Home | History | Annotate | Line # | Download | only in fpe
      1 /*	$NetBSD: fpu_emulate.h,v 1.26 2016/12/06 05:58:19 isaki Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 Gordon Ross
      5  * Copyright (c) 1995 Ken Nakata
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. The name of the author may not be used to endorse or promote products
     17  *    derived from this software without specific prior written permission.
     18  * 4. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *      This product includes software developed by Gordon Ross
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #ifndef _FPU_EMULATE_H_
     35 #define _FPU_EMULATE_H_
     36 
     37 #include <sys/types.h>
     38 #include <sys/signal.h>
     39 #include <sys/time.h>
     40 #include <sys/signalvar.h>
     41 #include <sys/siginfo.h>
     42 #include <m68k/fpreg.h>
     43 
     44 /*
     45  * Floating point emulator (tailored for SPARC/modified for m68k, but
     46  * structurally machine-independent).
     47  *
     48  * Floating point numbers are carried around internally in an `expanded'
     49  * or `unpacked' form consisting of:
     50  *	- sign
     51  *	- unbiased exponent
     52  *	- mantissa (`1.' + 80-bit fraction + guard + round)
     53  *	- sticky bit
     54  * Any implied `1' bit is inserted, giving a 81-bit mantissa that is
     55  * always nonzero.  Additional low-order `guard' and `round' bits are
     56  * scrunched in, making the entire mantissa 83 bits long.  This is divided
     57  * into three 32-bit words, with `spare' bits left over in the upper part
     58  * of the top word (the high bits of fp_mant[0]).  An internal `exploded'
     59  * number is thus kept within the half-open interval [1.0,2.0) (but see
     60  * the `number classes' below).  This holds even for denormalized numbers:
     61  * when we explode an external denorm, we normalize it, introducing low-order
     62  * zero bits, so that the rest of the code always sees normalized values.
     63  *
     64  * Note that a number of our algorithms use the `spare' bits at the top.
     65  * The most demanding algorithm---the one for sqrt---depends on two such
     66  * bits, so that it can represent values up to (but not including) 8.0,
     67  * and then it needs a carry on top of that, so that we need three `spares'.
     68  *
     69  * The sticky-word is 32 bits so that we can use `OR' operators to goosh
     70  * whole words from the mantissa into it.
     71  *
     72  * All operations are done in this internal extended precision.  According
     73  * to Hennesey & Patterson, Appendix A, rounding can be repeated---that is,
     74  * it is OK to do a+b in extended precision and then round the result to
     75  * single precision---provided single, double, and extended precisions are
     76  * `far enough apart' (they always are), but we will try to avoid any such
     77  * extra work where possible.
     78  */
     79 struct fpn {
     80 	int	fp_class;		/* see below */
     81 	int	fp_sign;		/* 0 => positive, 1 => negative */
     82 	int	fp_exp;			/* exponent (unbiased) */
     83 	int	fp_sticky;		/* nonzero bits lost at right end */
     84 	uint32_t fp_mant[3];		/* 83-bit mantissa */
     85 };
     86 
     87 #define	FP_NMANT	83		/* total bits in mantissa (incl g,r) */
     88 #define	FP_NG		2		/* number of low-order guard bits */
     89 #define	FP_LG		((FP_NMANT - 1) & 31)	/* log2(1.0) for fp_mant[0] */
     90 #define	FP_QUIETBIT	(1 << (FP_LG - 1))	/* Quiet bit in NaNs (0.5) */
     91 #define	FP_1		(1 << FP_LG)		/* 1.0 in fp_mant[0] */
     92 #define	FP_2		(1 << (FP_LG + 1))	/* 2.0 in fp_mant[0] */
     93 
     94 static inline void CPYFPN(struct fpn *, const struct fpn *);
     95 
     96 static inline void
     97 CPYFPN(struct fpn *dst, const struct fpn *src)
     98 {
     99 
    100 	if (dst != src) {
    101 		*dst = *src;
    102 	}
    103 }
    104 
    105 /*
    106  * Number classes.  Since zero, Inf, and NaN cannot be represented using
    107  * the above layout, we distinguish these from other numbers via a class.
    108  */
    109 #define	FPC_SNAN	-2		/* signalling NaN (sign irrelevant) */
    110 #define	FPC_QNAN	-1		/* quiet NaN (sign irrelevant) */
    111 #define	FPC_ZERO	0		/* zero (sign matters) */
    112 #define	FPC_NUM		1		/* number (sign matters) */
    113 #define	FPC_INF		2		/* infinity (sign matters) */
    114 
    115 #define	ISNAN(fp)	((fp)->fp_class < 0)
    116 #define	ISZERO(fp)	((fp)->fp_class == 0)
    117 #define	ISINF(fp)	((fp)->fp_class == FPC_INF)
    118 
    119 /*
    120  * ORDER(x,y) `sorts' a pair of `fpn *'s so that the right operand (y) points
    121  * to the `more significant' operand for our purposes.  Appendix N says that
    122  * the result of a computation involving two numbers are:
    123  *
    124  *	If both are SNaN: operand 2, converted to Quiet
    125  *	If only one is SNaN: the SNaN operand, converted to Quiet
    126  *	If both are QNaN: operand 2
    127  *	If only one is QNaN: the QNaN operand
    128  *
    129  * In addition, in operations with an Inf operand, the result is usually
    130  * Inf.  The class numbers are carefully arranged so that if
    131  *	(unsigned)class(op1) > (unsigned)class(op2)
    132  * then op1 is the one we want; otherwise op2 is the one we want.
    133  */
    134 #define	ORDER(x, y) { \
    135 	if ((uint32_t)(x)->fp_class > (uint32_t)(y)->fp_class) \
    136 		SWAP(x, y); \
    137 }
    138 #define	SWAP(x, y) {				\
    139 	struct fpn *swap;			\
    140 	swap = (x), (x) = (y), (y) = swap;	\
    141 }
    142 
    143 /*
    144  * Emulator state.
    145  */
    146 struct fpemu {
    147 	struct frame *fe_frame; /* integer regs, etc */
    148 	struct fpframe *fe_fpframe; /* FP registers, etc */
    149 	uint32_t fe_fpsr;	/* fpsr copy (modified during op) */
    150 	uint32_t fe_fpcr;	/* fpcr copy */
    151 	struct fpn fe_f1;	/* operand 1 */
    152 	struct fpn fe_f2;	/* operand 2, if required */
    153 	struct fpn fe_f3;	/* available storage for result */
    154 };
    155 
    156 /*****************************************************************************
    157  * End of definitions derived from Sparc FPE
    158  *****************************************************************************/
    159 
    160 /*
    161  * Internal info about a decoded effective address.
    162  */
    163 struct insn_ea {
    164 	int	ea_regnum;
    165 	int	ea_ext[3];	/* extension words if any */
    166 	int	ea_flags;	/* flags == 0 means mode 2: An@ */
    167 #define	EA_DIRECT	0x001	/* mode [01]: Dn or An */
    168 #define EA_PREDECR	0x002	/* mode 4: An@- */
    169 #define	EA_POSTINCR	0x004	/* mode 3: An@+ */
    170 #define EA_OFFSET	0x008	/* mode 5 or (7,2): APC@(d16) */
    171 #define	EA_INDEXED	0x010	/* mode 6 or (7,3): APC@(Xn:*:*,d8) etc */
    172 #define EA_ABS  	0x020	/* mode (7,[01]): abs */
    173 #define EA_PC_REL	0x040	/* mode (7,[23]): PC@(d16) etc */
    174 #define	EA_IMMED	0x080	/* mode (7,4): #immed */
    175 #define EA_MEM_INDIR	0x100	/* mode 6 or (7,3): APC@(Xn:*:*,*)@(*) etc */
    176 #define EA_BASE_SUPPRSS	0x200	/* mode 6 or (7,3): base register suppressed */
    177 #define EA_FRAME_EA	0x400	/* MC68LC040 only: precalculated EA from
    178 				   format 4 stack frame */
    179 	int	ea_moffs;	/* offset used for fmoveMulti */
    180 };
    181 
    182 #define ea_offset	ea_ext[0]	/* mode 5: offset word */
    183 #define ea_absaddr	ea_ext[0]	/* mode (7,[01]): absolute address */
    184 #define ea_immed	ea_ext		/* mode (7,4): immediate value */
    185 #define ea_basedisp	ea_ext[0]	/* mode 6: base displacement */
    186 #define ea_outerdisp	ea_ext[1]	/* mode 6: outer displacement */
    187 #define	ea_idxreg	ea_ext[2]	/* mode 6: index register number */
    188 #define ea_fea		ea_ext[0]	/* MC68LC040 only: frame EA */
    189 
    190 struct instruction {
    191 	uint32_t is_pc;		/* insn's address */
    192 	uint32_t is_nextpc;	/* next PC */
    193 	int	is_advance;	/* length of instruction */
    194 	int	is_datasize;	/* size of memory operand */
    195 	int	is_opcode;	/* opcode word */
    196 	int	is_word1;	/* second word */
    197 	struct insn_ea	is_ea;	/* decoded effective address mode */
    198 };
    199 
    200 /*
    201  * FP data types
    202  */
    203 #define FTYPE_LNG 0 /* Long Word Integer */
    204 #define FTYPE_SNG 1 /* Single Prec */
    205 #define FTYPE_EXT 2 /* Extended Prec */
    206 #define FTYPE_BCD 3 /* Packed BCD */
    207 #define FTYPE_WRD 4 /* Word Integer */
    208 #define FTYPE_DBL 5 /* Double Prec */
    209 #define FTYPE_BYT 6 /* Byte Integer */
    210 
    211 /*
    212  * Other functions.
    213  */
    214 
    215 /* Build a new Quiet NaN (sign=0, frac=all 1's). */
    216 struct	fpn *fpu_newnan(struct fpemu *);
    217 
    218 /*
    219  * Shift a number right some number of bits, taking care of round/sticky.
    220  * Note that the result is probably not a well-formed number (it will lack
    221  * the normal 1-bit mant[0]&FP_1).
    222  */
    223 int	fpu_shr(struct fpn *, int);
    224 /*
    225  * Round a number according to the round mode in FPCR
    226  */
    227 int	fpu_round(struct fpemu *, struct fpn *);
    228 
    229 /* type conversion */
    230 void	fpu_explode(struct fpemu *, struct fpn *, int t, const uint32_t *);
    231 void	fpu_implode(struct fpemu *, struct fpn *, int t, uint32_t *);
    232 
    233 /*
    234  * non-static emulation functions
    235  */
    236 /* type 0 */
    237 int fpu_emul_fmovecr(struct fpemu *, struct instruction *);
    238 int fpu_emul_fstore(struct fpemu *, struct instruction *);
    239 int fpu_emul_fscale(struct fpemu *, struct instruction *);
    240 
    241 /*
    242  * include function declarations of those which are called by fpu_emul_arith()
    243  */
    244 #include "fpu_arith_proto.h"
    245 
    246 int fpu_emulate(struct frame *, struct fpframe *, ksiginfo_t *);
    247 struct fpn *fpu_cmp(struct fpemu *);
    248 
    249 /* fpu_cordic.c */
    250 extern const struct fpn fpu_cordic_inv_gain1;
    251 void fpu_cordit1(struct fpemu *,
    252 	struct fpn *, struct fpn *, struct fpn *, const struct fpn *);
    253 
    254 /*
    255  * "helper" functions
    256  */
    257 /* return values from constant rom */
    258 struct fpn *fpu_const(struct fpn *, uint32_t);
    259 #define FPU_CONST_PI	(0x00)	/* pi */
    260 #define FPU_CONST_0 	(0x0f)	/* 0.0 */
    261 #define FPU_CONST_LN_2	(0x30)	/* ln(2) */
    262 #define FPU_CONST_LN_10	(0x31)	/* ln(10) */
    263 #define FPU_CONST_1 	(0x32)	/* 1.0 */
    264 
    265 /* update exceptions and FPSR */
    266 int fpu_upd_excp(struct fpemu *);
    267 uint32_t fpu_upd_fpsr(struct fpemu *, struct fpn *);
    268 
    269 /* address mode decoder, and load/store */
    270 int fpu_decode_ea(struct frame *, struct instruction *,
    271 		   struct insn_ea *, int);
    272 int fpu_load_ea(struct frame *, struct instruction *,
    273 		 struct insn_ea *, char *);
    274 int fpu_store_ea(struct frame *, struct instruction *,
    275 		  struct insn_ea *, char *);
    276 
    277 /* fpu_subr.c */
    278 void fpu_norm(struct fpn *);
    279 
    280 #if !defined(FPE_DEBUG)
    281 #  define FPE_DEBUG 0
    282 #endif
    283 
    284 #endif /* _FPU_EMULATE_H_ */
    285