Home | History | Annotate | Line # | Download | only in sljit_src
      1 /*	$NetBSD: sljitLir.h,v 1.5 2021/12/05 04:38:54 msaitoh Exp $	*/
      2 
      3 /*
      4  *    Stack-less Just-In-Time compiler
      5  *
      6  *    Copyright Zoltan Herczeg (hzmester (at) freemail.hu). All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without modification, are
      9  * permitted provided that the following conditions are met:
     10  *
     11  *   1. Redistributions of source code must retain the above copyright notice, this list of
     12  *      conditions and the following disclaimer.
     13  *
     14  *   2. Redistributions in binary form must reproduce the above copyright notice, this list
     15  *      of conditions and the following disclaimer in the documentation and/or other materials
     16  *      provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
     19  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
     21  * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
     23  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
     24  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
     26  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 #ifndef _SLJIT_LIR_H_
     30 #define _SLJIT_LIR_H_
     31 
     32 /*
     33    ------------------------------------------------------------------------
     34     Stack-Less JIT compiler for multiple architectures (x86, ARM, PowerPC)
     35    ------------------------------------------------------------------------
     36 
     37    Short description
     38     Advantages:
     39       - The execution can be continued from any LIR instruction. In other
     40         words, it is possible to jump to any label from anywhere, even from
     41         a code fragment, which is compiled later, if both compiled code
     42         shares the same context. See sljit_emit_enter for more details
     43       - Supports self modifying code: target of (conditional) jump and call
     44         instructions and some constant values can be dynamically modified
     45         during runtime
     46         - although it is not suggested to do it frequently
     47         - can be used for inline caching: save an important value once
     48           in the instruction stream
     49         - since this feature limits the optimization possibilities, a
     50           special flag must be passed at compile time when these
     51           instructions are emitted
     52       - A fixed stack space can be allocated for local variables
     53       - The compiler is thread-safe
     54       - The compiler is highly configurable through preprocessor macros.
     55         You can disable unneeded features (multithreading in single
     56         threaded applications), and you can use your own system functions
     57         (including memory allocators). See sljitConfig.h
     58     Disadvantages:
     59       - No automatic register allocation, and temporary results are
     60         not stored on the stack. (hence the name comes)
     61     In practice:
     62       - This approach is very effective for interpreters
     63         - One of the saved registers typically points to a stack interface
     64         - It can jump to any exception handler anytime (even if it belongs
     65           to another function)
     66         - Hot paths can be modified during runtime reflecting the changes
     67           of the fastest execution path of the dynamic language
     68         - SLJIT supports complex memory addressing modes
     69         - mainly position and context independent code (except some cases)
     70 
     71     For valgrind users:
     72       - pass --smc-check=all argument to valgrind, since JIT is a "self-modifying code"
     73 */
     74 
     75 #if !(defined SLJIT_NO_DEFAULT_CONFIG && SLJIT_NO_DEFAULT_CONFIG)
     76 #include "sljitConfig.h"
     77 #endif
     78 
     79 /* The following header file defines useful macros for fine tuning
     80 sljit based code generators. They are listed in the beginning
     81 of sljitConfigInternal.h */
     82 
     83 #include "sljitConfigInternal.h"
     84 
     85 /* --------------------------------------------------------------------- */
     86 /*  Error codes                                                          */
     87 /* --------------------------------------------------------------------- */
     88 
     89 /* Indicates no error. */
     90 #define SLJIT_SUCCESS			0
     91 /* After the call of sljit_generate_code(), the error code of the compiler
     92    is set to this value to avoid future sljit calls (in debug mode at least).
     93    The complier should be freed after sljit_generate_code(). */
     94 #define SLJIT_ERR_COMPILED		1
     95 /* Cannot allocate non executable memory. */
     96 #define SLJIT_ERR_ALLOC_FAILED		2
     97 /* Cannot allocate executable memory.
     98    Only for sljit_generate_code() */
     99 #define SLJIT_ERR_EX_ALLOC_FAILED	3
    100 /* Return value for SLJIT_CONFIG_UNSUPPORTED placeholder architecture. */
    101 #define SLJIT_ERR_UNSUPPORTED		4
    102 /* An ivalid argument is passed to any SLJIT function. */
    103 #define SLJIT_ERR_BAD_ARGUMENT		5
    104 /* Dynamic code modification is not enabled. */
    105 #define SLJIT_ERR_DYN_CODE_MOD		6
    106 
    107 /* --------------------------------------------------------------------- */
    108 /*  Registers                                                            */
    109 /* --------------------------------------------------------------------- */
    110 
    111 /*
    112   Scratch (R) registers: registers whose may not preserve their values
    113   across function calls.
    114 
    115   Saved (S) registers: registers whose preserve their values across
    116   function calls.
    117 
    118   The scratch and saved register sets are overlap. The last scratch register
    119   is the first saved register, the one before the last is the second saved
    120   register, and so on.
    121 
    122   If an architecture provides two scratch and three saved registers,
    123   its scratch and saved register sets are the following:
    124 
    125      R0   |  [S4]  |   R0 and S4 represent the same physical register
    126      R1   |  [S3]  |   R1 and S3 represent the same physical register
    127     [R2]  |   S2   |   R2 and S2 represent the same physical register
    128     [R3]  |   S1   |   R3 and S1 represent the same physical register
    129     [R4]  |   S0   |   R4 and S0 represent the same physical register
    130 
    131   Note: SLJIT_NUMBER_OF_SCRATCH_REGISTERS would be 2 and
    132         SLJIT_NUMBER_OF_SAVED_REGISTERS would be 3 for this architecture.
    133 
    134   Note: On all supported architectures SLJIT_NUMBER_OF_REGISTERS >= 10
    135         and SLJIT_NUMBER_OF_SAVED_REGISTERS >= 5. However, 4 registers
    136         are virtual on x86-32. See below.
    137 
    138   The purpose of this definition is convenience. Although a register
    139   is either scratch register or saved register, SLJIT allows accessing
    140   them from the other set. For example, four registers can be used as
    141   scratch registers and the fifth one as saved register on the architecture
    142   above. Of course the last two scratch registers (R2 and R3) from this
    143   four will be saved on the stack, because they are defined as saved
    144   registers in the application binary interface. Still R2 and R3 can be
    145   used for referencing to these registers instead of S2 and S1, which
    146   makes easier to write platform independent code. Scratch registers
    147   can be saved registers in a similar way, but these extra saved
    148   registers will not be preserved across function calls! Hence the
    149   application must save them on those platforms, where the number of
    150   saved registers is too low. This can be done by copy them onto
    151   the stack and restore them after a function call.
    152 
    153   Note: To emphasize that registers assigned to R2-R4 are saved
    154         registers, they are enclosed by square brackets. S3-S4
    155         are marked in a similar way.
    156 
    157   Note: sljit_emit_enter and sljit_set_context defines whether a register
    158         is S or R register. E.g: when 3 scratches and 1 saved is mapped
    159         by sljit_emit_enter, the allowed register set will be: R0-R2 and
    160         S0. Although S2 is mapped to the same position as R2, it does not
    161         available in the current configuration. Furthermore the R3 (S1)
    162         register does not available as well.
    163 */
    164 
    165 /* When SLJIT_UNUSED is specified as destination, the result is discarded. */
    166 #define SLJIT_UNUSED		0
    167 
    168 /* Scratch registers. */
    169 #define SLJIT_R0	1
    170 #define SLJIT_R1	2
    171 #define SLJIT_R2	3
    172 /* Note: on x86-32, R3 - R6 (same as S3 - S6) are emulated (they
    173    are allocated on the stack). These registers are called virtual
    174    and cannot be used for memory addressing (cannot be part of
    175    any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
    176    limitation on other CPUs. See sljit_get_register_index(). */
    177 #define SLJIT_R3	4
    178 #define SLJIT_R4	5
    179 #define SLJIT_R5	6
    180 #define SLJIT_R6	7
    181 #define SLJIT_R7	8
    182 #define SLJIT_R8	9
    183 #define SLJIT_R9	10
    184 /* All R registers provided by the architecture can be accessed by SLJIT_R(i)
    185    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_REGISTERS. */
    186 #define SLJIT_R(i)	(1 + (i))
    187 
    188 /* Saved registers. */
    189 #define SLJIT_S0	(SLJIT_NUMBER_OF_REGISTERS)
    190 #define SLJIT_S1	(SLJIT_NUMBER_OF_REGISTERS - 1)
    191 #define SLJIT_S2	(SLJIT_NUMBER_OF_REGISTERS - 2)
    192 /* Note: on x86-32, S3 - S6 (same as R3 - R6) are emulated (they
    193    are allocated on the stack). These registers are called virtual
    194    and cannot be used for memory addressing (cannot be part of
    195    any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
    196    limitation on other CPUs. See sljit_get_register_index(). */
    197 #define SLJIT_S3	(SLJIT_NUMBER_OF_REGISTERS - 3)
    198 #define SLJIT_S4	(SLJIT_NUMBER_OF_REGISTERS - 4)
    199 #define SLJIT_S5	(SLJIT_NUMBER_OF_REGISTERS - 5)
    200 #define SLJIT_S6	(SLJIT_NUMBER_OF_REGISTERS - 6)
    201 #define SLJIT_S7	(SLJIT_NUMBER_OF_REGISTERS - 7)
    202 #define SLJIT_S8	(SLJIT_NUMBER_OF_REGISTERS - 8)
    203 #define SLJIT_S9	(SLJIT_NUMBER_OF_REGISTERS - 9)
    204 /* All S registers provided by the architecture can be accessed by SLJIT_S(i)
    205    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_REGISTERS. */
    206 #define SLJIT_S(i)	(SLJIT_NUMBER_OF_REGISTERS - (i))
    207 
    208 /* Registers >= SLJIT_FIRST_SAVED_REG are saved registers. */
    209 #define SLJIT_FIRST_SAVED_REG (SLJIT_S0 - SLJIT_NUMBER_OF_SAVED_REGISTERS + 1)
    210 
    211 /* The SLJIT_SP provides direct access to the linear stack space allocated by
    212    sljit_emit_enter. It can only be used in the following form: SLJIT_MEM1(SLJIT_SP).
    213    The immediate offset is extended by the relative stack offset automatically.
    214    The sljit_get_local_base can be used to obtain the absolute offset. */
    215 #define SLJIT_SP	(SLJIT_NUMBER_OF_REGISTERS + 1)
    216 
    217 /* Return with machine word. */
    218 
    219 #define SLJIT_RETURN_REG	SLJIT_R0
    220 
    221 /* x86 prefers specific registers for special purposes. In case of shift
    222    by register it supports only SLJIT_R2 for shift argument
    223    (which is the src2 argument of sljit_emit_op2). If another register is
    224    used, sljit must exchange data between registers which cause a minor
    225    slowdown. Other architectures has no such limitation. */
    226 
    227 #define SLJIT_PREF_SHIFT_REG	SLJIT_R2
    228 
    229 /* --------------------------------------------------------------------- */
    230 /*  Floating point registers                                             */
    231 /* --------------------------------------------------------------------- */
    232 
    233 /* Each floating point register can store a 32 or a 64 bit precision
    234    value. The FR and FS register sets are overlap in the same way as R
    235    and S register sets. See above. */
    236 
    237 /* Note: SLJIT_UNUSED as destination is not valid for floating point
    238    operations, since they cannot be used for setting flags. */
    239 
    240 /* Floating point scratch registers. */
    241 #define SLJIT_FR0	1
    242 #define SLJIT_FR1	2
    243 #define SLJIT_FR2	3
    244 #define SLJIT_FR3	4
    245 #define SLJIT_FR4	5
    246 #define SLJIT_FR5	6
    247 /* All FR registers provided by the architecture can be accessed by SLJIT_FR(i)
    248    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_FLOAT_REGISTERS. */
    249 #define SLJIT_FR(i)	(1 + (i))
    250 
    251 /* Floating point saved registers. */
    252 #define SLJIT_FS0	(SLJIT_NUMBER_OF_FLOAT_REGISTERS)
    253 #define SLJIT_FS1	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 1)
    254 #define SLJIT_FS2	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 2)
    255 #define SLJIT_FS3	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 3)
    256 #define SLJIT_FS4	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 4)
    257 #define SLJIT_FS5	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 5)
    258 /* All S registers provided by the architecture can be accessed by SLJIT_FS(i)
    259    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS. */
    260 #define SLJIT_FS(i)	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - (i))
    261 
    262 /* Float registers >= SLJIT_FIRST_SAVED_FLOAT_REG are saved registers. */
    263 #define SLJIT_FIRST_SAVED_FLOAT_REG (SLJIT_FS0 - SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS + 1)
    264 
    265 /* --------------------------------------------------------------------- */
    266 /*  Main structures and functions                                        */
    267 /* --------------------------------------------------------------------- */
    268 
    269 /*
    270 	The following structures are private, and can be changed in the
    271 	future. Keeping them here allows code inlining.
    272 */
    273 
    274 struct sljit_memory_fragment {
    275 	struct sljit_memory_fragment *next;
    276 	sljit_uw used_size;
    277 	/* Must be aligned to sljit_sw. */
    278 	sljit_u8 memory[1];
    279 };
    280 
    281 struct sljit_label {
    282 	struct sljit_label *next;
    283 	sljit_uw addr;
    284 	/* The maximum size difference. */
    285 	sljit_uw size;
    286 };
    287 
    288 struct sljit_jump {
    289 	struct sljit_jump *next;
    290 	sljit_uw addr;
    291 	sljit_sw flags;
    292 	union {
    293 		sljit_uw target;
    294 		struct sljit_label* label;
    295 	} u;
    296 };
    297 
    298 struct sljit_const {
    299 	struct sljit_const *next;
    300 	sljit_uw addr;
    301 };
    302 
    303 struct sljit_compiler {
    304 	sljit_s32 error;
    305 	sljit_s32 options;
    306 
    307 	struct sljit_label *labels;
    308 	struct sljit_jump *jumps;
    309 	struct sljit_const *consts;
    310 	struct sljit_label *last_label;
    311 	struct sljit_jump *last_jump;
    312 	struct sljit_const *last_const;
    313 
    314 	void *allocator_data;
    315 	struct sljit_memory_fragment *buf;
    316 	struct sljit_memory_fragment *abuf;
    317 
    318 	/* Used scratch registers. */
    319 	sljit_s32 scratches;
    320 	/* Used saved registers. */
    321 	sljit_s32 saveds;
    322 	/* Used float scratch registers. */
    323 	sljit_s32 fscratches;
    324 	/* Used float saved registers. */
    325 	sljit_s32 fsaveds;
    326 	/* Local stack size. */
    327 	sljit_s32 local_size;
    328 	/* Code size. */
    329 	sljit_uw size;
    330 	/* Relative offset of the executable mapping from the writable mapping. */
    331 	sljit_uw executable_offset;
    332 	/* Executable size for statistical purposes. */
    333 	sljit_uw executable_size;
    334 
    335 #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
    336 	sljit_s32 args;
    337 	sljit_s32 locals_offset;
    338 	sljit_s32 saveds_offset;
    339 #endif
    340 
    341 #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
    342 	sljit_s32 mode32;
    343 #ifdef _WIN64
    344 	sljit_s32 locals_offset;
    345 #endif
    346 #endif
    347 
    348 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
    349 	/* Constant pool handling. */
    350 	sljit_uw *cpool;
    351 	sljit_u8 *cpool_unique;
    352 	sljit_uw cpool_diff;
    353 	sljit_uw cpool_fill;
    354 	/* Other members. */
    355 	/* Contains pointer, "ldr pc, [...]" pairs. */
    356 	sljit_uw patches;
    357 #endif
    358 
    359 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) || (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
    360 	/* Temporary fields. */
    361 	sljit_uw shift_imm;
    362 #endif
    363 
    364 #if (defined SLJIT_CONFIG_ARM_64 && SLJIT_CONFIG_ARM_64)
    365 	sljit_s32 cache_arg;
    366 	sljit_sw cache_argw;
    367 #endif
    368 
    369 #if (defined SLJIT_CONFIG_PPC && SLJIT_CONFIG_PPC)
    370 	sljit_sw imm;
    371 	sljit_s32 cache_arg;
    372 	sljit_sw cache_argw;
    373 #endif
    374 
    375 #if (defined SLJIT_CONFIG_MIPS && SLJIT_CONFIG_MIPS)
    376 	sljit_s32 delay_slot;
    377 	sljit_s32 cache_arg;
    378 	sljit_sw cache_argw;
    379 #endif
    380 
    381 #if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
    382 	sljit_s32 delay_slot;
    383 	sljit_s32 cache_arg;
    384 	sljit_sw cache_argw;
    385 #endif
    386 
    387 #if (defined SLJIT_CONFIG_TILEGX && SLJIT_CONFIG_TILEGX)
    388 	sljit_s32 cache_arg;
    389 	sljit_sw cache_argw;
    390 #endif
    391 
    392 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
    393 	FILE* verbose;
    394 #endif
    395 
    396 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
    397 		|| (defined SLJIT_DEBUG && SLJIT_DEBUG)
    398 	/* Flags specified by the last arithmetic instruction.
    399 	   It contains the type of the variable flag. */
    400 	sljit_s32 last_flags;
    401 	/* Local size passed to the functions. */
    402 	sljit_s32 logical_local_size;
    403 #endif
    404 
    405 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
    406 		|| (defined SLJIT_DEBUG && SLJIT_DEBUG) \
    407 		|| (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
    408 	/* Trust arguments when the API function is called. */
    409 	sljit_s32 skip_checks;
    410 #endif
    411 };
    412 
    413 /* --------------------------------------------------------------------- */
    414 /*  Main functions                                                       */
    415 /* --------------------------------------------------------------------- */
    416 
    417 /* Creates an sljit compiler. The allocator_data is required by some
    418    custom memory managers. This pointer is passed to SLJIT_MALLOC
    419    and SLJIT_FREE macros. Most allocators (including the default
    420    one) ignores this value, and it is recommended to pass NULL
    421    as a dummy value for allocator_data.
    422 
    423    Returns NULL if failed. */
    424 SLJIT_API_FUNC_ATTRIBUTE struct sljit_compiler* sljit_create_compiler(void *allocator_data);
    425 
    426 /* Frees everything except the compiled machine code. */
    427 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_compiler(struct sljit_compiler *compiler);
    428 
    429 /* Returns the current error code. If an error is occurred, future sljit
    430    calls which uses the same compiler argument returns early with the same
    431    error code. Thus there is no need for checking the error after every
    432    call, it is enough to do it before the code is compiled. Removing
    433    these checks increases the performance of the compiling process. */
    434 static SLJIT_INLINE sljit_s32 sljit_get_compiler_error(struct sljit_compiler *compiler) { return compiler->error; }
    435 
    436 /* Sets the compiler error code to SLJIT_ERR_ALLOC_FAILED except
    437    if an error was detected before. After the error code is set
    438    the compiler behaves as if the allocation failure happened
    439    during an sljit function call. This can greatly simplify error
    440    checking, since only the compiler status needs to be checked
    441    after the compilation. */
    442 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_compiler_memory_error(struct sljit_compiler *compiler);
    443 
    444 /*
    445    Allocate a small amount of memory. The size must be <= 64 bytes on 32 bit,
    446    and <= 128 bytes on 64 bit architectures. The memory area is owned by the
    447    compiler, and freed by sljit_free_compiler. The returned pointer is
    448    sizeof(sljit_sw) aligned. Excellent for allocating small blocks during
    449    the compiling, and no need to worry about freeing them. The size is
    450    enough to contain at most 16 pointers. If the size is outside of the range,
    451    the function will return with NULL. However, this return value does not
    452    indicate that there is no more memory (does not set the current error code
    453    of the compiler to out-of-memory status).
    454 */
    455 SLJIT_API_FUNC_ATTRIBUTE void* sljit_alloc_memory(struct sljit_compiler *compiler, sljit_s32 size);
    456 
    457 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
    458 /* Passing NULL disables verbose. */
    459 SLJIT_API_FUNC_ATTRIBUTE void sljit_compiler_verbose(struct sljit_compiler *compiler, FILE* verbose);
    460 #endif
    461 
    462 /*
    463    Create executable code from the sljit instruction stream. This is the final step
    464    of the code generation so no more instructions can be added after this call.
    465 */
    466 
    467 SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler);
    468 
    469 /* Free executable code. */
    470 
    471 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_code(void* code);
    472 
    473 /*
    474    When the protected executable allocator is used the JIT code is mapped
    475    twice. The first mapping has read/write and the second mapping has read/exec
    476    permissions. This function returns with the relative offset of the executable
    477    mapping using the writable mapping as the base after the machine code is
    478    successfully generated. The returned value is always 0 for the normal executable
    479    allocator, since it uses only one mapping with read/write/exec permissions.
    480    Dynamic code modifications requires this value.
    481 
    482    Before a successful code generation, this function returns with 0.
    483 */
    484 static SLJIT_INLINE sljit_sw sljit_get_executable_offset(struct sljit_compiler *compiler) { return compiler->executable_offset; }
    485 
    486 /*
    487    The executable memory consumption of the generated code can be retrieved by
    488    this function. The returned value can be used for statistical purposes.
    489 
    490    Before a successful code generation, this function returns with 0.
    491 */
    492 static SLJIT_INLINE sljit_uw sljit_get_generated_code_size(struct sljit_compiler *compiler) { return compiler->executable_size; }
    493 
    494 /* Instruction generation. Returns with any error code. If there is no
    495    error, they return with SLJIT_SUCCESS. */
    496 
    497 /*
    498    The executable code is a function call from the viewpoint of the C
    499    language. The function calls must obey to the ABI (Application
    500    Binary Interface) of the platform, which specify the purpose of
    501    all machine registers and stack handling among other things. The
    502    sljit_emit_enter function emits the necessary instructions for
    503    setting up a new context for the executable code and moves function
    504    arguments to the saved registers. Furthermore the options argument
    505    can be used to pass configuration options to the compiler. The
    506    available options are listed before sljit_emit_enter.
    507 
    508    The number of sljit_sw arguments passed to the generated function
    509    are specified in the "args" parameter. The number of arguments must
    510    be less than or equal to 3. The first argument goes to SLJIT_S0,
    511    the second goes to SLJIT_S1 and so on. The register set used by
    512    the function must be declared as well. The number of scratch and
    513    saved registers used by the function must be passed to sljit_emit_enter.
    514    Only R registers between R0 and "scratches" argument can be used
    515    later. E.g. if "scratches" is set to 2, the register set will be
    516    limited to R0 and R1. The S registers and the floating point
    517    registers ("fscratches" and "fsaveds") are specified in a similar
    518    way. The sljit_emit_enter is also capable of allocating a stack
    519    space for local variables. The "local_size" argument contains the
    520    size in bytes of this local area and its staring address is stored
    521    in SLJIT_SP. The memory area between SLJIT_SP (inclusive) and
    522    SLJIT_SP + local_size (exclusive) can be modified freely until
    523    the function returns. The stack space is not initialized.
    524 
    525    Note: the following conditions must met:
    526          0 <= scratches <= SLJIT_NUMBER_OF_REGISTERS
    527          0 <= saveds <= SLJIT_NUMBER_OF_REGISTERS
    528          scratches + saveds <= SLJIT_NUMBER_OF_REGISTERS
    529          0 <= fscratches <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
    530          0 <= fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
    531          fscratches + fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
    532 
    533    Note: every call of sljit_emit_enter and sljit_set_context
    534          overwrites the previous context.
    535 */
    536 
    537 /* The absolute address returned by sljit_get_local_base with
    538 offset 0 is aligned to sljit_f64. Otherwise it is aligned to sljit_sw. */
    539 #define SLJIT_F64_ALIGNMENT 0x00000001
    540 
    541 /* The local_size must be >= 0 and <= SLJIT_MAX_LOCAL_SIZE. */
    542 #define SLJIT_MAX_LOCAL_SIZE	65536
    543 
    544 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler,
    545 	sljit_s32 options, sljit_s32 args, sljit_s32 scratches, sljit_s32 saveds,
    546 	sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
    547 
    548 /* The machine code has a context (which contains the local stack space size,
    549    number of used registers, etc.) which initialized by sljit_emit_enter. Several
    550    functions (like sljit_emit_return) requres this context to be able to generate
    551    the appropriate code. However, some code fragments (like inline cache) may have
    552    no normal entry point so their context is unknown for the compiler. Their context
    553    can be provided to the compiler by the sljit_set_context function.
    554 
    555    Note: every call of sljit_emit_enter and sljit_set_context overwrites
    556          the previous context. */
    557 
    558 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler,
    559 	sljit_s32 options, sljit_s32 args, sljit_s32 scratches, sljit_s32 saveds,
    560 	sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
    561 
    562 /* Return from machine code.  The op argument can be SLJIT_UNUSED which means the
    563    function does not return with anything or any opcode between SLJIT_MOV and
    564    SLJIT_MOV_P (see sljit_emit_op1). As for src and srcw they must be 0 if op
    565    is SLJIT_UNUSED, otherwise see below the description about source and
    566    destination arguments. */
    567 
    568 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op,
    569 	sljit_s32 src, sljit_sw srcw);
    570 
    571 /* Fast calling mechanism for utility functions (see SLJIT_FAST_CALL). All registers and
    572    even the stack frame is passed to the callee. The return address is preserved in
    573    dst/dstw by sljit_emit_fast_enter (the type of the value stored by this function
    574    is sljit_p), and sljit_emit_fast_return can use this as a return value later. */
    575 
    576 /* Note: only for sljit specific, non ABI compilant calls. Fast, since only a few machine
    577    instructions are needed. Excellent for small uility functions, where saving registers
    578    and setting up a new stack frame would cost too much performance. However, it is still
    579    possible to return to the address of the caller (or anywhere else). */
    580 
    581 /* Note: may destroy flags. */
    582 
    583 /* Note: although sljit_emit_fast_return could be replaced by an ijump, it is not suggested,
    584    since many architectures do clever branch prediction on call / return instruction pairs. */
    585 
    586 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw);
    587 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_s32 src, sljit_sw srcw);
    588 
    589 /*
    590    Source and destination values for arithmetical instructions
    591     imm              - a simple immediate value (cannot be used as a destination)
    592     reg              - any of the registers (immediate argument must be 0)
    593     [imm]            - absolute immediate memory address
    594     [reg+imm]        - indirect memory address
    595     [reg+(reg<<imm)] - indirect indexed memory address (shift must be between 0 and 3)
    596                        useful for (byte, half, int, sljit_sw) array access
    597                        (fully supported by both x86 and ARM architectures, and cheap operation on others)
    598 */
    599 
    600 /*
    601    IMPORATNT NOTE: memory access MUST be naturally aligned except
    602                    SLJIT_UNALIGNED macro is defined and its value is 1.
    603 
    604      length | alignment
    605    ---------+-----------
    606      byte   | 1 byte (any physical_address is accepted)
    607      half   | 2 byte (physical_address & 0x1 == 0)
    608      int    | 4 byte (physical_address & 0x3 == 0)
    609      word   | 4 byte if SLJIT_32BIT_ARCHITECTURE is defined and its value is 1
    610             | 8 byte if SLJIT_64BIT_ARCHITECTURE is defined and its value is 1
    611     pointer | size of sljit_p type (4 byte on 32 bit machines, 4 or 8 byte
    612             | on 64 bit machines)
    613 
    614    Note:   Different architectures have different addressing limitations.
    615            A single instruction is enough for the following addressing
    616            modes. Other adrressing modes are emulated by instruction
    617            sequences. This information could help to improve those code
    618            generators which focuses only a few architectures.
    619 
    620    x86:    [reg+imm], -2^32+1 <= imm <= 2^32-1 (full address space on x86-32)
    621            [reg+(reg<<imm)] is supported
    622            [imm], -2^32+1 <= imm <= 2^32-1 is supported
    623            Write-back is not supported
    624    arm:    [reg+imm], -4095 <= imm <= 4095 or -255 <= imm <= 255 for signed
    625                 bytes, any halfs or floating point values)
    626            [reg+(reg<<imm)] is supported
    627            Write-back is supported
    628    arm-t2: [reg+imm], -255 <= imm <= 4095
    629            [reg+(reg<<imm)] is supported
    630            Write back is supported only for [reg+imm], where -255 <= imm <= 255
    631    ppc:    [reg+imm], -65536 <= imm <= 65535. 64 bit loads/stores and 32 bit
    632                 signed load on 64 bit requires immediates divisible by 4.
    633                 [reg+imm] is not supported for signed 8 bit values.
    634            [reg+reg] is supported
    635            Write-back is supported except for one instruction: 32 bit signed
    636                 load with [reg+imm] addressing mode on 64 bit.
    637    mips:   [reg+imm], -65536 <= imm <= 65535
    638    sparc:  [reg+imm], -4096 <= imm <= 4095
    639            [reg+reg] is supported
    640 */
    641 
    642 /* Register output: simply the name of the register.
    643    For destination, you can use SLJIT_UNUSED as well. */
    644 #define SLJIT_MEM		0x80
    645 #define SLJIT_MEM0()		(SLJIT_MEM)
    646 #define SLJIT_MEM1(r1)		(SLJIT_MEM | (r1))
    647 #define SLJIT_MEM2(r1, r2)	(SLJIT_MEM | (r1) | ((r2) << 8))
    648 #define SLJIT_IMM		0x40
    649 
    650 /* Set 32 bit operation mode (I) on 64 bit CPUs. This option is ignored on
    651    32 bit CPUs. When this option is set for an arithmetic operation, only
    652    the lower 32 bit of the input registers are used, and the CPU status
    653    flags are set according to the 32 bit result. Although the higher 32 bit
    654    of the input and the result registers are not defined by SLJIT, it might
    655    be defined by the CPU architecture (e.g. MIPS). To satisfy these CPU
    656    requirements all source registers must be the result of those operations
    657    where this option was also set. Memory loads read 32 bit values rather
    658    than 64 bit ones. In other words 32 bit and 64 bit operations cannot
    659    be mixed. The only exception is SLJIT_MOV32 and SLJIT_MOVU32 whose source
    660    register can hold any 32 or 64 bit value, and it is converted to a 32 bit
    661    compatible format first. This conversion is free (no instructions are
    662    emitted) on most CPUs. A 32 bit value can also be converted to a 64 bit
    663    value by SLJIT_MOV_S32 (sign extension) or SLJIT_MOV_U32 (zero extension).
    664 
    665    Note: memory addressing always uses 64 bit values on 64 bit systems so
    666          the result of a 32 bit operation must not be used with SLJIT_MEMx
    667          macros.
    668 
    669    This option is part of the instruction name, so there is no need to
    670    manually set it. E.g:
    671 
    672      SLJIT_ADD32 == (SLJIT_ADD | SLJIT_I32_OP) */
    673 #define SLJIT_I32_OP		0x100
    674 
    675 /* Set F32 (single) precision mode for floating-point computation. This
    676    option is similar to SLJIT_I32_OP, it just applies to floating point
    677    registers. When this option is passed, the CPU performs 32 bit floating
    678    point operations, rather than 64 bit one. Similar to SLJIT_I32_OP, all
    679    register arguments must be the result of those operations where this
    680    option was also set.
    681 
    682    This option is part of the instruction name, so there is no need to
    683    manually set it. E.g:
    684 
    685      SLJIT_MOV_F32 = (SLJIT_MOV_F64 | SLJIT_F32_OP)
    686  */
    687 #define SLJIT_F32_OP		SLJIT_I32_OP
    688 
    689 /* Many CPUs (x86, ARM, PPC) has status flags which can be set according
    690    to the result of an operation. Other CPUs (MIPS) does not have status
    691    flags, and results must be stored in registers. To cover both architecture
    692    types efficiently only two flags are defined by SLJIT:
    693 
    694     * Zero (equal) flag: it is set if the result is zero
    695     * Variable flag: its value is defined by the last arithmetic operation
    696 
    697    SLJIT instructions can set any or both of these flags. The value of
    698    these flags is undefined if the instruction does not specify their value.
    699    The description of each instruction contains the list of allowed flag
    700    types.
    701 
    702    Example: SLJIT_ADD can set the Z, OVERFLOW, CARRY flags hence
    703 
    704      sljit_op2(..., SLJIT_ADD, ...)
    705        Both the zero and variable flags are undefined so their
    706        they hold a random value after the operation is completed.
    707 
    708      sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z, ...)
    709        Sets the zero flag if the result is zero, clears it otherwise.
    710        The variable flag is undefined.
    711 
    712      sljit_op2(..., SLJIT_ADD | SLJIT_SET_OVERFLOW, ...)
    713        Sets the variable flag if an integer overflow occurs, clears
    714        it otherwise. The zero flag is undefined.
    715 
    716      sljit_op2(..., SLJIT_ADD | SLJIT_SET_NOT_OVERFLOW, ...)
    717        Sets the variable flag if an integer overflow does NOT occur,
    718        clears it otherwise. The zero flag is undefined.
    719 
    720      sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z | SLJIT_SET_CARRY, ...)
    721        Sets the zero flag if the result is zero, clears it otherwise.
    722        Sets the variable flag if unsigned overflow (carry) occurs,
    723        clears it otherwise.
    724 
    725    If an instruction (e.g. SLJIT_MOV) does not modify flags the flags are
    726    unchanged.
    727 
    728    Using these flags can reduce the number of emitted instructions. E.g. a
    729    fast loop can be implemented by decreasing a counter register and set the
    730    zero flag to jump back if the counter register is not reached zero.
    731 
    732    Motivation: although CPUs can set a large number of flags, usually their
    733    values are ignored or only one of them is used. Emulating a large number
    734    of flags on systems without flag register is complicated so SLJIT
    735    instructions must specify the flag they want to use and only that flag
    736    will be emulated. The last arithmetic instruction can be repeated if
    737    multiple flags needs to be checked.
    738 */
    739 
    740 /* Set Zero status flag. */
    741 #define SLJIT_SET_Z			0x0200
    742 /* Set the variable status flag if condition is true.
    743    See comparison types. */
    744 #define SLJIT_SET(condition)			((condition) << 10)
    745 
    746 /* Notes:
    747      - you cannot postpone conditional jump instructions except if noted that
    748        the instruction does not set flags (See: SLJIT_KEEP_FLAGS).
    749      - flag combinations: '|' means 'logical or'. */
    750 
    751 /* Starting index of opcodes for sljit_emit_op0. */
    752 #define SLJIT_OP0_BASE			0
    753 
    754 /* Flags: - (does not modify flags)
    755    Note: breakpoint instruction is not supported by all architectures (e.g. ppc)
    756          It falls back to SLJIT_NOP in those cases. */
    757 #define SLJIT_BREAKPOINT		(SLJIT_OP0_BASE + 0)
    758 /* Flags: - (does not modify flags)
    759    Note: may or may not cause an extra cycle wait
    760          it can even decrease the runtime in a few cases. */
    761 #define SLJIT_NOP			(SLJIT_OP0_BASE + 1)
    762 /* Flags: - (may destroy flags)
    763    Unsigned multiplication of SLJIT_R0 and SLJIT_R1.
    764    Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
    765 #define SLJIT_LMUL_UW			(SLJIT_OP0_BASE + 2)
    766 /* Flags: - (may destroy flags)
    767    Signed multiplication of SLJIT_R0 and SLJIT_R1.
    768    Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
    769 #define SLJIT_LMUL_SW			(SLJIT_OP0_BASE + 3)
    770 /* Flags: - (may destroy flags)
    771    Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
    772    The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
    773    Note: if SLJIT_R1 is 0, the behaviour is undefined. */
    774 #define SLJIT_DIVMOD_UW			(SLJIT_OP0_BASE + 4)
    775 #define SLJIT_DIVMOD_U32		(SLJIT_DIVMOD_UW | SLJIT_I32_OP)
    776 /* Flags: - (may destroy flags)
    777    Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
    778    The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
    779    Note: if SLJIT_R1 is 0, the behaviour is undefined.
    780    Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
    781          the behaviour is undefined. */
    782 #define SLJIT_DIVMOD_SW			(SLJIT_OP0_BASE + 5)
    783 #define SLJIT_DIVMOD_S32		(SLJIT_DIVMOD_SW | SLJIT_I32_OP)
    784 /* Flags: - (may destroy flags)
    785    Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
    786    The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
    787    Note: if SLJIT_R1 is 0, the behaviour is undefined. */
    788 #define SLJIT_DIV_UW			(SLJIT_OP0_BASE + 6)
    789 #define SLJIT_DIV_U32			(SLJIT_DIV_UW | SLJIT_I32_OP)
    790 /* Flags: - (may destroy flags)
    791    Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
    792    The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
    793    Note: if SLJIT_R1 is 0, the behaviour is undefined.
    794    Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
    795          the behaviour is undefined. */
    796 #define SLJIT_DIV_SW			(SLJIT_OP0_BASE + 7)
    797 #define SLJIT_DIV_S32			(SLJIT_DIV_SW | SLJIT_I32_OP)
    798 
    799 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op);
    800 
    801 /* Starting index of opcodes for sljit_emit_op1. */
    802 #define SLJIT_OP1_BASE			32
    803 
    804 /* The MOV instruction transfer data from source to destination.
    805 
    806    MOV instruction suffixes:
    807 
    808    U8  - unsigned 8 bit data transfer
    809    S8  - signed 8 bit data transfer
    810    U16 - unsigned 16 bit data transfer
    811    S16 - signed 16 bit data transfer
    812    U32 - unsigned int (32 bit) data transfer
    813    S32 - signed int (32 bit) data transfer
    814    P   - pointer (sljit_p) data transfer
    815 
    816    U = move with update (pre form). If source or destination defined as
    817        SLJIT_MEM1(r1) or SLJIT_MEM2(r1, r2), r1 is increased by the
    818        offset part of the address.
    819 
    820    Register arguments and base registers can only be used once for move
    821    with update instructions. The shift value of SLJIT_MEM2 addressing
    822    mode must also be 0. Reason: SLJIT_MOVU instructions are expected to
    823    be in high-performance loops where complex instruction emulation
    824    would be too costly.
    825 
    826    Examples for invalid move with update instructions:
    827 
    828    sljit_emit_op1(..., SLJIT_MOVU_U8,
    829        SLJIT_R0, 0, SLJIT_MEM1(SLJIT_R0), 8);
    830    sljit_emit_op1(..., SLJIT_MOVU_U8,
    831        SLJIT_MEM2(SLJIT_R1, SLJIT_R0), 0, SLJIT_R0, 0);
    832    sljit_emit_op1(..., SLJIT_MOVU_U8,
    833        SLJIT_MEM2(SLJIT_R0, SLJIT_R1), 0, SLJIT_MEM1(SLJIT_R0), 8);
    834    sljit_emit_op1(..., SLJIT_MOVU_U8,
    835        SLJIT_MEM2(SLJIT_R0, SLJIT_R1), 0, SLJIT_MEM2(SLJIT_R1, SLJIT_R0), 0);
    836    sljit_emit_op1(..., SLJIT_MOVU_U8,
    837        SLJIT_R2, 0, SLJIT_MEM2(SLJIT_R0, SLJIT_R1), 1);
    838 
    839    The following example is valid, since only the offset register is
    840    used multiple times:
    841 
    842    sljit_emit_op1(..., SLJIT_MOVU_U8,
    843        SLJIT_MEM2(SLJIT_R0, SLJIT_R2), 0, SLJIT_MEM2(SLJIT_R1, SLJIT_R2), 0);
    844 */
    845 
    846 /* Flags: - (does not modify flags) */
    847 #define SLJIT_MOV			(SLJIT_OP1_BASE + 0)
    848 /* Flags: - (does not modify flags) */
    849 #define SLJIT_MOV_U8			(SLJIT_OP1_BASE + 1)
    850 #define SLJIT_MOV32_U8			(SLJIT_MOV_U8 | SLJIT_I32_OP)
    851 /* Flags: - (does not modify flags) */
    852 #define SLJIT_MOV_S8			(SLJIT_OP1_BASE + 2)
    853 #define SLJIT_MOV32_S8			(SLJIT_MOV_S8 | SLJIT_I32_OP)
    854 /* Flags: - (does not modify flags) */
    855 #define SLJIT_MOV_U16			(SLJIT_OP1_BASE + 3)
    856 #define SLJIT_MOV32_U16			(SLJIT_MOV_U16 | SLJIT_I32_OP)
    857 /* Flags: - (does not modify flags) */
    858 #define SLJIT_MOV_S16			(SLJIT_OP1_BASE + 4)
    859 #define SLJIT_MOV32_S16			(SLJIT_MOV_S16 | SLJIT_I32_OP)
    860 /* Flags: - (does not modify flags)
    861    Note: no SLJIT_MOV32_U32 form, since it is the same as SLJIT_MOV32 */
    862 #define SLJIT_MOV_U32			(SLJIT_OP1_BASE + 5)
    863 /* Flags: - (does not modify flags)
    864    Note: no SLJIT_MOV32_S32 form, since it is the same as SLJIT_MOV32 */
    865 #define SLJIT_MOV_S32			(SLJIT_OP1_BASE + 6)
    866 /* Flags: - (does not modify flags) */
    867 #define SLJIT_MOV32			(SLJIT_MOV_S32 | SLJIT_I32_OP)
    868 /* Flags: - (does not modify flags) */
    869 #define SLJIT_MOV_P			(SLJIT_OP1_BASE + 7)
    870 /* Flags: - (may destroy flags) */
    871 #define SLJIT_MOVU			(SLJIT_OP1_BASE + 8)
    872 /* Flags: - (may destroy flags) */
    873 #define SLJIT_MOVU_U8			(SLJIT_OP1_BASE + 9)
    874 #define SLJIT_MOVU32_U8			(SLJIT_MOVU_U8 | SLJIT_I32_OP)
    875 /* Flags: - (may destroy flags) */
    876 #define SLJIT_MOVU_S8			(SLJIT_OP1_BASE + 10)
    877 #define SLJIT_MOVU32_S8			(SLJIT_MOVU_S8 | SLJIT_I32_OP)
    878 /* Flags: - (may destroy flags) */
    879 #define SLJIT_MOVU_U16			(SLJIT_OP1_BASE + 11)
    880 #define SLJIT_MOVU32_U16			(SLJIT_MOVU_U16 | SLJIT_I32_OP)
    881 /* Flags: - (may destroy flags) */
    882 #define SLJIT_MOVU_S16			(SLJIT_OP1_BASE + 12)
    883 #define SLJIT_MOVU32_S16		(SLJIT_MOVU_S16 | SLJIT_I32_OP)
    884 /* Flags: - (may destroy flags)
    885    Note: no SLJIT_MOVU32_U32 form, since it is the same as SLJIT_MOVU32 */
    886 #define SLJIT_MOVU_U32			(SLJIT_OP1_BASE + 13)
    887 /* Flags: - (may destroy flags)
    888    Note: no SLJIT_MOVU32_S32 form, since it is the same as SLJIT_MOVU32 */
    889 #define SLJIT_MOVU_S32			(SLJIT_OP1_BASE + 14)
    890 /* Flags: - (may destroy flags) */
    891 #define SLJIT_MOVU32			(SLJIT_MOVU_S32 | SLJIT_I32_OP)
    892 /* Flags: - (may destroy flags) */
    893 #define SLJIT_MOVU_P			(SLJIT_OP1_BASE + 15)
    894 /* Flags: Z */
    895 #define SLJIT_NOT			(SLJIT_OP1_BASE + 16)
    896 #define SLJIT_NOT32			(SLJIT_NOT | SLJIT_I32_OP)
    897 /* Flags: Z | OVERFLOW */
    898 #define SLJIT_NEG			(SLJIT_OP1_BASE + 17)
    899 #define SLJIT_NEG32			(SLJIT_NEG | SLJIT_I32_OP)
    900 /* Count leading zeroes
    901    Flags: Z */
    902 #define SLJIT_CLZ			(SLJIT_OP1_BASE + 18)
    903 #define SLJIT_CLZ32			(SLJIT_CLZ | SLJIT_I32_OP)
    904 
    905 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op,
    906 	sljit_s32 dst, sljit_sw dstw,
    907 	sljit_s32 src, sljit_sw srcw);
    908 
    909 /* Starting index of opcodes for sljit_emit_op2. */
    910 #define SLJIT_OP2_BASE			96
    911 
    912 /* Flags: Z | OVERFLOW | CARRY */
    913 #define SLJIT_ADD			(SLJIT_OP2_BASE + 0)
    914 #define SLJIT_ADD32			(SLJIT_ADD | SLJIT_I32_OP)
    915 /* Flags: CARRY */
    916 #define SLJIT_ADDC			(SLJIT_OP2_BASE + 1)
    917 #define SLJIT_ADDC32			(SLJIT_ADDC | SLJIT_I32_OP)
    918 /* Flags: Z | LESS | GREATER_EQUAL | GREATER | LESS_EQUAL
    919           SIG_LESS | SIG_GREATER_EQUAL | SIG_GREATER
    920           SIG_LESS_EQUAL | CARRY */
    921 #define SLJIT_SUB			(SLJIT_OP2_BASE + 2)
    922 #define SLJIT_SUB32			(SLJIT_SUB | SLJIT_I32_OP)
    923 /* Flags: CARRY */
    924 #define SLJIT_SUBC			(SLJIT_OP2_BASE + 3)
    925 #define SLJIT_SUBC32			(SLJIT_SUBC | SLJIT_I32_OP)
    926 /* Note: integer mul
    927    Flags: MUL_OVERFLOW */
    928 #define SLJIT_MUL			(SLJIT_OP2_BASE + 4)
    929 #define SLJIT_MUL32			(SLJIT_MUL | SLJIT_I32_OP)
    930 /* Flags: Z */
    931 #define SLJIT_AND			(SLJIT_OP2_BASE + 5)
    932 #define SLJIT_AND32			(SLJIT_AND | SLJIT_I32_OP)
    933 /* Flags: Z */
    934 #define SLJIT_OR			(SLJIT_OP2_BASE + 6)
    935 #define SLJIT_OR32			(SLJIT_OR | SLJIT_I32_OP)
    936 /* Flags: Z */
    937 #define SLJIT_XOR			(SLJIT_OP2_BASE + 7)
    938 #define SLJIT_XOR32			(SLJIT_XOR | SLJIT_I32_OP)
    939 /* Flags: Z
    940    Let bit_length be the length of the shift operation: 32 or 64.
    941    If src2 is immediate, src2w is masked by (bit_length - 1).
    942    Otherwise, if the content of src2 is outside the range from 0
    943    to bit_length - 1, the result is undefined. */
    944 #define SLJIT_SHL			(SLJIT_OP2_BASE + 8)
    945 #define SLJIT_SHL32			(SLJIT_SHL | SLJIT_I32_OP)
    946 /* Flags: Z
    947    Let bit_length be the length of the shift operation: 32 or 64.
    948    If src2 is immediate, src2w is masked by (bit_length - 1).
    949    Otherwise, if the content of src2 is outside the range from 0
    950    to bit_length - 1, the result is undefined. */
    951 #define SLJIT_LSHR			(SLJIT_OP2_BASE + 9)
    952 #define SLJIT_LSHR32			(SLJIT_LSHR | SLJIT_I32_OP)
    953 /* Flags: Z
    954    Let bit_length be the length of the shift operation: 32 or 64.
    955    If src2 is immediate, src2w is masked by (bit_length - 1).
    956    Otherwise, if the content of src2 is outside the range from 0
    957    to bit_length - 1, the result is undefined. */
    958 #define SLJIT_ASHR			(SLJIT_OP2_BASE + 10)
    959 #define SLJIT_ASHR32			(SLJIT_ASHR | SLJIT_I32_OP)
    960 
    961 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op,
    962 	sljit_s32 dst, sljit_sw dstw,
    963 	sljit_s32 src1, sljit_sw src1w,
    964 	sljit_s32 src2, sljit_sw src2w);
    965 
    966 /* Returns with non-zero if fpu is available. */
    967 
    968 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_is_fpu_available(void);
    969 
    970 /* Starting index of opcodes for sljit_emit_fop1. */
    971 #define SLJIT_FOP1_BASE			128
    972 
    973 /* Flags: - (does not modify flags) */
    974 #define SLJIT_MOV_F64			(SLJIT_FOP1_BASE + 0)
    975 #define SLJIT_MOV_F32			(SLJIT_MOV_F64 | SLJIT_F32_OP)
    976 /* Convert opcodes: CONV[DST_TYPE].FROM[SRC_TYPE]
    977    SRC/DST TYPE can be: D - double, S - single, W - signed word, I - signed int
    978    Rounding mode when the destination is W or I: round towards zero. */
    979 /* Flags: - (does not modify flags) */
    980 #define SLJIT_CONV_F64_FROM_F32		(SLJIT_FOP1_BASE + 1)
    981 #define SLJIT_CONV_F32_FROM_F64		(SLJIT_CONV_F64_FROM_F32 | SLJIT_F32_OP)
    982 /* Flags: - (does not modify flags) */
    983 #define SLJIT_CONV_SW_FROM_F64		(SLJIT_FOP1_BASE + 2)
    984 #define SLJIT_CONV_SW_FROM_F32		(SLJIT_CONV_SW_FROM_F64 | SLJIT_F32_OP)
    985 /* Flags: - (does not modify flags) */
    986 #define SLJIT_CONV_S32_FROM_F64		(SLJIT_FOP1_BASE + 3)
    987 #define SLJIT_CONV_S32_FROM_F32		(SLJIT_CONV_S32_FROM_F64 | SLJIT_F32_OP)
    988 /* Flags: - (does not modify flags) */
    989 #define SLJIT_CONV_F64_FROM_SW		(SLJIT_FOP1_BASE + 4)
    990 #define SLJIT_CONV_F32_FROM_SW		(SLJIT_CONV_F64_FROM_SW | SLJIT_F32_OP)
    991 /* Flags: - (does not modify flags) */
    992 #define SLJIT_CONV_F64_FROM_S32		(SLJIT_FOP1_BASE + 5)
    993 #define SLJIT_CONV_F32_FROM_S32		(SLJIT_CONV_F64_FROM_S32 | SLJIT_F32_OP)
    994 /* Note: dst is the left and src is the right operand for SLJIT_CMPD.
    995    Flags: EQUAL_F | LESS_F | GREATER_EQUAL_F | GREATER_F | LESS_EQUAL_F */
    996 #define SLJIT_CMP_F64			(SLJIT_FOP1_BASE + 6)
    997 #define SLJIT_CMP_F32			(SLJIT_CMP_F64 | SLJIT_F32_OP)
    998 /* Flags: - (does not modify flags) */
    999 #define SLJIT_NEG_F64			(SLJIT_FOP1_BASE + 7)
   1000 #define SLJIT_NEG_F32			(SLJIT_NEG_F64 | SLJIT_F32_OP)
   1001 /* Flags: - (does not modify flags) */
   1002 #define SLJIT_ABS_F64			(SLJIT_FOP1_BASE + 8)
   1003 #define SLJIT_ABS_F32			(SLJIT_ABS_F64 | SLJIT_F32_OP)
   1004 
   1005 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op,
   1006 	sljit_s32 dst, sljit_sw dstw,
   1007 	sljit_s32 src, sljit_sw srcw);
   1008 
   1009 /* Starting index of opcodes for sljit_emit_fop2. */
   1010 #define SLJIT_FOP2_BASE			160
   1011 
   1012 /* Flags: - (does not modify flags) */
   1013 #define SLJIT_ADD_F64			(SLJIT_FOP2_BASE + 0)
   1014 #define SLJIT_ADD_F32			(SLJIT_ADD_F64 | SLJIT_F32_OP)
   1015 /* Flags: - (does not modify flags) */
   1016 #define SLJIT_SUB_F64			(SLJIT_FOP2_BASE + 1)
   1017 #define SLJIT_SUB_F32			(SLJIT_SUB_F64 | SLJIT_F32_OP)
   1018 /* Flags: - (does not modify flags) */
   1019 #define SLJIT_MUL_F64			(SLJIT_FOP2_BASE + 2)
   1020 #define SLJIT_MUL_F32			(SLJIT_MUL_F64 | SLJIT_F32_OP)
   1021 /* Flags: - (does not modify flags) */
   1022 #define SLJIT_DIV_F64			(SLJIT_FOP2_BASE + 3)
   1023 #define SLJIT_DIV_F32			(SLJIT_DIV_F64 | SLJIT_F32_OP)
   1024 
   1025 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op,
   1026 	sljit_s32 dst, sljit_sw dstw,
   1027 	sljit_s32 src1, sljit_sw src1w,
   1028 	sljit_s32 src2, sljit_sw src2w);
   1029 
   1030 /* Label and jump instructions. */
   1031 
   1032 SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler);
   1033 
   1034 /* Invert (negate) conditional type: xor (^) with 0x1 */
   1035 
   1036 /* Integer comparison types. */
   1037 #define SLJIT_EQUAL			0
   1038 #define SLJIT_EQUAL32			(SLJIT_EQUAL | SLJIT_I32_OP)
   1039 #define SLJIT_ZERO			0
   1040 #define SLJIT_ZERO32			(SLJIT_ZERO | SLJIT_I32_OP)
   1041 #define SLJIT_NOT_EQUAL			1
   1042 #define SLJIT_NOT_EQUAL32		(SLJIT_NOT_EQUAL | SLJIT_I32_OP)
   1043 #define SLJIT_NOT_ZERO			1
   1044 #define SLJIT_NOT_ZERO32		(SLJIT_NOT_ZERO | SLJIT_I32_OP)
   1045 
   1046 #define SLJIT_LESS			2
   1047 #define SLJIT_LESS32			(SLJIT_LESS | SLJIT_I32_OP)
   1048 #define SLJIT_SET_LESS			SLJIT_SET(SLJIT_LESS)
   1049 #define SLJIT_GREATER_EQUAL		3
   1050 #define SLJIT_GREATER_EQUAL32		(SLJIT_GREATER_EQUAL | SLJIT_I32_OP)
   1051 #define SLJIT_SET_GREATER_EQUAL		SLJIT_SET(SLJIT_GREATER_EQUAL)
   1052 #define SLJIT_GREATER			4
   1053 #define SLJIT_GREATER32			(SLJIT_GREATER | SLJIT_I32_OP)
   1054 #define SLJIT_SET_GREATER		SLJIT_SET(SLJIT_GREATER)
   1055 #define SLJIT_LESS_EQUAL		5
   1056 #define SLJIT_LESS_EQUAL32		(SLJIT_LESS_EQUAL | SLJIT_I32_OP)
   1057 #define SLJIT_SET_LESS_EQUAL		SLJIT_SET(SLJIT_LESS_EQUAL)
   1058 #define SLJIT_SIG_LESS			6
   1059 #define SLJIT_SIG_LESS32		(SLJIT_SIG_LESS | SLJIT_I32_OP)
   1060 #define SLJIT_SET_SIG_LESS		SLJIT_SET(SLJIT_SIG_LESS)
   1061 #define SLJIT_SIG_GREATER_EQUAL		7
   1062 #define SLJIT_SIG_GREATER_EQUAL32	(SLJIT_SIG_GREATER_EQUAL | SLJIT_I32_OP)
   1063 #define SLJIT_SET_SIG_GREATER_EQUAL	SLJIT_SET(SLJIT_SET_SIG_GREATER_EQUAL)
   1064 #define SLJIT_SIG_GREATER		8
   1065 #define SLJIT_SIG_GREATER32		(SLJIT_SIG_GREATER | SLJIT_I32_OP)
   1066 #define SLJIT_SET_SIG_GREATER		SLJIT_SET(SLJIT_SIG_GREATER)
   1067 #define SLJIT_SIG_LESS_EQUAL		9
   1068 #define SLJIT_SIG_LESS_EQUAL32		(SLJIT_SIG_LESS_EQUAL | SLJIT_I32_OP)
   1069 #define SLJIT_SET_SIG_LESS_EQUAL	SLJIT_SET(SLJIT_SIG_LESS_EQUAL)
   1070 
   1071 #define SLJIT_OVERFLOW			10
   1072 #define SLJIT_OVERFLOW32		(SLJIT_OVERFLOW | SLJIT_I32_OP)
   1073 #define SLJIT_SET_OVERFLOW		SLJIT_SET(SLJIT_OVERFLOW)
   1074 #define SLJIT_NOT_OVERFLOW		11
   1075 #define SLJIT_NOT_OVERFLOW32		(SLJIT_NOT_OVERFLOW | SLJIT_I32_OP)
   1076 #define SLJIT_SET_NOT_OVERFLOW		SLJIT_SET(SLJIT_NOT_OVERFLOW)
   1077 
   1078 #define SLJIT_MUL_OVERFLOW		12
   1079 #define SLJIT_MUL_OVERFLOW32		(SLJIT_MUL_OVERFLOW | SLJIT_I32_OP)
   1080 #define SLJIT_SET_MUL_OVERFLOW		SLJIT_SET(SLJIT_MUL_OVERFLOW)
   1081 #define SLJIT_MUL_NOT_OVERFLOW		13
   1082 #define SLJIT_MUL_NOT_OVERFLOW32	(SLJIT_MUL_NOT_OVERFLOW | SLJIT_I32_OP)
   1083 #define SLJIT_SET_MUL_NOT_OVERFLOW	SLJIT_SET(SLJIT_MUL_NOT_OVERFLOW)
   1084 
   1085 /* There is no SLJIT_CARRY or SLJIT_NOT_CARRY. */
   1086 #define SLJIT_SET_CARRY			SLJIT_SET(14)
   1087 
   1088 /* Floating point comparison types. */
   1089 #define SLJIT_EQUAL_F64			16
   1090 #define SLJIT_EQUAL_F32			(SLJIT_EQUAL_F64 | SLJIT_F32_OP)
   1091 #define SLJIT_SET_EQUAL_F		SLJIT_SET(SLJIT_EQUAL_F64)
   1092 #define SLJIT_NOT_EQUAL_F64		17
   1093 #define SLJIT_NOT_EQUAL_F32		(SLJIT_NOT_EQUAL_F64 | SLJIT_F32_OP)
   1094 #define SLJIT_SET_NOT_EQUAL_F		SLJIT_SET(SLJIT_NOT_EQUAL_F64)
   1095 #define SLJIT_LESS_F64			18
   1096 #define SLJIT_LESS_F32			(SLJIT_LESS_F64 | SLJIT_F32_OP)
   1097 #define SLJIT_SET_LESS_F		SLJIT_SET(SLJIT_LESS_F64)
   1098 #define SLJIT_GREATER_EQUAL_F64		19
   1099 #define SLJIT_GREATER_EQUAL_F32		(SLJIT_GREATER_EQUAL_F64 | SLJIT_F32_OP)
   1100 #define SLJIT_SET_GREATER_EQUAL_F	SLJIT_SET(SLJIT_GREATER_EQUAL_F64)
   1101 #define SLJIT_GREATER_F64		20
   1102 #define SLJIT_GREATER_F32		(SLJIT_GREATER_F64 | SLJIT_F32_OP)
   1103 #define SLJIT_SET_GREATER_F		SLJIT_SET(SLJIT_GREATER_F64)
   1104 #define SLJIT_LESS_EQUAL_F64		21
   1105 #define SLJIT_LESS_EQUAL_F32		(SLJIT_LESS_EQUAL_F64 | SLJIT_F32_OP)
   1106 #define SLJIT_SET_LESS_EQUAL_F		SLJIT_SET(SLJIT_LESS_EQUAL_F64)
   1107 #define SLJIT_UNORDERED_F64		22
   1108 #define SLJIT_UNORDERED_F32		(SLJIT_UNORDERED_F64 | SLJIT_F32_OP)
   1109 #define SLJIT_SET_UNORDERED_F		SLJIT_SET(SLJIT_UNORDERED_F64)
   1110 #define SLJIT_ORDERED_F64		23
   1111 #define SLJIT_ORDERED_F32		(SLJIT_ORDERED_F64 | SLJIT_F32_OP)
   1112 #define SLJIT_SET_ORDERED_F		SLJIT_SET(SLJIT_ORDERED_F64)
   1113 
   1114 /* Unconditional jump types. */
   1115 #define SLJIT_JUMP			24
   1116 #define SLJIT_FAST_CALL			25
   1117 #define SLJIT_CALL0			26
   1118 #define SLJIT_CALL1			27
   1119 #define SLJIT_CALL2			28
   1120 #define SLJIT_CALL3			29
   1121 
   1122 /* Fast calling method. See sljit_emit_fast_enter / sljit_emit_fast_return. */
   1123 
   1124 /* The target can be changed during runtime (see: sljit_set_jump_addr). */
   1125 #define SLJIT_REWRITABLE_JUMP		0x1000
   1126 
   1127 /* Emit a jump instruction. The destination is not set, only the type of the jump.
   1128     type must be between SLJIT_EQUAL and SLJIT_CALL3
   1129     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
   1130 
   1131    Flags: does not modify flags for conditional and unconditional
   1132           jumps but destroy all flags for calls. */
   1133 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type);
   1134 
   1135 /* Basic arithmetic comparison. In most architectures it is implemented as
   1136    an SLJIT_SUB operation (with SLJIT_UNUSED destination and setting
   1137    appropriate flags) followed by a sljit_emit_jump. However some
   1138    architectures (i.e: ARM64 or MIPS) may employ special optimizations here.
   1139    It is suggested to use this comparison form when appropriate.
   1140     type must be between SLJIT_EQUAL and SLJIT_I_SIG_LESS_EQUAL
   1141     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
   1142    Flags: may destroy flags. */
   1143 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_s32 type,
   1144 	sljit_s32 src1, sljit_sw src1w,
   1145 	sljit_s32 src2, sljit_sw src2w);
   1146 
   1147 /* Basic floating point comparison. In most architectures it is implemented as
   1148    an SLJIT_FCMP operation (setting appropriate flags) followed by a
   1149    sljit_emit_jump. However some architectures (i.e: MIPS) may employ
   1150    special optimizations here. It is suggested to use this comparison form
   1151    when appropriate.
   1152     type must be between SLJIT_EQUAL_F64 and SLJIT_ORDERED_F32
   1153     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
   1154    Flags: destroy flags.
   1155    Note: if either operand is NaN, the behaviour is undefined for
   1156          types up to SLJIT_S_LESS_EQUAL. */
   1157 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_fcmp(struct sljit_compiler *compiler, sljit_s32 type,
   1158 	sljit_s32 src1, sljit_sw src1w,
   1159 	sljit_s32 src2, sljit_sw src2w);
   1160 
   1161 /* Set the destination of the jump to this label. */
   1162 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_label(struct sljit_jump *jump, struct sljit_label* label);
   1163 /* Set the destination address of the jump to this label. */
   1164 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_target(struct sljit_jump *jump, sljit_uw target);
   1165 
   1166 /* Call function or jump anywhere. Both direct and indirect form
   1167     type must be between SLJIT_JUMP and SLJIT_CALL3
   1168     Direct form: set src to SLJIT_IMM() and srcw to the address
   1169     Indirect form: any other valid addressing mode
   1170 
   1171    Flags: does not modify flags for unconditional jumps but
   1172           destroy all flags for calls. */
   1173 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw);
   1174 
   1175 /* Perform the operation using the conditional flags as the second argument.
   1176    Type must always be between SLJIT_EQUAL and SLJIT_S_ORDERED. The value
   1177    represented by the type is 1, if the condition represented by the type
   1178    is fulfilled, and 0 otherwise.
   1179 
   1180    If op == SLJIT_MOV, SLJIT_MOV_S32, SLJIT_MOV_U32:
   1181      Set dst to the value represented by the type (0 or 1).
   1182      Src must be SLJIT_UNUSED, and srcw must be 0
   1183      Flags: - (does not modify flags)
   1184    If op == SLJIT_OR, op == SLJIT_AND, op == SLJIT_XOR
   1185      Performs the binary operation using src as the first, and the value
   1186      represented by type as the second argument.
   1187      Important note: only dst=src and dstw=srcw is supported at the moment!
   1188      Flags: Z (may destroy flags)
   1189    Note: sljit_emit_op_flags does nothing, if dst is SLJIT_UNUSED (regardless of op). */
   1190 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op,
   1191 	sljit_s32 dst, sljit_sw dstw,
   1192 	sljit_s32 src, sljit_sw srcw,
   1193 	sljit_s32 type);
   1194 
   1195 /* Copies the base address of SLJIT_SP + offset to dst.
   1196    Flags: - (may destroy flags) */
   1197 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_local_base(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw offset);
   1198 
   1199 /* The constant can be changed runtime (see: sljit_set_const)
   1200    Flags: - (does not modify flags) */
   1201 SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value);
   1202 
   1203 /* After the code generation the address for label, jump and const instructions
   1204    are computed. Since these structures are freed by sljit_free_compiler, the
   1205    addresses must be preserved by the user program elsewere. */
   1206 static SLJIT_INLINE sljit_uw sljit_get_label_addr(struct sljit_label *label) { return label->addr; }
   1207 static SLJIT_INLINE sljit_uw sljit_get_jump_addr(struct sljit_jump *jump) { return jump->addr; }
   1208 static SLJIT_INLINE sljit_uw sljit_get_const_addr(struct sljit_const *const_) { return const_->addr; }
   1209 
   1210 /* Only the address and executable offset are required to perform dynamic
   1211    code modifications. See sljit_get_executable_offset function. */
   1212 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset);
   1213 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset);
   1214 
   1215 /* --------------------------------------------------------------------- */
   1216 /*  Miscellaneous utility functions                                      */
   1217 /* --------------------------------------------------------------------- */
   1218 
   1219 #define SLJIT_MAJOR_VERSION	0
   1220 #define SLJIT_MINOR_VERSION	93
   1221 
   1222 /* Get the human readable name of the platform. Can be useful on platforms
   1223    like ARM, where ARM and Thumb2 functions can be mixed, and
   1224    it is useful to know the type of the code generator. */
   1225 SLJIT_API_FUNC_ATTRIBUTE const char* sljit_get_platform_name(void);
   1226 
   1227 /* Portable helper function to get an offset of a member. */
   1228 #define SLJIT_OFFSETOF(base, member) ((sljit_sw)(&((base*)0x10)->member) - 0x10)
   1229 
   1230 #if (defined SLJIT_UTIL_GLOBAL_LOCK && SLJIT_UTIL_GLOBAL_LOCK)
   1231 /* This global lock is useful to compile common functions. */
   1232 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_grab_lock(void);
   1233 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_release_lock(void);
   1234 #endif
   1235 
   1236 #if (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK)
   1237 
   1238 /* The sljit_stack is a utility extension of sljit, which provides
   1239    a top-down stack. The stack starts at base and goes down to
   1240    max_limit, so the memory region for this stack is between
   1241    max_limit (inclusive) and base (exclusive). However the
   1242    application can only use the region between limit (inclusive)
   1243    and base (exclusive). The sljit_stack_resize can be used to
   1244    extend this region up to max_limit.
   1245 
   1246    This feature uses the "address space reserve" feature of modern
   1247    operating systems, so instead of allocating a huge memory block
   1248    applications can allocate a small region and extend it later
   1249    without moving the memory area. Hence pointers can be stored
   1250    in this area. */
   1251 
   1252 /* Note: base and max_limit fields are aligned to PAGE_SIZE bytes
   1253      (usually 4 Kbyte or more).
   1254    Note: stack should grow in larger steps, e.g. 4Kbyte, 16Kbyte or more.
   1255    Note: this structure may not be supported by all operating systems.
   1256      Some kind of fallback mechanism is suggested when SLJIT_UTIL_STACK
   1257      is not defined. */
   1258 
   1259 struct sljit_stack {
   1260 	/* User data, anything can be stored here.
   1261 	   Starting with the same value as base. */
   1262 	sljit_u8 *top;
   1263 	/* These members are read only. */
   1264 	sljit_u8 *base;
   1265 	sljit_u8 *limit;
   1266 	sljit_u8 *max_limit;
   1267 };
   1268 
   1269 /* Returns NULL if unsuccessful.
   1270    Note: max_limit contains the maximum stack size in bytes.
   1271    Note: limit contains the starting stack size in bytes.
   1272    Note: the top field is initialized to base.
   1273    Note: see sljit_create_compiler for the explanation of allocator_data. */
   1274 SLJIT_API_FUNC_ATTRIBUTE struct sljit_stack* SLJIT_CALL sljit_allocate_stack(sljit_uw limit, sljit_uw max_limit, void *allocator_data);
   1275 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_free_stack(struct sljit_stack *stack, void *allocator_data);
   1276 
   1277 /* Can be used to increase (allocate) or decrease (free) the memory area.
   1278    Returns with a non-zero value if unsuccessful. If new_limit is greater than
   1279    max_limit, it will fail. It is very easy to implement a stack data structure,
   1280    since the growth ratio can be added to the current limit, and sljit_stack_resize
   1281    will do all the necessary checks. The fields of the stack are not changed if
   1282    sljit_stack_resize fails. */
   1283 SLJIT_API_FUNC_ATTRIBUTE sljit_sw SLJIT_CALL sljit_stack_resize(struct sljit_stack *stack, sljit_u8 *new_limit);
   1284 
   1285 #endif /* (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) */
   1286 
   1287 #if !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
   1288 
   1289 /* Get the entry address of a given function. */
   1290 #define SLJIT_FUNC_OFFSET(func_name)	((sljit_sw)func_name)
   1291 
   1292 #else /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
   1293 
   1294 /* All JIT related code should be placed in the same context (library, binary, etc.). */
   1295 
   1296 #define SLJIT_FUNC_OFFSET(func_name)	(*(sljit_sw*)(void*)func_name)
   1297 
   1298 /* For powerpc64, the function pointers point to a context descriptor. */
   1299 struct sljit_function_context {
   1300 	sljit_sw addr;
   1301 	sljit_sw r2;
   1302 	sljit_sw r11;
   1303 };
   1304 
   1305 /* Fill the context arguments using the addr and the function.
   1306    If func_ptr is NULL, it will not be set to the address of context
   1307    If addr is NULL, the function address also comes from the func pointer. */
   1308 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_sw addr, void* func);
   1309 
   1310 #endif /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
   1311 
   1312 #if (defined SLJIT_EXECUTABLE_ALLOCATOR && SLJIT_EXECUTABLE_ALLOCATOR)
   1313 /* Free unused executable memory. The allocator keeps some free memory
   1314    around to reduce the number of OS executable memory allocations.
   1315    This improves performance since these calls are costly. However
   1316    it is sometimes desired to free all unused memory regions, e.g.
   1317    before the application terminates. */
   1318 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_unused_memory_exec(void);
   1319 #endif
   1320 
   1321 /* --------------------------------------------------------------------- */
   1322 /*  CPU specific functions                                               */
   1323 /* --------------------------------------------------------------------- */
   1324 
   1325 /* The following function is a helper function for sljit_emit_op_custom.
   1326    It returns with the real machine register index ( >=0 ) of any SLJIT_R,
   1327    SLJIT_S and SLJIT_SP registers.
   1328 
   1329    Note: it returns with -1 for virtual registers (only on x86-32). */
   1330 
   1331 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 reg);
   1332 
   1333 /* The following function is a helper function for sljit_emit_op_custom.
   1334    It returns with the real machine register index of any SLJIT_FLOAT register.
   1335 
   1336    Note: the index is always an even number on ARM (except ARM-64), MIPS, and SPARC. */
   1337 
   1338 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_float_register_index(sljit_s32 reg);
   1339 
   1340 /* Any instruction can be inserted into the instruction stream by
   1341    sljit_emit_op_custom. It has a similar purpose as inline assembly.
   1342    The size parameter must match to the instruction size of the target
   1343    architecture:
   1344 
   1345          x86: 0 < size <= 15. The instruction argument can be byte aligned.
   1346       Thumb2: if size == 2, the instruction argument must be 2 byte aligned.
   1347               if size == 4, the instruction argument must be 4 byte aligned.
   1348    Otherwise: size must be 4 and instruction argument must be 4 byte aligned. */
   1349 
   1350 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler,
   1351 	void *instruction, sljit_s32 size);
   1352 
   1353 /* Define the currently available CPU status flags. It is usually used after an
   1354    sljit_emit_op_custom call to define which flags are set. */
   1355 
   1356 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_current_flags(struct sljit_compiler *compiler,
   1357 	sljit_s32 current_flags);
   1358 
   1359 #if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
   1360 
   1361 /* Returns with non-zero if sse2 is available. */
   1362 
   1363 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_x86_is_sse2_available(void);
   1364 
   1365 /* Returns with non-zero if cmov instruction is available. */
   1366 
   1367 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_x86_is_cmov_available(void);
   1368 
   1369 /* Emit a conditional mov instruction on x86 CPUs. This instruction
   1370    moves src to destination, if the condition is satisfied. Unlike
   1371    other arithmetic instructions, destination must be a register.
   1372    Before such instructions are emitted, cmov support should be
   1373    checked by sljit_x86_is_cmov_available function.
   1374     type must be between SLJIT_EQUAL and SLJIT_S_ORDERED
   1375     dst_reg must be a valid register and it can be combined
   1376       with SLJIT_I32_OP to perform 32 bit arithmetic
   1377    Flags: - (does not modify flags)
   1378  */
   1379 
   1380 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_x86_emit_cmov(struct sljit_compiler *compiler,
   1381 	sljit_s32 type,
   1382 	sljit_s32 dst_reg,
   1383 	sljit_s32 src, sljit_sw srcw);
   1384 
   1385 #endif
   1386 
   1387 #endif /* _SLJIT_LIR_H_ */
   1388