HomeSort by: relevance | last modified time | path
    Searched refs:MOD (Results 1 - 15 of 15) sorted by relevancy

  /src/lib/npf/ext_log/
Makefile 3 MOD= ext_log
4 .include "${.CURDIR}/../mod.mk"
  /src/lib/npf/ext_normalize/
Makefile 3 MOD= ext_normalize
4 .include "${.CURDIR}/../mod.mk"
  /src/lib/npf/ext_rndblock/
Makefile 3 MOD= ext_rndblock
4 .include "${.CURDIR}/../mod.mk"
  /src/usr.bin/make/unit-tests/
varmod-edge.mk 10 # - MOD, the expression for testing the modifier
14 MOD= ${INP:M(*)}
16 .if ${MOD} != ${EXP}
17 . warning expected "${EXP}", got "${MOD}"
25 MOD= ${INP:M(*}}
27 .if ${MOD} != ${EXP}
28 . warning expected "${EXP}", got "${MOD}"
39 MOD= ${INP:M\\(\\{\\}\\)\\:}
41 .if ${MOD} != ${EXP}
42 . warning expected "${EXP}", got "${MOD}"
    [all...]
  /src/lib/npf/
mod.mk 1 # $NetBSD: mod.mk,v 1.9 2024/04/05 01:16:00 christos Exp $
24 LIB= ${MOD}
25 SRCS= npf${MOD}.c
  /src/common/dist/zlib/
adler32.c 36 # define MOD(a) \
55 # define MOD(a) a %= BASE
104 MOD(adler);
105 MOD(sum2);
119 MOD(adler);
120 MOD(sum2);
147 MOD(sum2);
  /src/lib/libpam/libpam/
Makefile 204 .for MOD in ${STATIC_MODULES}
205 MODOBJDIR!= cd ${PAM_DIR}/${MODULE_DIR}/${MOD} && ${PRINTOBJDIR}
206 STATIC_MODULE_LIBS:= ${STATIC_MODULE_LIBS} ${MODOBJDIR}/${MOD}.a
  /src/usr.bin/xlint/lint1/
op.h 80 MOD,
scan.l 110 "%" return lex_operator(T_MULTIPLICATIVE, MOD);
tree.c 525 case MOD:
1114 case MOD:
1191 case MOD:
  /src/sys/arch/hpc/hpc/platid_gen/
gram.y 71 %token <str>MOD
131 MOD { $$ = $1; };
  /src/lib/libc/db/hash/
hash.c 79 #define MOD(x, y) ((x) & ((y) - 1))
  /src/sys/dev/usb/
uhci.c 3347 #define MOD(i) ((i) & (UHCI_VFRAMELIST_COUNT-1))
3350 bw += sc->sc_vframes[MOD(i * ival + offs)].bandwidth;
3365 sqh->pos = MOD(i * ival + bestoffs);
3367 #undef MOD
  /src/sys/arch/m68k/060sp/dist/
fplsp.s 4935 # k = N mod 4, so in particular, k = 0,1,2,or 3. #
4963 # k = N mod 4, so in particular, k = 0,1,2,or 3. #
4967 # 4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), ie. #
5637 # k = N mod 2, so in particular, k = 0 or 1. #
6746 # 2.3 Calculate J = N mod 64; so J = 0,1,2,..., #
6857 # 8.3 Calculate J = N mod 64, J = 0,1,...,63 #
6903 # 2.2 Calculate J = N mod 64; so J = 0,1,2,..., #
7141 and.l &0x3F,%d1 # D0 is J = N mod 64
7237 and.l &0x3F,%d1 # D0 is J = N mod 64
7305 and.l &0x3F,%d1 # D0 is J = N mod 6
    [all...]
fpsp.s 5041 # k = N mod 4, so in particular, k = 0,1,2,or 3. #
5069 # k = N mod 4, so in particular, k = 0,1,2,or 3. #
5073 # 4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), ie. #
5743 # k = N mod 2, so in particular, k = 0 or 1. #
6852 # 2.3 Calculate J = N mod 64; so J = 0,1,2,..., #
6963 # 8.3 Calculate J = N mod 64, J = 0,1,...,63 #
7009 # 2.2 Calculate J = N mod 64; so J = 0,1,2,..., #
7247 and.l &0x3F,%d1 # D0 is J = N mod 64
7343 and.l &0x3F,%d1 # D0 is J = N mod 64
7411 and.l &0x3F,%d1 # D0 is J = N mod 6
    [all...]

Completed in 29 milliseconds