Home | History | Annotate | Line # | Download | only in builtins
      1 //===-- lib/divsf3.c - Single-precision division ------------------*- C -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is dual licensed under the MIT and the University of Illinois Open
      6 // Source Licenses. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements single-precision soft-float division
     11 // with the IEEE-754 default rounding (to nearest, ties to even).
     12 //
     13 // For simplicity, this implementation currently flushes denormals to zero.
     14 // It should be a fairly straightforward exercise to implement gradual
     15 // underflow with correct rounding.
     16 //
     17 //===----------------------------------------------------------------------===//
     18 
     19 #define SINGLE_PRECISION
     20 #include "fp_lib.h"
     21 
     22 COMPILER_RT_ABI fp_t
     23 __divsf3(fp_t a, fp_t b) {
     24 
     25     const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
     26     const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
     27     const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
     28 
     29     rep_t aSignificand = toRep(a) & significandMask;
     30     rep_t bSignificand = toRep(b) & significandMask;
     31     int scale = 0;
     32 
     33     // Detect if a or b is zero, denormal, infinity, or NaN.
     34     if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
     35 
     36         const rep_t aAbs = toRep(a) & absMask;
     37         const rep_t bAbs = toRep(b) & absMask;
     38 
     39         // NaN / anything = qNaN
     40         if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
     41         // anything / NaN = qNaN
     42         if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
     43 
     44         if (aAbs == infRep) {
     45             // infinity / infinity = NaN
     46             if (bAbs == infRep) return fromRep(qnanRep);
     47             // infinity / anything else = +/- infinity
     48             else return fromRep(aAbs | quotientSign);
     49         }
     50 
     51         // anything else / infinity = +/- 0
     52         if (bAbs == infRep) return fromRep(quotientSign);
     53 
     54         if (!aAbs) {
     55             // zero / zero = NaN
     56             if (!bAbs) return fromRep(qnanRep);
     57             // zero / anything else = +/- zero
     58             else return fromRep(quotientSign);
     59         }
     60         // anything else / zero = +/- infinity
     61         if (!bAbs) return fromRep(infRep | quotientSign);
     62 
     63         // one or both of a or b is denormal, the other (if applicable) is a
     64         // normal number.  Renormalize one or both of a and b, and set scale to
     65         // include the necessary exponent adjustment.
     66         if (aAbs < implicitBit) scale += normalize(&aSignificand);
     67         if (bAbs < implicitBit) scale -= normalize(&bSignificand);
     68     }
     69 
     70     // Or in the implicit significand bit.  (If we fell through from the
     71     // denormal path it was already set by normalize( ), but setting it twice
     72     // won't hurt anything.)
     73     aSignificand |= implicitBit;
     74     bSignificand |= implicitBit;
     75     int quotientExponent = aExponent - bExponent + scale;
     76 
     77     // Align the significand of b as a Q31 fixed-point number in the range
     78     // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
     79     // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2.  This
     80     // is accurate to about 3.5 binary digits.
     81     uint32_t q31b = bSignificand << 8;
     82     uint32_t reciprocal = UINT32_C(0x7504f333) - q31b;
     83 
     84     // Now refine the reciprocal estimate using a Newton-Raphson iteration:
     85     //
     86     //     x1 = x0 * (2 - x0 * b)
     87     //
     88     // This doubles the number of correct binary digits in the approximation
     89     // with each iteration, so after three iterations, we have about 28 binary
     90     // digits of accuracy.
     91     uint32_t correction;
     92     correction = -((uint64_t)reciprocal * q31b >> 32);
     93     reciprocal = (uint64_t)reciprocal * correction >> 31;
     94     correction = -((uint64_t)reciprocal * q31b >> 32);
     95     reciprocal = (uint64_t)reciprocal * correction >> 31;
     96     correction = -((uint64_t)reciprocal * q31b >> 32);
     97     reciprocal = (uint64_t)reciprocal * correction >> 31;
     98 
     99     // Exhaustive testing shows that the error in reciprocal after three steps
    100     // is in the interval [-0x1.f58108p-31, 0x1.d0e48cp-29], in line with our
    101     // expectations.  We bump the reciprocal by a tiny value to force the error
    102     // to be strictly positive (in the range [0x1.4fdfp-37,0x1.287246p-29], to
    103     // be specific).  This also causes 1/1 to give a sensible approximation
    104     // instead of zero (due to overflow).
    105     reciprocal -= 2;
    106 
    107     // The numerical reciprocal is accurate to within 2^-28, lies in the
    108     // interval [0x1.000000eep-1, 0x1.fffffffcp-1], and is strictly smaller
    109     // than the true reciprocal of b.  Multiplying a by this reciprocal thus
    110     // gives a numerical q = a/b in Q24 with the following properties:
    111     //
    112     //    1. q < a/b
    113     //    2. q is in the interval [0x1.000000eep-1, 0x1.fffffffcp0)
    114     //    3. the error in q is at most 2^-24 + 2^-27 -- the 2^24 term comes
    115     //       from the fact that we truncate the product, and the 2^27 term
    116     //       is the error in the reciprocal of b scaled by the maximum
    117     //       possible value of a.  As a consequence of this error bound,
    118     //       either q or nextafter(q) is the correctly rounded
    119     rep_t quotient = (uint64_t)reciprocal*(aSignificand << 1) >> 32;
    120 
    121     // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
    122     // In either case, we are going to compute a residual of the form
    123     //
    124     //     r = a - q*b
    125     //
    126     // We know from the construction of q that r satisfies:
    127     //
    128     //     0 <= r < ulp(q)*b
    129     //
    130     // if r is greater than 1/2 ulp(q)*b, then q rounds up.  Otherwise, we
    131     // already have the correct result.  The exact halfway case cannot occur.
    132     // We also take this time to right shift quotient if it falls in the [1,2)
    133     // range and adjust the exponent accordingly.
    134     rep_t residual;
    135     if (quotient < (implicitBit << 1)) {
    136         residual = (aSignificand << 24) - quotient * bSignificand;
    137         quotientExponent--;
    138     } else {
    139         quotient >>= 1;
    140         residual = (aSignificand << 23) - quotient * bSignificand;
    141     }
    142 
    143     const int writtenExponent = quotientExponent + exponentBias;
    144 
    145     if (writtenExponent >= maxExponent) {
    146         // If we have overflowed the exponent, return infinity.
    147         return fromRep(infRep | quotientSign);
    148     }
    149 
    150     else if (writtenExponent < 1) {
    151         // Flush denormals to zero.  In the future, it would be nice to add
    152         // code to round them correctly.
    153         return fromRep(quotientSign);
    154     }
    155 
    156     else {
    157         const bool round = (residual << 1) > bSignificand;
    158         // Clear the implicit bit
    159         rep_t absResult = quotient & significandMask;
    160         // Insert the exponent
    161         absResult |= (rep_t)writtenExponent << significandBits;
    162         // Round
    163         absResult += round;
    164         // Insert the sign and return
    165         return fromRep(absResult | quotientSign);
    166     }
    167 }
    168 
    169 #if defined(__ARM_EABI__)
    170 #if defined(COMPILER_RT_ARMHF_TARGET)
    171 AEABI_RTABI fp_t __aeabi_fdiv(fp_t a, fp_t b) {
    172   return __divsf3(a, b);
    173 }
    174 #else
    175 AEABI_RTABI fp_t __aeabi_fdiv(fp_t a, fp_t b) COMPILER_RT_ALIAS(__divsf3);
    176 #endif
    177 #endif
    178