Home | History | Annotate | Line # | Download | only in fpu
      1 /*	$NetBSD: fpu_emu.h,v 1.12 2022/09/07 02:41:39 rin Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  * All advertising materials mentioning features or use of this software
     12  * must display the following acknowledgement:
     13  *	This product includes software developed by the University of
     14  *	California, Lawrence Berkeley Laboratory.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  *	@(#)fpu_emu.h	8.1 (Berkeley) 6/11/93
     41  */
     42 
     43 /*
     44  * Floating point emulator (tailored for SPARC, but structurally
     45  * machine-independent).
     46  *
     47  * Floating point numbers are carried around internally in an `expanded'
     48  * or `unpacked' form consisting of:
     49  *	- sign
     50  *	- unbiased exponent
     51  *	- mantissa (`1.' + 112-bit fraction + guard + round)
     52  *	- sticky bit
     53  * Any implied `1' bit is inserted, giving a 113-bit mantissa that is
     54  * always nonzero.  Additional low-order `guard' and `round' bits are
     55  * scrunched in, making the entire mantissa 115 bits long.  This is divided
     56  * into four 32-bit words, with `spare' bits left over in the upper part
     57  * of the top word (the high bits of fp_mant[0]).  An internal `exploded'
     58  * number is thus kept within the half-open interval [1.0,2.0) (but see
     59  * the `number classes' below).  This holds even for denormalized numbers:
     60  * when we explode an external denorm, we normalize it, introducing low-order
     61  * zero bits, so that the rest of the code always sees normalized values.
     62  *
     63  * Note that a number of our algorithms use the `spare' bits at the top.
     64  * The most demanding algorithm---the one for sqrt---depends on two such
     65  * bits, so that it can represent values up to (but not including) 8.0,
     66  * and then it needs a carry on top of that, so that we need three `spares'.
     67  *
     68  * The sticky-word is 32 bits so that we can use `OR' operators to goosh
     69  * whole words from the mantissa into it.
     70  *
     71  * All operations are done in this internal extended precision.  According
     72  * to Hennesey & Patterson, Appendix A, rounding can be repeated---that is,
     73  * it is OK to do a+b in extended precision and then round the result to
     74  * single precision---provided single, double, and extended precisions are
     75  * `far enough apart' (they always are), but we will try to avoid any such
     76  * extra work where possible.
     77  */
     78 struct fpn {
     79 	int	fp_class;		/* see below */
     80 	int	fp_sign;		/* 0 => positive, 1 => negative */
     81 	int	fp_exp;			/* exponent (unbiased) */
     82 	int	fp_sticky;		/* nonzero bits lost at right end */
     83 	u_int	fp_mant[4];		/* 115-bit mantissa */
     84 };
     85 
     86 #define	FP_NMANT	115		/* total bits in mantissa (incl g,r) */
     87 #define	FP_NG		2		/* number of low-order guard bits */
     88 #define	FP_LG		((FP_NMANT - 1) & 31)	/* log2(1.0) for fp_mant[0] */
     89 #define	FP_LG2		((FP_NMANT - 1) & 63)	/* log2(1.0) for fp_mant[0] and fp_mant[1] */
     90 #define	FP_QUIETBIT	(1 << (FP_LG - 1))	/* Quiet bit in NaNs (0.5) */
     91 #define	FP_1		(1 << FP_LG)		/* 1.0 in fp_mant[0] */
     92 #define	FP_2		(1 << (FP_LG + 1))	/* 2.0 in fp_mant[0] */
     93 
     94 /*
     95  * Number classes.  Since zero, Inf, and NaN cannot be represented using
     96  * the above layout, we distinguish these from other numbers via a class.
     97  * In addition, to make computation easier and to follow Appendix N of
     98  * the SPARC Version 8 standard, we give each kind of NaN a separate class.
     99  */
    100 #define	FPC_SNAN	-2		/* signalling NaN (sign irrelevant) */
    101 #define	FPC_QNAN	-1		/* quiet NaN (sign irrelevant) */
    102 #define	FPC_ZERO	0		/* zero (sign matters) */
    103 #define	FPC_NUM		1		/* number (sign matters) */
    104 #define	FPC_INF		2		/* infinity (sign matters) */
    105 
    106 #define	ISSNAN(fp)	((fp)->fp_class == FPC_SNAN)
    107 #define	ISQNAN(fp)	((fp)->fp_class == FPC_QNAN)
    108 #define	ISNAN(fp)	((fp)->fp_class < 0)
    109 #define	ISZERO(fp)	((fp)->fp_class == 0)
    110 #define	ISINF(fp)	((fp)->fp_class == FPC_INF)
    111 
    112 /*
    113  * ORDER(x,y) `sorts' a pair of `fpn *'s so that the right operand (y) points
    114  * to the `more significant' operand for our purposes.  Appendix N says that
    115  * the result of a computation involving two numbers are:
    116  *
    117  *	If both are SNaN: operand 2, converted to Quiet
    118  *	If only one is SNaN: the SNaN operand, converted to Quiet
    119  *	If both are QNaN: operand 2
    120  *	If only one is QNaN: the QNaN operand
    121  *
    122  * In addition, in operations with an Inf operand, the result is usually
    123  * Inf.  The class numbers are carefully arranged so that if
    124  *	(unsigned)class(op1) > (unsigned)class(op2)
    125  * then op1 is the one we want; otherwise op2 is the one we want.
    126  */
    127 #define	ORDER(x, y) { \
    128 	if ((u_int)(x)->fp_class > (u_int)(y)->fp_class) \
    129 		SWAP(x, y); \
    130 }
    131 #define	SWAP(x, y) { \
    132 	struct fpn *swap; \
    133 	swap = (x), (x) = (y), (y) = swap; \
    134 }
    135 
    136 /*
    137  * FPU data types.
    138  */
    139 #define	FTYPE_INT	0x00	/* data = 32-bit signed integer */
    140 #define	FTYPE_LNG	0x01	/* data = 64-bit signed long integer */
    141 #define	FTYPE_SNG	0x02	/* data = 32-bit float */
    142 #define	FTYPE_DBL	0x04	/* data = 64-bit double */
    143 #define	FTYPE_RD_RZ	0x08
    144 #define	FTYPE_FPSCR	0x10
    145 #define	FTYPE_FLAG_MASK	(FTYPE_RD_RZ | FTYPE_FPSCR)
    146 
    147 /*
    148  * Emulator state.
    149  */
    150 struct fpemu {
    151 	struct	fpreg *fe_fpstate;	/* registers, etc */
    152 	int	fe_fpscr;		/* fpscr copy (modified during op) */
    153 	int	fe_cx;			/* keep track of exceptions */
    154 	struct	fpn fe_f1;		/* operand 1 */
    155 	struct	fpn fe_f2;		/* operand 2, if required */
    156 	struct	fpn fe_f3;		/* available storage for result */
    157 	vaddr_t fe_addr;		/* last address accessed */
    158 };
    159 
    160 /*
    161  * Arithmetic functions.
    162  * Each of these may modify its inputs (f1,f2) and/or the temporary.
    163  * Each returns a pointer to the result and/or sets exceptions.
    164  */
    165 struct	fpn *fpu_add(struct fpemu *);
    166 struct	fpn *fpu_mul(struct fpemu *);
    167 struct	fpn *fpu_div(struct fpemu *);
    168 struct	fpn *fpu_sqrt(struct fpemu *);
    169 
    170 static inline struct fpn *
    171 fpu_sub(struct fpemu *fe)
    172 {
    173 	struct fpn *fp = &fe->fe_f2;
    174 
    175 	if (!ISNAN(fp))
    176 		fp->fp_sign ^= 1;
    177 	return fpu_add(fe);
    178 }
    179 
    180 /*
    181  * Other functions.
    182  */
    183 
    184 /* Perform a compare instruction (with or without unordered exception). */
    185 void	fpu_compare(struct fpemu *, int);
    186 
    187 /* Build a new Quiet NaN (sign=0, frac=all 1's). */
    188 struct	fpn *fpu_newnan(struct fpemu *);
    189 
    190 /*
    191  * Shift a number right some number of bits, taking care of round/sticky.
    192  * Note that the result is probably not a well-formed number (it will lack
    193  * the normal 1-bit mant[0]&FP_1).
    194  */
    195 int	fpu_shr(struct fpn *, int);
    196 
    197 void	fpu_norm(struct fpn *);
    198 
    199 void	fpu_explode(struct fpemu *, struct fpn *, int, uint64_t);
    200 void	fpu_implode(struct fpemu *, struct fpn *, int, uint64_t *);
    201 
    202 #ifdef DEBUG
    203 #define	FPE_EX		0x1
    204 #define	FPE_INSN	0x2
    205 #define	FPE_OP		0x4
    206 #define	FPE_REG		0x8
    207 extern int fpe_debug;
    208 void	fpu_dumpfpn(struct fpn *);
    209 #define	DPRINTF(x, y)	if (fpe_debug & (x)) printf y
    210 #define DUMPFPN(x, f)	if (fpe_debug & (x)) fpu_dumpfpn((f))
    211 #else
    212 #define	DPRINTF(x, y)
    213 #define DUMPFPN(x, f)
    214 #endif
    215