Home | History | Annotate | Line # | Download | only in btree
      1 /*	$NetBSD: btree.h,v 1.18 2022/04/19 20:32:15 rillig Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1991, 1993, 1994
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Mike Olson.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  *
     34  *	@(#)btree.h	8.11 (Berkeley) 8/17/94
     35  */
     36 
     37 #if HAVE_NBTOOL_CONFIG_H
     38 #include "nbtool_config.h"
     39 #endif
     40 
     41 /* Macros to set/clear/test flags. */
     42 #define	F_SET(p, f)	(p)->flags |= (f)
     43 #define	F_CLR(p, f)	(p)->flags &= ~(f)
     44 #define	F_ISSET(p, f)	((p)->flags & (f))
     45 
     46 #include <mpool.h>
     47 
     48 #define	DEFMINKEYPAGE	(2)		/* Minimum keys per page */
     49 #define	MINCACHE	(5)		/* Minimum cached pages */
     50 #define	MINPSIZE	(512)		/* Minimum page size */
     51 
     52 /*
     53  * Page 0 of a btree file contains a copy of the meta-data.  This page is also
     54  * used as an out-of-band page, i.e. page pointers that point to nowhere point
     55  * to page 0.  Page 1 is the root of the btree.
     56  */
     57 #define	P_INVALID	 0		/* Invalid tree page number. */
     58 #define	P_META		 0		/* Tree metadata page number. */
     59 #define	P_ROOT		 1		/* Tree root page number. */
     60 
     61 /*
     62  * There are five page layouts in the btree: btree internal pages (BINTERNAL),
     63  * btree leaf pages (BLEAF), recno internal pages (RINTERNAL), recno leaf pages
     64  * (RLEAF) and overflow pages.  All five page types have a page header (PAGE).
     65  * This implementation requires that values within structures NOT be padded.
     66  * (ANSI C permits random padding.)  If your compiler pads randomly you'll have
     67  * to do some work to get this package to run.
     68  */
     69 typedef struct _page {
     70 	pgno_t	pgno;			/* this page's page number */
     71 	pgno_t	prevpg;			/* left sibling */
     72 	pgno_t	nextpg;			/* right sibling */
     73 
     74 #define	P_BINTERNAL	0x01		/* btree internal page */
     75 #define	P_BLEAF		0x02		/* leaf page */
     76 #define	P_OVERFLOW	0x04		/* overflow page */
     77 #define	P_RINTERNAL	0x08		/* recno internal page */
     78 #define	P_RLEAF		0x10		/* leaf page */
     79 #define P_TYPE		0x1f		/* type mask */
     80 #define	P_PRESERVE	0x20		/* never delete this chain of pages */
     81 	uint32_t flags;
     82 
     83 	indx_t	lower;			/* lower bound of free space on page */
     84 	indx_t	upper;			/* upper bound of free space on page */
     85 	indx_t	linp[1];		/* indx_t-aligned VAR. LENGTH DATA */
     86 } PAGE;
     87 
     88 /* First and next index. */
     89 #define	BTDATAOFF							\
     90 	(sizeof(pgno_t) + sizeof(pgno_t) + sizeof(pgno_t) +		\
     91 	    sizeof(uint32_t) + sizeof(indx_t) + sizeof(indx_t))
     92 
     93 #define	_NEXTINDEX(p) (((p)->lower - BTDATAOFF) / sizeof(indx_t))
     94 #ifdef _DIAGNOSTIC
     95 static __inline indx_t
     96 NEXTINDEX(const PAGE *p) {
     97 	size_t x = _NEXTINDEX(p);
     98 	_DBFIT(x, indx_t);
     99 	return (indx_t)x;
    100 }
    101 #else
    102 #define	NEXTINDEX(p) (indx_t)_NEXTINDEX(p)
    103 #endif
    104 
    105 /*
    106  * For pages other than overflow pages, there is an array of offsets into the
    107  * rest of the page immediately following the page header.  Each offset is to
    108  * an item which is unique to the type of page.  The h_lower offset is just
    109  * past the last filled-in index.  The h_upper offset is the first item on the
    110  * page.  Offsets are from the beginning of the page.
    111  *
    112  * If an item is too big to store on a single page, a flag is set and the item
    113  * is a { page, size } pair such that the page is the first page of an overflow
    114  * chain with size bytes of item.  Overflow pages are simply bytes without any
    115  * external structure.
    116  *
    117  * The page number and size fields in the items are pgno_t-aligned so they can
    118  * be manipulated without copying.  (This presumes that 32 bit items can be
    119  * manipulated on this system.)
    120  */
    121 #define	BTLALIGN(n)	(((n) + sizeof(pgno_t) - 1) & ~(sizeof(pgno_t) - 1))
    122 #define	NOVFLSIZE	(sizeof(pgno_t) + sizeof(uint32_t))
    123 
    124 /*
    125  * For the btree internal pages, the item is a key.  BINTERNALs are {key, pgno}
    126  * pairs, such that the key compares less than or equal to all of the records
    127  * on that page.  For a tree without duplicate keys, an internal page with two
    128  * consecutive keys, a and b, will have all records greater than or equal to a
    129  * and less than b stored on the page associated with a.  Duplicate keys are
    130  * somewhat special and can cause duplicate internal and leaf page records and
    131  * some minor modifications of the above rule.
    132  */
    133 typedef struct _binternal {
    134 	uint32_t ksize;			/* key size */
    135 	pgno_t	pgno;			/* page number stored on */
    136 #define	P_BIGDATA	0x01		/* overflow data */
    137 #define	P_BIGKEY	0x02		/* overflow key */
    138 	uint8_t	flags;
    139 	char	bytes[1];		/* data */
    140 } BINTERNAL;
    141 
    142 /* Get the page's BINTERNAL structure at index indx. */
    143 #define	GETBINTERNAL(pg, indx)						\
    144 	((BINTERNAL *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
    145 
    146 /* Get the number of bytes in the entry. */
    147 #define _NBINTERNAL(len)						\
    148     BTLALIGN(sizeof(uint32_t) + sizeof(pgno_t) + sizeof(uint8_t) + (len))
    149 #ifdef _DIAGNOSTIC
    150 static __inline uint32_t
    151 NBINTERNAL(uint32_t len) {
    152 	size_t x = _NBINTERNAL(len);
    153 	_DBFIT(x, uint32_t);
    154 	return (uint32_t)x;
    155 }
    156 #else
    157 #define NBINTERNAL(len)	(uint32_t)_NBINTERNAL(len)
    158 #endif
    159 
    160 /* Copy a BINTERNAL entry to the page. */
    161 #define	WR_BINTERNAL(p, size, pgno, flags) do {				\
    162 	_DBFIT(size, uint32_t);						\
    163 	*(uint32_t *)(void *)p = (uint32_t)size;			\
    164 	p += sizeof(uint32_t);						\
    165 	*(pgno_t *)(void *)p = pgno;					\
    166 	p += sizeof(pgno_t);						\
    167 	*(uint8_t *)(void *)p = flags;					\
    168 	p += sizeof(uint8_t);						\
    169 } while (0)
    170 
    171 /*
    172  * For the recno internal pages, the item is a page number with the number of
    173  * keys found on that page and below.
    174  */
    175 typedef struct _rinternal {
    176 	recno_t	nrecs;			/* number of records */
    177 	pgno_t	pgno;			/* page number stored below */
    178 } RINTERNAL;
    179 
    180 /* Get the page's RINTERNAL structure at index indx. */
    181 #define	GETRINTERNAL(pg, indx)						\
    182 	((RINTERNAL *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
    183 
    184 /* Get the number of bytes in the entry. */
    185 #define NRINTERNAL							\
    186 	BTLALIGN(sizeof(recno_t) + sizeof(pgno_t))
    187 
    188 /* Copy a RINTERNAL entry to the page. */
    189 #define	WR_RINTERNAL(p, nrecs, pgno) do {				\
    190 	*(recno_t *)(void *)p = nrecs;					\
    191 	p += sizeof(recno_t);						\
    192 	*(pgno_t *)(void *)p = pgno;					\
    193 } while (0)
    194 
    195 /* For the btree leaf pages, the item is a key and data pair. */
    196 typedef struct _bleaf {
    197 	uint32_t	ksize;		/* size of key */
    198 	uint32_t	dsize;		/* size of data */
    199 	uint8_t	flags;			/* P_BIGDATA, P_BIGKEY */
    200 	char	bytes[1];		/* data */
    201 } BLEAF;
    202 
    203 /* Get the page's BLEAF structure at index indx. */
    204 #define	GETBLEAF(pg, indx)						\
    205 	((BLEAF *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
    206 
    207 
    208 /* Get the number of bytes in the user's key/data pair. */
    209 #define _NBLEAFDBT(ksize, dsize)					\
    210     BTLALIGN(sizeof(uint32_t) + sizeof(uint32_t) + sizeof(uint8_t) +	\
    211 	    (ksize) + (dsize))
    212 #ifdef _DIAGNOSTIC
    213 static __inline uint32_t
    214 NBLEAFDBT(size_t k, size_t d) {
    215 	size_t x = _NBLEAFDBT(k, d);
    216 	_DBFIT(x, uint32_t);
    217 	return (uint32_t)x;
    218 }
    219 #else
    220 #define NBLEAFDBT(p, q)	(uint32_t)_NBLEAFDBT(p, q)
    221 #endif
    222 
    223 /* Get the number of bytes in the entry. */
    224 #define NBLEAF(p)	NBLEAFDBT((p)->ksize, (p)->dsize)
    225 
    226 /* Copy a BLEAF entry to the page. */
    227 #define	WR_BLEAF(p, key, data, flags) do {				\
    228 	_DBFIT(key->size, uint32_t);					\
    229 	*(uint32_t *)(void *)p = (uint32_t)key->size;			\
    230 	p += sizeof(uint32_t);						\
    231 	_DBFIT(data->size, uint32_t);					\
    232 	*(uint32_t *)(void *)p = (uint32_t)data->size;			\
    233 	p += sizeof(uint32_t);						\
    234 	*(uint8_t *)(void *)p = flags;					\
    235 	p += sizeof(uint8_t);						\
    236 	(void)memmove(p, key->data, key->size);				\
    237 	p += key->size;							\
    238 	(void)memmove(p, data->data, data->size);			\
    239 } while (0)
    240 
    241 /* For the recno leaf pages, the item is a data entry. */
    242 typedef struct _rleaf {
    243 	uint32_t	dsize;		/* size of data */
    244 	uint8_t	flags;			/* P_BIGDATA */
    245 	char	bytes[1];
    246 } RLEAF;
    247 
    248 /* Get the page's RLEAF structure at index indx. */
    249 #define	GETRLEAF(pg, indx)						\
    250 	((RLEAF *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
    251 
    252 #define	_NRLEAFDBT(dsize)						\
    253 	BTLALIGN(sizeof(uint32_t) + sizeof(uint8_t) + (dsize))
    254 
    255 #ifdef _DIAGNOSTIC
    256 static __inline uint32_t
    257 NRLEAFDBT(size_t d) {
    258 	size_t x = _NRLEAFDBT(d);
    259 	_DBFIT(x, uint32_t);
    260 	return (uint32_t)x;
    261 }
    262 #else
    263 #define NRLEAFDBT(d)	(uint32_t)_NRLEAFDBT(d)
    264 #endif
    265 
    266 /* Get the number of bytes in the entry. */
    267 #define NRLEAF(p)	NRLEAFDBT((p)->dsize)
    268 
    269 /* Get the number of bytes from the user's data. */
    270 
    271 /* Copy a RLEAF entry to the page. */
    272 #define	WR_RLEAF(p, data, flags) do {					\
    273 	_DBFIT(data->size, uint32_t);					\
    274 	*(uint32_t *)(void *)p = (uint32_t)data->size;			\
    275 	p += sizeof(uint32_t);						\
    276 	*(uint8_t *)(void *)p = flags;					\
    277 	p += sizeof(uint8_t);						\
    278 	memmove(p, data->data, data->size);				\
    279 } while (0)
    280 
    281 /*
    282  * A record in the tree is either a pointer to a page and an index in the page
    283  * or a page number and an index.  These structures are used as a cursor, stack
    284  * entry and search returns as well as to pass records to other routines.
    285  *
    286  * One comment about searches.  Internal page searches must find the largest
    287  * record less than key in the tree so that descents work.  Leaf page searches
    288  * must find the smallest record greater than key so that the returned index
    289  * is the record's correct position for insertion.
    290  */
    291 typedef struct _epgno {
    292 	pgno_t	pgno;			/* the page number */
    293 	indx_t	index;			/* the index on the page */
    294 } EPGNO;
    295 
    296 typedef struct _epg {
    297 	PAGE	*page;			/* the (pinned) page */
    298 	indx_t	 index;			/* the index on the page */
    299 } EPG;
    300 
    301 /*
    302  * About cursors.  The cursor (and the page that contained the key/data pair
    303  * that it referenced) can be deleted, which makes things a bit tricky.  If
    304  * there are no duplicates of the cursor key in the tree (i.e. B_NODUPS is set
    305  * or there simply aren't any duplicates of the key) we copy the key that it
    306  * referenced when it's deleted, and reacquire a new cursor key if the cursor
    307  * is used again.  If there are duplicates keys, we move to the next/previous
    308  * key, and set a flag so that we know what happened.  NOTE: if duplicate (to
    309  * the cursor) keys are added to the tree during this process, it is undefined
    310  * if they will be returned or not in a cursor scan.
    311  *
    312  * The flags determine the possible states of the cursor:
    313  *
    314  * CURS_INIT	The cursor references *something*.
    315  * CURS_ACQUIRE	The cursor was deleted, and a key has been saved so that
    316  *		we can reacquire the right position in the tree.
    317  * CURS_AFTER, CURS_BEFORE
    318  *		The cursor was deleted, and now references a key/data pair
    319  *		that has not yet been returned, either before or after the
    320  *		deleted key/data pair.
    321  * XXX
    322  * This structure is broken out so that we can eventually offer multiple
    323  * cursors as part of the DB interface.
    324  */
    325 typedef struct _cursor {
    326 	EPGNO	 pg;			/* B: Saved tree reference. */
    327 	DBT	 key;			/* B: Saved key, or key.data == NULL. */
    328 	recno_t	 rcursor;		/* R: recno cursor (1-based) */
    329 
    330 #define	CURS_ACQUIRE	0x01		/*  B: Cursor needs to be reacquired. */
    331 #define	CURS_AFTER	0x02		/*  B: Unreturned cursor after key. */
    332 #define	CURS_BEFORE	0x04		/*  B: Unreturned cursor before key. */
    333 #define	CURS_INIT	0x08		/* RB: Cursor initialized. */
    334 	uint8_t flags;
    335 } CURSOR;
    336 
    337 /*
    338  * The metadata of the tree.  The nrecs field is used only by the RECNO code.
    339  * This is because the btree doesn't really need it and it requires that every
    340  * put or delete call modify the metadata.
    341  */
    342 typedef struct _btmeta {
    343 	uint32_t	magic;		/* magic number */
    344 	uint32_t	version;	/* version */
    345 	uint32_t	psize;		/* page size */
    346 	uint32_t	free;		/* page number of first free page */
    347 	uint32_t	nrecs;		/* R: number of records */
    348 
    349 #define	SAVEMETA	(B_NODUPS | R_RECNO)
    350 	uint32_t	flags;		/* bt_flags & SAVEMETA */
    351 } BTMETA;
    352 
    353 /* The in-memory btree/recno data structure. */
    354 typedef struct _btree {
    355 	MPOOL	 *bt_mp;		/* memory pool cookie */
    356 
    357 	DB	 *bt_dbp;		/* pointer to enclosing DB */
    358 
    359 	EPG	  bt_cur;		/* current (pinned) page */
    360 	PAGE	 *bt_pinned;		/* page pinned across calls */
    361 
    362 	CURSOR	  bt_cursor;		/* cursor */
    363 
    364 #define	BT_PUSH(t, p, i) {						\
    365 	t->bt_sp->pgno = p; 						\
    366 	t->bt_sp->index = i; 						\
    367 	++t->bt_sp;							\
    368 }
    369 #define	BT_POP(t)	(t->bt_sp == t->bt_stack ? NULL : --t->bt_sp)
    370 #define	BT_CLR(t)	(t->bt_sp = t->bt_stack)
    371 	EPGNO	  bt_stack[50];		/* stack of parent pages */
    372 	EPGNO	 *bt_sp;		/* current stack pointer */
    373 
    374 	DBT	  bt_rkey;		/* returned key */
    375 	DBT	  bt_rdata;		/* returned data */
    376 
    377 	int	  bt_fd;		/* tree file descriptor */
    378 
    379 	pgno_t	  bt_free;		/* next free page */
    380 	uint32_t bt_psize;		/* page size */
    381 	indx_t	  bt_ovflsize;		/* cut-off for key/data overflow */
    382 	int	  bt_lorder;		/* byte order */
    383 					/* sorted order */
    384 	enum { NOT, BACK, FORWARD } bt_order;
    385 	EPGNO	  bt_last;		/* last insert */
    386 
    387 					/* B: key comparison function */
    388 	int	(*bt_cmp)(const DBT *, const DBT *);
    389 					/* B: prefix comparison function */
    390 	size_t	(*bt_pfx)(const DBT *, const DBT *);
    391 					/* R: recno input function */
    392 	int	(*bt_irec)(struct _btree *, recno_t);
    393 
    394 	FILE	 *bt_rfp;		/* R: record FILE pointer */
    395 	int	  bt_rfd;		/* R: record file descriptor */
    396 
    397 	caddr_t	  bt_cmap;		/* R: current point in mapped space */
    398 	caddr_t	  bt_smap;		/* R: start of mapped space */
    399 	caddr_t   bt_emap;		/* R: end of mapped space */
    400 	size_t	  bt_msize;		/* R: size of mapped region. */
    401 
    402 	recno_t	  bt_nrecs;		/* R: number of records */
    403 	size_t	  bt_reclen;		/* R: fixed record length */
    404 	uint8_t	  bt_bval;		/* R: delimiting byte/pad character */
    405 
    406 /*
    407  * NB:
    408  * B_NODUPS and R_RECNO are stored on disk, and may not be changed.
    409  */
    410 #define	B_INMEM		0x00001		/* in-memory tree */
    411 #define	B_METADIRTY	0x00002		/* need to write metadata */
    412 #define	B_MODIFIED	0x00004		/* tree modified */
    413 #define	B_NEEDSWAP	0x00008		/* if byte order requires swapping */
    414 #define	B_RDONLY	0x00010		/* read-only tree */
    415 
    416 #define	B_NODUPS	0x00020		/* no duplicate keys permitted */
    417 #define	R_RECNO		0x00080		/* record oriented tree */
    418 
    419 #define	R_CLOSEFP	0x00040		/* opened a file pointer */
    420 #define	R_EOF		0x00100		/* end of input file reached. */
    421 #define	R_FIXLEN	0x00200		/* fixed length records */
    422 #define	R_MEMMAPPED	0x00400		/* memory mapped file. */
    423 #define	R_INMEM		0x00800		/* in-memory file */
    424 #define	R_MODIFIED	0x01000		/* modified file */
    425 #define	R_RDONLY	0x02000		/* read-only file */
    426 
    427 #define	B_DB_LOCK	0x04000		/* DB_LOCK specified. */
    428 #define	B_DB_SHMEM	0x08000		/* DB_SHMEM specified. */
    429 #define	B_DB_TXN	0x10000		/* DB_TXN specified. */
    430 	uint32_t flags;
    431 } BTREE;
    432 
    433 #include "extern.h"
    434