    463 	xorNode->params[paramNum++].p = failedPDA;
    464 	xorNode->params[paramNum++].p = raidPtr;
    465 	RF_ASSERT(paramNum == 2 * nXorBufs + 2);
    466 
    467 	/*
    468          * Code to link nodes begins here
    469          */
    470 
    471 	/* link header to block node */
    472 	RF_ASSERT(blockNode->numAntecedents == 0);
    473 	dag_h->succedents[0] = blockNode;
    474 
    475 	/* link block node to rd nodes */
    476 	RF_ASSERT(blockNode->numSuccedents == nRrdNodes);
    477 	tmprrdNode = rrdNodes;
    478 	for (i = 0; i < nRrdNodes; i++) {
    479 		RF_ASSERT(tmprrdNode->numAntecedents == 1);
    480 		blockNode->succedents[i] = tmprrdNode;
    481 		tmprrdNode->antecedents[0] = blockNode;
    482 		tmprrdNode->antType[0] = rf_control;
    483 		tmprrdNode = tmprrdNode->list_next;
    484 	}
    485 
    486 	/* link read nodes to xor node */
    487 	RF_ASSERT(xorNode->numAntecedents == nRrdNodes);
    488 	tmprrdNode = rrdNodes;
    489 	for (i = 0; i < nRrdNodes; i++) {
    490 		RF_ASSERT(tmprrdNode->numSuccedents == 1);
    491 		tmprrdNode->succedents[0] = xorNode;
    492 		xorNode->antecedents[i] = tmprrdNode;
    493 		xorNode->antType[i] = rf_trueData;
    494 		tmprrdNode = tmprrdNode->list_next;
    495 	}
    496 
    497 	/* link xor node to commit node */
    498 	RF_ASSERT(xorNode->numSuccedents == 1);
    499 	RF_ASSERT(commitNode->numAntecedents == 1);
    500 	xorNode->succedents[0] = commitNode;
    501 	commitNode->antecedents[0] = xorNode;
    502 	commitNode->antType[0] = rf_control;
    503 
    504 	/* link commit node to wnd nodes */
    505 	RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes);
    506 	tmpwndNode = wndNodes;
    507 	for (i = 0; i < nWndNodes; i++) {
    508 		RF_ASSERT(tmpwndNode->numAntecedents == 1);
    509 		commitNode->succedents[i] = tmpwndNode;
    510 		tmpwndNode->antecedents[0] = commitNode;
    511 		tmpwndNode->antType[0] = rf_control;
    512 		tmpwndNode = tmpwndNode->list_next;
    513 	}
    514 
    515 	/* link the commit node to wnp, wnq nodes */
    516 	RF_ASSERT(wnpNode->numAntecedents == 1);
    517 	commitNode->succedents[nWndNodes] = wnpNode;
    518 	wnpNode->antecedents[0] = commitNode;
    519 	wnpNode->antType[0] = rf_control;
    520 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
    521 	if (nfaults == 2) {
    522 		RF_ASSERT(wnqNode->numAntecedents == 1);
    523 		commitNode->succedents[nWndNodes + 1] = wnqNode;
    524 		wnqNode->antecedents[0] = commitNode;
    525 		wnqNode->antType[0] = rf_control;
    526 	}
    527 #endif
    528 	/* link write new data nodes to unblock node */
    529 	RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults));
    530 	tmpwndNode = wndNodes;
    531 	for (i = 0; i < nWndNodes; i++) {
    532 		RF_ASSERT(tmpwndNode->numSuccedents == 1);
    533 		tmpwndNode->succedents[0] = unblockNode;
    534 		unblockNode->antecedents[i] = tmpwndNode;
    535 		unblockNode->antType[i] = rf_control;
    536 		tmpwndNode = tmpwndNode->list_next;
    537 	}
    538 
    539 	/* link write new parity node to unblock node */
    540 	RF_ASSERT(wnpNode->numSuccedents == 1);
    541 	wnpNode->succedents[0] = unblockNode;
    542 	unblockNode->antecedents[nWndNodes] = wnpNode;
    543 	unblockNode->antType[nWndNodes] = rf_control;
    544 
    545 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
    546 	/* link write new q node to unblock node */
    547 	if (nfaults == 2) {
    548 		RF_ASSERT(wnqNode->numSuccedents == 1);
    549 		wnqNode->succedents[0] = unblockNode;
    550 		unblockNode->antecedents[nWndNodes + 1] = wnqNode;
    551 		unblockNode->antType[nWndNodes + 1] = rf_control;
    552 	}
    553 #endif
    554 	/* link unblock node to term node */
    555 	RF_ASSERT(unblockNode->numSuccedents == 1);
    556 	RF_ASSERT(termNode->numAntecedents == 1);
    557 	RF_ASSERT(termNode->numSuccedents == 0);
    558 	unblockNode->succedents[0] = termNode;
    559 	termNode->antecedents[0] = unblockNode;
    560 	termNode->antType[0] = rf_control;
    561 }
    562 #define CONS_PDA(if,start,num) \
    563   pda_p->col = asmap->if->col; \
    564   pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
    565   pda_p->numSector = num; \
    566   pda_p->next = NULL; \
    567   pda_p->bufPtr = BUF_ALLOC(num)
    568 #if (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0)
    569 void
    570 rf_WriteGenerateFailedAccessASMs(
    571     RF_Raid_t * raidPtr,
    572     RF_AccessStripeMap_t * asmap,
    573     RF_PhysDiskAddr_t ** pdap,
    574     int *nNodep,
    575     RF_PhysDiskAddr_t ** pqpdap,
    576     int *nPQNodep,
    577     RF_AllocListElem_t * allocList)
    578 {
    579 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    580 	int     PDAPerDisk, i;
    581 	RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
    582 	int     numDataCol = layoutPtr->numDataCol;
    583 	int     state;
    584 	unsigned napdas;
    585 	RF_SectorNum_t fone_start, ftwo_start = 0;
    586 	RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
    587 	RF_PhysDiskAddr_t *pda_p;
    588 	RF_RaidAddr_t sosAddr;
    589 
    590 	/* determine how many pda's we will have to generate per unaccess
    591 	 * stripe. If there is only one failed data unit, it is one; if two,
    592 	 * possibly two, depending whether they overlap. */
    593 
    594 	fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
    595 
    596 	if (asmap->numDataFailed == 1) {
    597 		PDAPerDisk = 1;
    598 		state = 1;
    599 		*pqpdap = RF_MallocAndAdd(2 * sizeof(**pqpdap), allocList);
    600 		pda_p = *pqpdap;
    601 		/* build p */
    602 		CONS_PDA(parityInfo, fone_start, fone->numSector);
    603 		pda_p->type = RF_PDA_TYPE_PARITY;
    604 		pda_p++;
    605 		/* build q */
    606 		CONS_PDA(qInfo, fone_start, fone->numSector);
    607 		pda_p->type = RF_PDA_TYPE_Q;
    608 	} else {
    609 		ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
    610 		if (fone->numSector + ftwo->numSector > secPerSU) {
    611 			PDAPerDisk = 1;
    612 			state = 2;
    613 			*pqpdap = RF_MallocAndAdd(2 * sizeof(**pqpdap),
    614 			    allocList);
    615 			pda_p = *pqpdap;
    616 			CONS_PDA(parityInfo, 0, secPerSU);
    617 			pda_p->type = RF_PDA_TYPE_PARITY;
    618 			pda_p++;
    619 			CONS_PDA(qInfo, 0, secPerSU);
    620 			pda_p->type = RF_PDA_TYPE_Q;
    621 		} else {
    622 			PDAPerDisk = 2;
    623 			state = 3;
    624 			/* four of them, fone, then ftwo */
    625 			*pqpdap = RF_MallocAndAdd(4 * sizeof(*pqpdap),
    626 			    allocList);
    627 			pda_p = *pqpdap;
    628 			CONS_PDA(parityInfo, fone_start, fone->numSector);
    629 			pda_p->type = RF_PDA_TYPE_PARITY;
    630 			pda_p++;
    631 			CONS_PDA(qInfo, fone_start, fone->numSector);
    632 			pda_p->type = RF_PDA_TYPE_Q;
    633 			pda_p++;
    634 			CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
    635 			pda_p->type = RF_PDA_TYPE_PARITY;
    636 			pda_p++;
    637 			CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
    638 			pda_p->type = RF_PDA_TYPE_Q;
    639 		}
    640 	}
    641 	/* figure out number of nonaccessed pda */
    642 	napdas = PDAPerDisk * (numDataCol - 2);
    643 	*nPQNodep = PDAPerDisk;
    644 
    645 	*nNodep = napdas;
    646 	if (napdas == 0)
    647 		return;		/* short circuit */
    648 
    649 	/* allocate up our list of pda's */
    650 
    651 	pda_p = RF_MallocAndAdd(napdas * sizeof(*pda_p), allocList);
    652 	*pdap = pda_p;
    653 
    654 	/* linkem together */
    655 	for (i = 0; i < (napdas - 1); i++)
    656 		pda_p[i].next = pda_p + (i + 1);
    657 
    658 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    659 	for (i = 0; i < numDataCol; i++) {
    660 		if ((pda_p - (*pdap)) == napdas)
    661 			continue;
    662 		pda_p->type = RF_PDA_TYPE_DATA;
    663 		pda_p->raidAddress = sosAddr + (i * secPerSU);
    664 		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    665 		/* skip over dead disks */
    666 		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status))
    667 			continue;
    668 		switch (state) {
    669 		case 1:	/* fone */
    670 			pda_p->numSector = fone->numSector;
    671 			pda_p->raidAddress += fone_start;
    672 			pda_p->startSector += fone_start;
    673 			pda_p->bufPtr = BUF_ALLOC(pda_p->numSector);
    674 			break;
    675 		case 2:	/* full stripe */
    676 			pda_p->numSector = secPerSU;
    677 			pda_p->bufPtr = BUF_ALLOC(secPerSU);
    678 			break;
    679 		case 3:	/* two slabs */
    680 			pda_p->numSector = fone->numSector;
    681 			pda_p->raidAddress += fone_start;
    682 			pda_p->startSector += fone_start;
    683 			pda_p->bufPtr = BUF_ALLOC(pda_p->numSector);
    684 			pda_p++;
    685 			pda_p->type = RF_PDA_TYPE_DATA;
    686 			pda_p->raidAddress = sosAddr + (i * secPerSU);
    687 			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    688 			pda_p->numSector = ftwo->numSector;
    689 			pda_p->raidAddress += ftwo_start;
    690 			pda_p->startSector += ftwo_start;
    691 			pda_p->bufPtr = BUF_ALLOC(pda_p->numSector);
    692 			break;
    693 		default:
    694 			RF_PANIC();
    695 		}
    696 		pda_p++;
    697 	}
    698 
    699 	RF_ASSERT(pda_p - *pdap == napdas);
    700 	return;
    701 }
    702 #define DISK_NODE_PDA(node)  ((node)->params[0].p)
    703 
    704 #define DISK_NODE_PARAMS(_node_,_p_) \
    705   (_node_).params[0].p = _p_ ; \
    706   (_node_).params[1].p = (_p_)->bufPtr; \
    707   (_node_).params[2].v = parityStripeID; \
    708   (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru)
    709 
    710 void
    711 rf_DoubleDegSmallWrite(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    712 		       RF_DagHeader_t *dag_h, void *bp,
    713 		       RF_RaidAccessFlags_t flags,
    714 		       RF_AllocListElem_t *allocList,
    715 		       const char *redundantReadNodeName,
    716 		       const char *redundantWriteNodeName,
    717 		       const char *recoveryNodeName,
    718 		       void (*recovFunc) (RF_DagNode_t *))
    719 {
    720 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    721 	RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode,
    722 	       *unblockNode, *rpNodes, *rqNodes, *wpNodes, *wqNodes, *termNode;
    723 	RF_PhysDiskAddr_t *pda, *pqPDAs;
    724 	RF_PhysDiskAddr_t *npdas;
    725 	int     nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i;
    726 	RF_ReconUnitNum_t which_ru;
    727 	int     nPQNodes;
    728 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
    729 
    730 	/* simple small write case - First part looks like a reconstruct-read
    731 	 * of the failed data units. Then a write of all data units not
    732 	 * failed. */
    733 
    734 
    735 	/* Hdr | ------Block- /  /         \   Rrd  Rrd ...  Rrd  Rp Rq \  \
    736 	 * /  -------PQ----- /   \   \ Wud   Wp  WQ	     \    |   /
    737 	 * --Unblock- | T
    738 	 *
    739 	 * Rrd = read recovery data  (potentially none) Wud = write user data
    740 	 * (not incl. failed disks) Wp = Write P (could be two) Wq = Write Q
    741 	 * (could be two)
    742 	 *
    743 	 */
    744 
    745 	rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
    746 
    747 	RF_ASSERT(asmap->numDataFailed == 1);
    748 
    749 	nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
    750 	nReadNodes = nRrdNodes + 2 * nPQNodes;
    751 	nWriteNodes = nWudNodes + 2 * nPQNodes;
    752 	nNodes = 4 + nReadNodes + nWriteNodes;
    753 
    754 	nodes = RF_MallocAndAdd(nNodes * sizeof(*nodes), allocList);
    755 	blockNode = nodes;
    756 	unblockNode = blockNode + 1;
    757 	termNode = unblockNode + 1;
    758 	recoveryNode = termNode + 1;
    759 	rrdNodes = recoveryNode + 1;
    760 	rpNodes = rrdNodes + nRrdNodes;
    761 	rqNodes = rpNodes + nPQNodes;
    762 	wudNodes = rqNodes + nPQNodes;
    763 	wpNodes = wudNodes + nWudNodes;
    764 	wqNodes = wpNodes + nPQNodes;
    765 
    766 	dag_h->creator = "PQ_DDSimpleSmallWrite";
    767 	dag_h->numSuccedents = 1;
    768 	dag_h->succedents[0] = blockNode;
    769 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    770 	termNode->antecedents[0] = unblockNode;
    771 	termNode->antType[0] = rf_control;
    772 
    773 	/* init the block and unblock nodes */
    774 	/* The block node has all the read nodes as successors */
    775 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
    776 	for (i = 0; i < nReadNodes; i++)
    777 		blockNode->succedents[i] = rrdNodes + i;
    778 
    779 	/* The unblock node has all the writes as successors */
    780 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList);
    781 	for (i = 0; i < nWriteNodes; i++) {
    782 		unblockNode->antecedents[i] = wudNodes + i;
    783 		unblockNode->antType[i] = rf_control;
    784 	}
    785 	unblockNode->succedents[0] = termNode;
    786 
    787 #define INIT_READ_NODE(node,name) \
    788   rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
    789   (node)->succedents[0] = recoveryNode; \
    790   (node)->antecedents[0] = blockNode; \
    791   (node)->antType[0] = rf_control;
    792 
    793 	/* build the read nodes */
    794 	pda = npdas;
    795 	for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
    796 		INIT_READ_NODE(rrdNodes + i, "rrd");
    797 		DISK_NODE_PARAMS(rrdNodes[i], pda);
    798 	}
    799 
    800 	/* read redundancy pdas */
    801 	pda = pqPDAs;
    802 	INIT_READ_NODE(rpNodes, "Rp");
    803 	RF_ASSERT(pda);
    804 	DISK_NODE_PARAMS(rpNodes[0], pda);
    805 	pda++;
    806 	INIT_READ_NODE(rqNodes, redundantReadNodeName);
    807 	RF_ASSERT(pda);
    808 	DISK_NODE_PARAMS(rqNodes[0], pda);
    809 	if (nPQNodes == 2) {
    810 		pda++;
    811 		INIT_READ_NODE(rpNodes + 1, "Rp");
    812 		RF_ASSERT(pda);
    813 		DISK_NODE_PARAMS(rpNodes[1], pda);
    814 		pda++;
    815 		INIT_READ_NODE(rqNodes + 1, redundantReadNodeName);
    816 		RF_ASSERT(pda);
    817 		DISK_NODE_PARAMS(rqNodes[1], pda);
    818 	}
    819 	/* the recovery node has all reads as precedessors and all writes as
    820 	 * successors. It generates a result for every write P or write Q
    821 	 * node. As parameters, it takes a pda per read and a pda per stripe
    822 	 * of user data written. It also takes as the last params the raidPtr
    823 	 * and asm. For results, it takes PDA for P & Q. */
    824 
    825 
    826 	rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
    827 	    nWriteNodes,	/* succesors */
    828 	    nReadNodes,		/* preds */
    829 	    nReadNodes + nWudNodes + 3,	/* params */
    830 	    2 * nPQNodes,	/* results */
    831 	    dag_h, recoveryNodeName, allocList);
    832 
    833 
    834 
    835 	for (i = 0; i < nReadNodes; i++) {
    836 		recoveryNode->antecedents[i] = rrdNodes + i;
    837 		recoveryNode->antType[i] = rf_control;
    838 		recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes + i);
    839 	}
    840 	for (i = 0; i < nWudNodes; i++) {
    841 		recoveryNode->succedents[i] = wudNodes + i;
    842 	}
    843 	recoveryNode->params[nReadNodes + nWudNodes].p = asmap->failedPDAs[0];
    844 	recoveryNode->params[nReadNodes + nWudNodes + 1].p = raidPtr;
    845 	recoveryNode->params[nReadNodes + nWudNodes + 2].p = asmap;
    846 
    847 	for (; i < nWriteNodes; i++)
    848 		recoveryNode->succedents[i] = wudNodes + i;
    849 
    850 	pda = pqPDAs;
    851 	recoveryNode->results[0] = pda;
    852 	pda++;
    853 	recoveryNode->results[1] = pda;
    854 	if (nPQNodes == 2) {
    855 		pda++;
    856 		recoveryNode->results[2] = pda;
    857 		pda++;
    858 		recoveryNode->results[3] = pda;
    859 	}
    860 	/* fill writes */
    861 #define INIT_WRITE_NODE(node,name) \
    862   rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
    863     (node)->succedents[0] = unblockNode; \
    864     (node)->antecedents[0] = recoveryNode; \
    865     (node)->antType[0] = rf_control;
    866 
    867 	pda = asmap->physInfo;
    868 	for (i = 0; i < nWudNodes; i++) {
    869 		INIT_WRITE_NODE(wudNodes + i, "Wd");
    870 		DISK_NODE_PARAMS(wudNodes[i], pda);
    871 		recoveryNode->params[nReadNodes + i].p = DISK_NODE_PDA(wudNodes + i);
    872 		pda = pda->next;
    873 	}
    874 	/* write redundancy pdas */
    875 	pda = pqPDAs;
    876 	INIT_WRITE_NODE(wpNodes, "Wp");
    877 	RF_ASSERT(pda);
    878 	DISK_NODE_PARAMS(wpNodes[0], pda);
    879 	pda++;
    880 	INIT_WRITE_NODE(wqNodes, "Wq");
    881 	RF_ASSERT(pda);
    882 	DISK_NODE_PARAMS(wqNodes[0], pda);
    883 	if (nPQNodes == 2) {
    884 		pda++;
    885 		INIT_WRITE_NODE(wpNodes + 1, "Wp");
    886 		RF_ASSERT(pda);
    887 		DISK_NODE_PARAMS(wpNodes[1], pda);
    888 		pda++;
    889 		INIT_WRITE_NODE(wqNodes + 1, "Wq");
    890 		RF_ASSERT(pda);
    891 		DISK_NODE_PARAMS(wqNodes[1], pda);
    892 	}
    893 }
    894 #endif   /* (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0) */
    895