Home | History | Annotate | Line # | Download | only in i915
      1 /*	$NetBSD: i915_request.c,v 1.17 2022/07/11 18:56:00 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright  2008-2015 Intel Corporation
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice (including the next
     14  * paragraph) shall be included in all copies or substantial portions of the
     15  * Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     22  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     23  * IN THE SOFTWARE.
     24  *
     25  */
     26 
     27 #include <sys/cdefs.h>
     28 __KERNEL_RCSID(0, "$NetBSD: i915_request.c,v 1.17 2022/07/11 18:56:00 riastradh Exp $");
     29 
     30 #include <linux/dma-fence-array.h>
     31 #include <linux/irq_work.h>
     32 #include <linux/prefetch.h>
     33 #include <linux/sched.h>
     34 #include <linux/sched/clock.h>
     35 #include <linux/sched/signal.h>
     36 
     37 #include "gem/i915_gem_context.h"
     38 #include "gt/intel_context.h"
     39 #include "gt/intel_ring.h"
     40 #include "gt/intel_rps.h"
     41 
     42 #include "i915_active.h"
     43 #include "i915_drv.h"
     44 #include "i915_globals.h"
     45 #include "i915_trace.h"
     46 #include "intel_pm.h"
     47 
     48 struct execute_cb {
     49 	struct list_head link;
     50 	struct irq_work work;
     51 	struct i915_sw_fence *fence;
     52 	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
     53 	struct i915_request *signal;
     54 };
     55 
     56 static struct i915_global_request {
     57 	struct i915_global base;
     58 	struct kmem_cache *slab_requests;
     59 	struct kmem_cache *slab_dependencies;
     60 	struct kmem_cache *slab_execute_cbs;
     61 } global;
     62 
     63 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
     64 {
     65 	return dev_name(to_request(fence)->i915->drm.dev);
     66 }
     67 
     68 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
     69 {
     70 	const struct i915_gem_context *ctx;
     71 
     72 	/*
     73 	 * The timeline struct (as part of the ppgtt underneath a context)
     74 	 * may be freed when the request is no longer in use by the GPU.
     75 	 * We could extend the life of a context to beyond that of all
     76 	 * fences, possibly keeping the hw resource around indefinitely,
     77 	 * or we just give them a false name. Since
     78 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
     79 	 * lie seems justifiable.
     80 	 */
     81 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
     82 		return "signaled";
     83 
     84 	ctx = i915_request_gem_context(to_request(fence));
     85 	if (!ctx)
     86 		return "[" DRIVER_NAME "]";
     87 
     88 	return ctx->name;
     89 }
     90 
     91 static bool i915_fence_signaled(struct dma_fence *fence)
     92 {
     93 	return i915_request_completed(to_request(fence));
     94 }
     95 
     96 static bool i915_fence_enable_signaling(struct dma_fence *fence)
     97 {
     98 	return i915_request_enable_breadcrumb(to_request(fence));
     99 }
    100 
    101 static signed long i915_fence_wait(struct dma_fence *fence,
    102 				   bool interruptible,
    103 				   signed long timeout)
    104 {
    105 	return i915_request_wait(to_request(fence),
    106 				 interruptible | I915_WAIT_PRIORITY,
    107 				 timeout);
    108 }
    109 
    110 static void i915_fence_release(struct dma_fence *fence)
    111 {
    112 	struct i915_request *rq = to_request(fence);
    113 
    114 	/*
    115 	 * The request is put onto a RCU freelist (i.e. the address
    116 	 * is immediately reused), mark the fences as being freed now.
    117 	 * Otherwise the debugobjects for the fences are only marked as
    118 	 * freed when the slab cache itself is freed, and so we would get
    119 	 * caught trying to reuse dead objects.
    120 	 */
    121 #ifndef __NetBSD__
    122 	i915_sw_fence_fini(&rq->submit);
    123 	i915_sw_fence_fini(&rq->semaphore);
    124 #endif
    125 
    126 	kmem_cache_free(global.slab_requests, rq);
    127 }
    128 
    129 const struct dma_fence_ops i915_fence_ops = {
    130 	.get_driver_name = i915_fence_get_driver_name,
    131 	.get_timeline_name = i915_fence_get_timeline_name,
    132 	.enable_signaling = i915_fence_enable_signaling,
    133 	.signaled = i915_fence_signaled,
    134 	.wait = i915_fence_wait,
    135 	.release = i915_fence_release,
    136 };
    137 
    138 static void irq_execute_cb(struct irq_work *wrk)
    139 {
    140 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
    141 
    142 	i915_sw_fence_complete(cb->fence);
    143 	kmem_cache_free(global.slab_execute_cbs, cb);
    144 }
    145 
    146 static void irq_execute_cb_hook(struct irq_work *wrk)
    147 {
    148 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
    149 
    150 	cb->hook(container_of(cb->fence, struct i915_request, submit),
    151 		 &cb->signal->fence);
    152 	i915_request_put(cb->signal);
    153 
    154 	irq_execute_cb(wrk);
    155 }
    156 
    157 static void __notify_execute_cb(struct i915_request *rq)
    158 {
    159 	struct execute_cb *cb;
    160 
    161 	lockdep_assert_held(&rq->lock);
    162 
    163 	if (list_empty(&rq->execute_cb))
    164 		return;
    165 
    166 	list_for_each_entry(cb, &rq->execute_cb, link)
    167 		irq_work_queue(&cb->work);
    168 
    169 	/*
    170 	 * XXX Rollback on __i915_request_unsubmit()
    171 	 *
    172 	 * In the future, perhaps when we have an active time-slicing scheduler,
    173 	 * it will be interesting to unsubmit parallel execution and remove
    174 	 * busywaits from the GPU until their master is restarted. This is
    175 	 * quite hairy, we have to carefully rollback the fence and do a
    176 	 * preempt-to-idle cycle on the target engine, all the while the
    177 	 * master execute_cb may refire.
    178 	 */
    179 	INIT_LIST_HEAD(&rq->execute_cb);
    180 }
    181 
    182 static inline void
    183 remove_from_client(struct i915_request *request)
    184 {
    185 	struct drm_i915_file_private *file_priv;
    186 
    187 	if (!READ_ONCE(request->file_priv))
    188 		return;
    189 
    190 	rcu_read_lock();
    191 	file_priv = xchg(&request->file_priv, NULL);
    192 	if (file_priv) {
    193 		spin_lock(&file_priv->mm.lock);
    194 		list_del(&request->client_link);
    195 		spin_unlock(&file_priv->mm.lock);
    196 	}
    197 	rcu_read_unlock();
    198 }
    199 
    200 static void free_capture_list(struct i915_request *request)
    201 {
    202 	struct i915_capture_list *capture;
    203 
    204 	capture = fetch_and_zero(&request->capture_list);
    205 	while (capture) {
    206 		struct i915_capture_list *next = capture->next;
    207 
    208 		kfree(capture);
    209 		capture = next;
    210 	}
    211 }
    212 
    213 static void remove_from_engine(struct i915_request *rq)
    214 {
    215 	struct intel_engine_cs *engine, *locked;
    216 
    217 	/*
    218 	 * Virtual engines complicate acquiring the engine timeline lock,
    219 	 * as their rq->engine pointer is not stable until under that
    220 	 * engine lock. The simple ploy we use is to take the lock then
    221 	 * check that the rq still belongs to the newly locked engine.
    222 	 */
    223 	locked = READ_ONCE(rq->engine);
    224 	spin_lock_irq(&locked->active.lock);
    225 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
    226 		spin_unlock(&locked->active.lock);
    227 		spin_lock(&engine->active.lock);
    228 		locked = engine;
    229 	}
    230 	list_del_init(&rq->sched.link);
    231 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
    232 	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
    233 	spin_unlock_irq(&locked->active.lock);
    234 }
    235 
    236 bool i915_request_retire(struct i915_request *rq)
    237 {
    238 	if (!i915_request_completed(rq))
    239 		return false;
    240 
    241 	RQ_TRACE(rq, "\n");
    242 
    243 	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
    244 	trace_i915_request_retire(rq);
    245 
    246 	/*
    247 	 * We know the GPU must have read the request to have
    248 	 * sent us the seqno + interrupt, so use the position
    249 	 * of tail of the request to update the last known position
    250 	 * of the GPU head.
    251 	 *
    252 	 * Note this requires that we are always called in request
    253 	 * completion order.
    254 	 */
    255 	GEM_BUG_ON(!list_is_first(&rq->link,
    256 				  &i915_request_timeline(rq)->requests));
    257 	rq->ring->head = rq->postfix;
    258 
    259 	/*
    260 	 * We only loosely track inflight requests across preemption,
    261 	 * and so we may find ourselves attempting to retire a _completed_
    262 	 * request that we have removed from the HW and put back on a run
    263 	 * queue.
    264 	 */
    265 	remove_from_engine(rq);
    266 
    267 	spin_lock_irq(&rq->lock);
    268 	i915_request_mark_complete(rq);
    269 	if (!i915_request_signaled(rq))
    270 		dma_fence_signal_locked(&rq->fence);
    271 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
    272 		i915_request_cancel_breadcrumb(rq);
    273 	if (i915_request_has_waitboost(rq)) {
    274 		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
    275 		atomic_dec(&rq->engine->gt->rps.num_waiters);
    276 	}
    277 	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
    278 		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
    279 		__notify_execute_cb(rq);
    280 	}
    281 	GEM_BUG_ON(!list_empty(&rq->execute_cb));
    282 	spin_unlock_irq(&rq->lock);
    283 
    284 	remove_from_client(rq);
    285 	list_del(&rq->link);
    286 
    287 	intel_context_exit(rq->context);
    288 	intel_context_unpin(rq->context);
    289 
    290 	free_capture_list(rq);
    291 	i915_sched_node_fini(&rq->sched);
    292 	i915_request_put(rq);
    293 
    294 	return true;
    295 }
    296 
    297 void i915_request_retire_upto(struct i915_request *rq)
    298 {
    299 	struct intel_timeline * const tl = i915_request_timeline(rq);
    300 	struct i915_request *tmp;
    301 
    302 	RQ_TRACE(rq, "\n");
    303 
    304 	GEM_BUG_ON(!i915_request_completed(rq));
    305 
    306 	do {
    307 		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
    308 	} while (i915_request_retire(tmp) && tmp != rq);
    309 }
    310 
    311 static int
    312 __await_execution(struct i915_request *rq,
    313 		  struct i915_request *signal,
    314 		  void (*hook)(struct i915_request *rq,
    315 			       struct dma_fence *signal),
    316 		  gfp_t gfp)
    317 {
    318 	struct execute_cb *cb;
    319 
    320 	if (i915_request_is_active(signal)) {
    321 		if (hook)
    322 			hook(rq, &signal->fence);
    323 		return 0;
    324 	}
    325 
    326 	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
    327 	if (!cb)
    328 		return -ENOMEM;
    329 
    330 	cb->fence = &rq->submit;
    331 	i915_sw_fence_await(cb->fence);
    332 	init_irq_work(&cb->work, irq_execute_cb);
    333 
    334 	if (hook) {
    335 		cb->hook = hook;
    336 		cb->signal = i915_request_get(signal);
    337 		cb->work.func = irq_execute_cb_hook;
    338 	}
    339 
    340 	spin_lock_irq(&signal->lock);
    341 	if (i915_request_is_active(signal)) {
    342 		if (hook) {
    343 			hook(rq, &signal->fence);
    344 			i915_request_put(signal);
    345 		}
    346 		i915_sw_fence_complete(cb->fence);
    347 		kmem_cache_free(global.slab_execute_cbs, cb);
    348 	} else {
    349 		list_add_tail(&cb->link, &signal->execute_cb);
    350 	}
    351 	spin_unlock_irq(&signal->lock);
    352 
    353 	/* Copy across semaphore status as we need the same behaviour */
    354 	rq->sched.flags |= signal->sched.flags;
    355 	return 0;
    356 }
    357 
    358 bool __i915_request_submit(struct i915_request *request)
    359 {
    360 	struct intel_engine_cs *engine = request->engine;
    361 	bool result = false;
    362 
    363 	RQ_TRACE(request, "\n");
    364 
    365 	GEM_BUG_ON(!irqs_disabled());
    366 	lockdep_assert_held(&engine->active.lock);
    367 
    368 	/*
    369 	 * With the advent of preempt-to-busy, we frequently encounter
    370 	 * requests that we have unsubmitted from HW, but left running
    371 	 * until the next ack and so have completed in the meantime. On
    372 	 * resubmission of that completed request, we can skip
    373 	 * updating the payload, and execlists can even skip submitting
    374 	 * the request.
    375 	 *
    376 	 * We must remove the request from the caller's priority queue,
    377 	 * and the caller must only call us when the request is in their
    378 	 * priority queue, under the active.lock. This ensures that the
    379 	 * request has *not* yet been retired and we can safely move
    380 	 * the request into the engine->active.list where it will be
    381 	 * dropped upon retiring. (Otherwise if resubmit a *retired*
    382 	 * request, this would be a horrible use-after-free.)
    383 	 */
    384 	if (i915_request_completed(request))
    385 		goto xfer;
    386 
    387 	if (intel_context_is_banned(request->context))
    388 		i915_request_skip(request, -EIO);
    389 
    390 	/*
    391 	 * Are we using semaphores when the gpu is already saturated?
    392 	 *
    393 	 * Using semaphores incurs a cost in having the GPU poll a
    394 	 * memory location, busywaiting for it to change. The continual
    395 	 * memory reads can have a noticeable impact on the rest of the
    396 	 * system with the extra bus traffic, stalling the cpu as it too
    397 	 * tries to access memory across the bus (perf stat -e bus-cycles).
    398 	 *
    399 	 * If we installed a semaphore on this request and we only submit
    400 	 * the request after the signaler completed, that indicates the
    401 	 * system is overloaded and using semaphores at this time only
    402 	 * increases the amount of work we are doing. If so, we disable
    403 	 * further use of semaphores until we are idle again, whence we
    404 	 * optimistically try again.
    405 	 */
    406 	if (request->sched.semaphores &&
    407 	    i915_sw_fence_signaled(&request->semaphore))
    408 		engine->saturated |= request->sched.semaphores;
    409 
    410 	engine->emit_fini_breadcrumb(request,
    411 				     request->ring->vaddr + request->postfix);
    412 
    413 	trace_i915_request_execute(request);
    414 	engine->serial++;
    415 	result = true;
    416 
    417 xfer:	/* We may be recursing from the signal callback of another i915 fence */
    418 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
    419 
    420 	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
    421 		list_move_tail(&request->sched.link, &engine->active.requests);
    422 		clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
    423 	}
    424 
    425 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
    426 	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
    427 	    !i915_request_enable_breadcrumb(request))
    428 		intel_engine_signal_breadcrumbs(engine);
    429 
    430 	__notify_execute_cb(request);
    431 
    432 	spin_unlock(&request->lock);
    433 
    434 	return result;
    435 }
    436 
    437 void i915_request_submit(struct i915_request *request)
    438 {
    439 	struct intel_engine_cs *engine = request->engine;
    440 	unsigned long flags;
    441 
    442 	/* Will be called from irq-context when using foreign fences. */
    443 	spin_lock_irqsave(&engine->active.lock, flags);
    444 
    445 	__i915_request_submit(request);
    446 
    447 	spin_unlock_irqrestore(&engine->active.lock, flags);
    448 }
    449 
    450 void __i915_request_unsubmit(struct i915_request *request)
    451 {
    452 	struct intel_engine_cs *engine __lockdep_used = request->engine;
    453 
    454 	RQ_TRACE(request, "\n");
    455 
    456 	GEM_BUG_ON(!irqs_disabled());
    457 	lockdep_assert_held(&engine->active.lock);
    458 
    459 	/*
    460 	 * Only unwind in reverse order, required so that the per-context list
    461 	 * is kept in seqno/ring order.
    462 	 */
    463 
    464 	/* We may be recursing from the signal callback of another i915 fence */
    465 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
    466 
    467 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
    468 		i915_request_cancel_breadcrumb(request);
    469 
    470 	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
    471 	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
    472 
    473 	spin_unlock(&request->lock);
    474 
    475 	/* We've already spun, don't charge on resubmitting. */
    476 	if (request->sched.semaphores && i915_request_started(request)) {
    477 		request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
    478 		request->sched.semaphores = 0;
    479 	}
    480 
    481 	/*
    482 	 * We don't need to wake_up any waiters on request->execute, they
    483 	 * will get woken by any other event or us re-adding this request
    484 	 * to the engine timeline (__i915_request_submit()). The waiters
    485 	 * should be quite adapt at finding that the request now has a new
    486 	 * global_seqno to the one they went to sleep on.
    487 	 */
    488 }
    489 
    490 void i915_request_unsubmit(struct i915_request *request)
    491 {
    492 	struct intel_engine_cs *engine = request->engine;
    493 	unsigned long flags;
    494 
    495 	/* Will be called from irq-context when using foreign fences. */
    496 	spin_lock_irqsave(&engine->active.lock, flags);
    497 
    498 	__i915_request_unsubmit(request);
    499 
    500 	spin_unlock_irqrestore(&engine->active.lock, flags);
    501 }
    502 
    503 static int __i915_sw_fence_call
    504 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
    505 {
    506 	struct i915_request *request =
    507 		container_of(fence, typeof(*request), submit);
    508 
    509 	switch (state) {
    510 	case FENCE_COMPLETE:
    511 		trace_i915_request_submit(request);
    512 
    513 		if (unlikely(fence->error))
    514 			i915_request_skip(request, fence->error);
    515 
    516 		/*
    517 		 * We need to serialize use of the submit_request() callback
    518 		 * with its hotplugging performed during an emergency
    519 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
    520 		 * critical section in order to force i915_gem_set_wedged() to
    521 		 * wait until the submit_request() is completed before
    522 		 * proceeding.
    523 		 */
    524 		rcu_read_lock();
    525 		request->engine->submit_request(request);
    526 		rcu_read_unlock();
    527 		break;
    528 
    529 	case FENCE_FREE:
    530 		i915_request_put(request);
    531 		break;
    532 	}
    533 
    534 	return NOTIFY_DONE;
    535 }
    536 
    537 static int __i915_sw_fence_call
    538 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
    539 {
    540 	struct i915_request *request =
    541 		container_of(fence, typeof(*request), semaphore);
    542 
    543 	switch (state) {
    544 	case FENCE_COMPLETE:
    545 		i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
    546 		break;
    547 
    548 	case FENCE_FREE:
    549 		i915_request_put(request);
    550 		break;
    551 	}
    552 
    553 	return NOTIFY_DONE;
    554 }
    555 
    556 static void retire_requests(struct intel_timeline *tl)
    557 {
    558 	struct i915_request *rq, *rn;
    559 
    560 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
    561 		if (!i915_request_retire(rq))
    562 			break;
    563 }
    564 
    565 static noinline struct i915_request *
    566 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
    567 {
    568 	struct i915_request *rq;
    569 
    570 	if (list_empty(&tl->requests))
    571 		goto out;
    572 
    573 	if (!gfpflags_allow_blocking(gfp))
    574 		goto out;
    575 
    576 	/* Move our oldest request to the slab-cache (if not in use!) */
    577 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
    578 	i915_request_retire(rq);
    579 
    580 	rq = kmem_cache_alloc(global.slab_requests,
    581 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
    582 	if (rq)
    583 		return rq;
    584 
    585 	/* Ratelimit ourselves to prevent oom from malicious clients */
    586 	rq = list_last_entry(&tl->requests, typeof(*rq), link);
    587 	cond_synchronize_rcu(rq->rcustate);
    588 
    589 	/* Retire our old requests in the hope that we free some */
    590 	retire_requests(tl);
    591 
    592 out:
    593 	return kmem_cache_alloc(global.slab_requests, gfp);
    594 }
    595 
    596 static void __i915_request_ctor(void *arg)
    597 {
    598 	struct i915_request *rq = arg;
    599 
    600 	spin_lock_init(&rq->lock);
    601 	i915_sched_node_init(&rq->sched);
    602 	i915_sw_fence_init(&rq->submit, submit_notify);
    603 	i915_sw_fence_init(&rq->semaphore, semaphore_notify);
    604 
    605 	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
    606 
    607 	rq->file_priv = NULL;
    608 	rq->capture_list = NULL;
    609 
    610 	INIT_LIST_HEAD(&rq->execute_cb);
    611 }
    612 
    613 static void __i915_request_dtor(void *arg)
    614 {
    615 	struct i915_request *rq = arg;
    616 
    617 	dma_fence_destroy(&rq->fence);
    618 #ifdef __NetBSD__
    619 	i915_sw_fence_fini(&rq->submit);
    620 	i915_sw_fence_fini(&rq->semaphore);
    621 #endif
    622 	spin_lock_destroy(&rq->lock);
    623 }
    624 
    625 struct i915_request *
    626 __i915_request_create(struct intel_context *ce, gfp_t gfp)
    627 {
    628 	struct intel_timeline *tl = ce->timeline;
    629 	struct i915_request *rq;
    630 	u32 seqno;
    631 	int ret;
    632 
    633 	might_sleep_if(gfpflags_allow_blocking(gfp));
    634 
    635 	/* Check that the caller provided an already pinned context */
    636 	__intel_context_pin(ce);
    637 
    638 	/*
    639 	 * Beware: Dragons be flying overhead.
    640 	 *
    641 	 * We use RCU to look up requests in flight. The lookups may
    642 	 * race with the request being allocated from the slab freelist.
    643 	 * That is the request we are writing to here, may be in the process
    644 	 * of being read by __i915_active_request_get_rcu(). As such,
    645 	 * we have to be very careful when overwriting the contents. During
    646 	 * the RCU lookup, we change chase the request->engine pointer,
    647 	 * read the request->global_seqno and increment the reference count.
    648 	 *
    649 	 * The reference count is incremented atomically. If it is zero,
    650 	 * the lookup knows the request is unallocated and complete. Otherwise,
    651 	 * it is either still in use, or has been reallocated and reset
    652 	 * with dma_fence_init(). This increment is safe for release as we
    653 	 * check that the request we have a reference to and matches the active
    654 	 * request.
    655 	 *
    656 	 * Before we increment the refcount, we chase the request->engine
    657 	 * pointer. We must not call kmem_cache_zalloc() or else we set
    658 	 * that pointer to NULL and cause a crash during the lookup. If
    659 	 * we see the request is completed (based on the value of the
    660 	 * old engine and seqno), the lookup is complete and reports NULL.
    661 	 * If we decide the request is not completed (new engine or seqno),
    662 	 * then we grab a reference and double check that it is still the
    663 	 * active request - which it won't be and restart the lookup.
    664 	 *
    665 	 * Do not use kmem_cache_zalloc() here!
    666 	 */
    667 	rq = kmem_cache_alloc(global.slab_requests,
    668 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
    669 	if (unlikely(!rq)) {
    670 		rq = request_alloc_slow(tl, gfp);
    671 		if (!rq) {
    672 			ret = -ENOMEM;
    673 			goto err_unreserve;
    674 		}
    675 	}
    676 
    677 	rq->i915 = ce->engine->i915;
    678 	rq->context = ce;
    679 	rq->engine = ce->engine;
    680 	rq->ring = ce->ring;
    681 	rq->execution_mask = ce->engine->mask;
    682 
    683 #ifdef __NetBSD__
    684 	dma_fence_reset(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
    685 #else
    686 	kref_init(&rq->fence.refcount);
    687 	rq->fence.flags = 0;
    688 	rq->fence.error = 0;
    689 	INIT_LIST_HEAD(&rq->fence.cb_list);
    690 #endif
    691 
    692 	ret = intel_timeline_get_seqno(tl, rq, &seqno);
    693 	if (ret)
    694 		goto err_free;
    695 
    696 	rq->fence.context = tl->fence_context;
    697 	rq->fence.seqno = seqno;
    698 
    699 	RCU_INIT_POINTER(rq->timeline, tl);
    700 	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
    701 	rq->hwsp_seqno = tl->hwsp_seqno;
    702 
    703 	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
    704 
    705 	/* We bump the ref for the fence chain */
    706 	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
    707 	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
    708 
    709 	i915_sched_node_reinit(&rq->sched);
    710 
    711 	/* No zalloc, everything must be cleared after use */
    712 	rq->batch = NULL;
    713 	GEM_BUG_ON(rq->file_priv);
    714 	GEM_BUG_ON(rq->capture_list);
    715 	GEM_BUG_ON(!list_empty(&rq->execute_cb));
    716 
    717 	/*
    718 	 * Reserve space in the ring buffer for all the commands required to
    719 	 * eventually emit this request. This is to guarantee that the
    720 	 * i915_request_add() call can't fail. Note that the reserve may need
    721 	 * to be redone if the request is not actually submitted straight
    722 	 * away, e.g. because a GPU scheduler has deferred it.
    723 	 *
    724 	 * Note that due to how we add reserved_space to intel_ring_begin()
    725 	 * we need to double our request to ensure that if we need to wrap
    726 	 * around inside i915_request_add() there is sufficient space at
    727 	 * the beginning of the ring as well.
    728 	 */
    729 	rq->reserved_space =
    730 		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
    731 
    732 	/*
    733 	 * Record the position of the start of the request so that
    734 	 * should we detect the updated seqno part-way through the
    735 	 * GPU processing the request, we never over-estimate the
    736 	 * position of the head.
    737 	 */
    738 	rq->head = rq->ring->emit;
    739 
    740 	ret = rq->engine->request_alloc(rq);
    741 	if (ret)
    742 		goto err_unwind;
    743 
    744 	rq->infix = rq->ring->emit; /* end of header; start of user payload */
    745 
    746 	intel_context_mark_active(ce);
    747 	return rq;
    748 
    749 err_unwind:
    750 	ce->ring->emit = rq->head;
    751 
    752 	/* Make sure we didn't add ourselves to external state before freeing */
    753 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
    754 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
    755 
    756 err_free:
    757 	kmem_cache_free(global.slab_requests, rq);
    758 err_unreserve:
    759 	intel_context_unpin(ce);
    760 	return ERR_PTR(ret);
    761 }
    762 
    763 struct i915_request *
    764 i915_request_create(struct intel_context *ce)
    765 {
    766 	struct i915_request *rq;
    767 	struct intel_timeline *tl;
    768 
    769 	tl = intel_context_timeline_lock(ce);
    770 	if (IS_ERR(tl))
    771 		return ERR_CAST(tl);
    772 
    773 	/* Move our oldest request to the slab-cache (if not in use!) */
    774 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
    775 	if (!list_is_last(&rq->link, &tl->requests))
    776 		i915_request_retire(rq);
    777 
    778 	intel_context_enter(ce);
    779 	rq = __i915_request_create(ce, GFP_KERNEL);
    780 	intel_context_exit(ce); /* active reference transferred to request */
    781 	if (IS_ERR(rq))
    782 		goto err_unlock;
    783 
    784 	/* Check that we do not interrupt ourselves with a new request */
    785 	rq->cookie = lockdep_pin_lock(&tl->mutex);
    786 
    787 	return rq;
    788 
    789 err_unlock:
    790 	intel_context_timeline_unlock(tl);
    791 	return rq;
    792 }
    793 
    794 static int
    795 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
    796 {
    797 	struct dma_fence *fence;
    798 	int err;
    799 
    800 	GEM_BUG_ON(i915_request_timeline(rq) ==
    801 		   rcu_access_pointer(signal->timeline));
    802 
    803 	fence = NULL;
    804 	rcu_read_lock();
    805 	spin_lock_irq(&signal->lock);
    806 	if (!i915_request_started(signal) &&
    807 	    !list_is_first(&signal->link,
    808 			   &rcu_dereference(signal->timeline)->requests)) {
    809 		struct i915_request *prev = list_prev_entry(signal, link);
    810 
    811 		/*
    812 		 * Peek at the request before us in the timeline. That
    813 		 * request will only be valid before it is retired, so
    814 		 * after acquiring a reference to it, confirm that it is
    815 		 * still part of the signaler's timeline.
    816 		 */
    817 		if (i915_request_get_rcu(prev)) {
    818 			if (list_next_entry(prev, link) == signal)
    819 				fence = &prev->fence;
    820 			else
    821 				i915_request_put(prev);
    822 		}
    823 	}
    824 	spin_unlock_irq(&signal->lock);
    825 	rcu_read_unlock();
    826 	if (!fence)
    827 		return 0;
    828 
    829 	err = 0;
    830 	if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
    831 		err = i915_sw_fence_await_dma_fence(&rq->submit,
    832 						    fence, 0,
    833 						    I915_FENCE_GFP);
    834 	dma_fence_put(fence);
    835 
    836 	return err;
    837 }
    838 
    839 static intel_engine_mask_t
    840 already_busywaiting(struct i915_request *rq)
    841 {
    842 	/*
    843 	 * Polling a semaphore causes bus traffic, delaying other users of
    844 	 * both the GPU and CPU. We want to limit the impact on others,
    845 	 * while taking advantage of early submission to reduce GPU
    846 	 * latency. Therefore we restrict ourselves to not using more
    847 	 * than one semaphore from each source, and not using a semaphore
    848 	 * if we have detected the engine is saturated (i.e. would not be
    849 	 * submitted early and cause bus traffic reading an already passed
    850 	 * semaphore).
    851 	 *
    852 	 * See the are-we-too-late? check in __i915_request_submit().
    853 	 */
    854 	return rq->sched.semaphores | rq->engine->saturated;
    855 }
    856 
    857 static int
    858 __emit_semaphore_wait(struct i915_request *to,
    859 		      struct i915_request *from,
    860 		      u32 seqno)
    861 {
    862 	const int has_token = INTEL_GEN(to->i915) >= 12;
    863 	u32 hwsp_offset;
    864 	int len, err;
    865 	u32 *cs;
    866 
    867 	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
    868 
    869 	/* We need to pin the signaler's HWSP until we are finished reading. */
    870 	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
    871 	if (err)
    872 		return err;
    873 
    874 	len = 4;
    875 	if (has_token)
    876 		len += 2;
    877 
    878 	cs = intel_ring_begin(to, len);
    879 	if (IS_ERR(cs))
    880 		return PTR_ERR(cs);
    881 
    882 	/*
    883 	 * Using greater-than-or-equal here means we have to worry
    884 	 * about seqno wraparound. To side step that issue, we swap
    885 	 * the timeline HWSP upon wrapping, so that everyone listening
    886 	 * for the old (pre-wrap) values do not see the much smaller
    887 	 * (post-wrap) values than they were expecting (and so wait
    888 	 * forever).
    889 	 */
    890 	*cs++ = (MI_SEMAPHORE_WAIT |
    891 		 MI_SEMAPHORE_GLOBAL_GTT |
    892 		 MI_SEMAPHORE_POLL |
    893 		 MI_SEMAPHORE_SAD_GTE_SDD) +
    894 		has_token;
    895 	*cs++ = seqno;
    896 	*cs++ = hwsp_offset;
    897 	*cs++ = 0;
    898 	if (has_token) {
    899 		*cs++ = 0;
    900 		*cs++ = MI_NOOP;
    901 	}
    902 
    903 	intel_ring_advance(to, cs);
    904 	return 0;
    905 }
    906 
    907 static int
    908 emit_semaphore_wait(struct i915_request *to,
    909 		    struct i915_request *from,
    910 		    gfp_t gfp)
    911 {
    912 	/* Just emit the first semaphore we see as request space is limited. */
    913 	if (already_busywaiting(to) & from->engine->mask)
    914 		goto await_fence;
    915 
    916 	if (i915_request_await_start(to, from) < 0)
    917 		goto await_fence;
    918 
    919 	/* Only submit our spinner after the signaler is running! */
    920 	if (__await_execution(to, from, NULL, gfp))
    921 		goto await_fence;
    922 
    923 	if (__emit_semaphore_wait(to, from, from->fence.seqno))
    924 		goto await_fence;
    925 
    926 	to->sched.semaphores |= from->engine->mask;
    927 	to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
    928 	return 0;
    929 
    930 await_fence:
    931 	return i915_sw_fence_await_dma_fence(&to->submit,
    932 					     &from->fence, 0,
    933 					     I915_FENCE_GFP);
    934 }
    935 
    936 static int
    937 i915_request_await_request(struct i915_request *to, struct i915_request *from)
    938 {
    939 	int ret;
    940 
    941 	GEM_BUG_ON(to == from);
    942 	GEM_BUG_ON(to->timeline == from->timeline);
    943 
    944 	if (i915_request_completed(from))
    945 		return 0;
    946 
    947 	if (to->engine->schedule) {
    948 		ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
    949 		if (ret < 0)
    950 			return ret;
    951 	}
    952 
    953 	if (to->engine == from->engine)
    954 		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
    955 						       &from->submit,
    956 						       I915_FENCE_GFP);
    957 	else if (intel_context_use_semaphores(to->context))
    958 		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
    959 	else
    960 		ret = i915_sw_fence_await_dma_fence(&to->submit,
    961 						    &from->fence, 0,
    962 						    I915_FENCE_GFP);
    963 	if (ret < 0)
    964 		return ret;
    965 
    966 	if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
    967 		ret = i915_sw_fence_await_dma_fence(&to->semaphore,
    968 						    &from->fence, 0,
    969 						    I915_FENCE_GFP);
    970 		if (ret < 0)
    971 			return ret;
    972 	}
    973 
    974 	return 0;
    975 }
    976 
    977 int
    978 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
    979 {
    980 	struct dma_fence **child = &fence;
    981 	unsigned int nchild = 1;
    982 	int ret;
    983 
    984 	/*
    985 	 * Note that if the fence-array was created in signal-on-any mode,
    986 	 * we should *not* decompose it into its individual fences. However,
    987 	 * we don't currently store which mode the fence-array is operating
    988 	 * in. Fortunately, the only user of signal-on-any is private to
    989 	 * amdgpu and we should not see any incoming fence-array from
    990 	 * sync-file being in signal-on-any mode.
    991 	 */
    992 	if (dma_fence_is_array(fence)) {
    993 		struct dma_fence_array *array = to_dma_fence_array(fence);
    994 
    995 		child = array->fences;
    996 		nchild = array->num_fences;
    997 		GEM_BUG_ON(!nchild);
    998 	}
    999 
   1000 	do {
   1001 		fence = *child++;
   1002 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
   1003 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
   1004 			continue;
   1005 		}
   1006 
   1007 		/*
   1008 		 * Requests on the same timeline are explicitly ordered, along
   1009 		 * with their dependencies, by i915_request_add() which ensures
   1010 		 * that requests are submitted in-order through each ring.
   1011 		 */
   1012 		if (fence->context == rq->fence.context)
   1013 			continue;
   1014 
   1015 		/* Squash repeated waits to the same timelines */
   1016 		if (fence->context &&
   1017 		    intel_timeline_sync_is_later(i915_request_timeline(rq),
   1018 						 fence))
   1019 			continue;
   1020 
   1021 		if (dma_fence_is_i915(fence))
   1022 			ret = i915_request_await_request(rq, to_request(fence));
   1023 		else
   1024 			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
   1025 							    fence->context ? I915_FENCE_TIMEOUT : 0,
   1026 							    I915_FENCE_GFP);
   1027 		if (ret < 0)
   1028 			return ret;
   1029 
   1030 		/* Record the latest fence used against each timeline */
   1031 		if (fence->context)
   1032 			intel_timeline_sync_set(i915_request_timeline(rq),
   1033 						fence);
   1034 	} while (--nchild);
   1035 
   1036 	return 0;
   1037 }
   1038 
   1039 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
   1040 					  struct dma_fence *fence)
   1041 {
   1042 	return __intel_timeline_sync_is_later(tl,
   1043 					      fence->context,
   1044 					      fence->seqno - 1);
   1045 }
   1046 
   1047 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
   1048 					 const struct dma_fence *fence)
   1049 {
   1050 	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
   1051 }
   1052 
   1053 static int
   1054 __i915_request_await_execution(struct i915_request *to,
   1055 			       struct i915_request *from,
   1056 			       void (*hook)(struct i915_request *rq,
   1057 					    struct dma_fence *signal))
   1058 {
   1059 	int err;
   1060 
   1061 	/* Submit both requests at the same time */
   1062 	err = __await_execution(to, from, hook, I915_FENCE_GFP);
   1063 	if (err)
   1064 		return err;
   1065 
   1066 	/* Squash repeated depenendices to the same timelines */
   1067 	if (intel_timeline_sync_has_start(i915_request_timeline(to),
   1068 					  &from->fence))
   1069 		return 0;
   1070 
   1071 	/* Ensure both start together [after all semaphores in signal] */
   1072 	if (intel_engine_has_semaphores(to->engine))
   1073 		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
   1074 	else
   1075 		err = i915_request_await_start(to, from);
   1076 	if (err < 0)
   1077 		return err;
   1078 
   1079 	/* Couple the dependency tree for PI on this exposed to->fence */
   1080 	if (to->engine->schedule) {
   1081 		err = i915_sched_node_add_dependency(&to->sched, &from->sched);
   1082 		if (err < 0)
   1083 			return err;
   1084 	}
   1085 
   1086 	return intel_timeline_sync_set_start(i915_request_timeline(to),
   1087 					     &from->fence);
   1088 }
   1089 
   1090 int
   1091 i915_request_await_execution(struct i915_request *rq,
   1092 			     struct dma_fence *fence,
   1093 			     void (*hook)(struct i915_request *rq,
   1094 					  struct dma_fence *signal))
   1095 {
   1096 	struct dma_fence **child = &fence;
   1097 	unsigned int nchild = 1;
   1098 	int ret;
   1099 
   1100 	if (dma_fence_is_array(fence)) {
   1101 		struct dma_fence_array *array = to_dma_fence_array(fence);
   1102 
   1103 		/* XXX Error for signal-on-any fence arrays */
   1104 
   1105 		child = array->fences;
   1106 		nchild = array->num_fences;
   1107 		GEM_BUG_ON(!nchild);
   1108 	}
   1109 
   1110 	do {
   1111 		fence = *child++;
   1112 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
   1113 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
   1114 			continue;
   1115 		}
   1116 
   1117 		/*
   1118 		 * We don't squash repeated fence dependencies here as we
   1119 		 * want to run our callback in all cases.
   1120 		 */
   1121 
   1122 		if (dma_fence_is_i915(fence))
   1123 			ret = __i915_request_await_execution(rq,
   1124 							     to_request(fence),
   1125 							     hook);
   1126 		else
   1127 			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
   1128 							    I915_FENCE_TIMEOUT,
   1129 							    GFP_KERNEL);
   1130 		if (ret < 0)
   1131 			return ret;
   1132 	} while (--nchild);
   1133 
   1134 	return 0;
   1135 }
   1136 
   1137 /**
   1138  * i915_request_await_object - set this request to (async) wait upon a bo
   1139  * @to: request we are wishing to use
   1140  * @obj: object which may be in use on another ring.
   1141  * @write: whether the wait is on behalf of a writer
   1142  *
   1143  * This code is meant to abstract object synchronization with the GPU.
   1144  * Conceptually we serialise writes between engines inside the GPU.
   1145  * We only allow one engine to write into a buffer at any time, but
   1146  * multiple readers. To ensure each has a coherent view of memory, we must:
   1147  *
   1148  * - If there is an outstanding write request to the object, the new
   1149  *   request must wait for it to complete (either CPU or in hw, requests
   1150  *   on the same ring will be naturally ordered).
   1151  *
   1152  * - If we are a write request (pending_write_domain is set), the new
   1153  *   request must wait for outstanding read requests to complete.
   1154  *
   1155  * Returns 0 if successful, else propagates up the lower layer error.
   1156  */
   1157 int
   1158 i915_request_await_object(struct i915_request *to,
   1159 			  struct drm_i915_gem_object *obj,
   1160 			  bool write)
   1161 {
   1162 	struct dma_fence *excl;
   1163 	int ret = 0;
   1164 
   1165 	if (write) {
   1166 		struct dma_fence **shared;
   1167 		unsigned int count, i;
   1168 
   1169 		ret = dma_resv_get_fences_rcu(obj->base.resv,
   1170 							&excl, &count, &shared);
   1171 		if (ret)
   1172 			return ret;
   1173 
   1174 		for (i = 0; i < count; i++) {
   1175 			ret = i915_request_await_dma_fence(to, shared[i]);
   1176 			if (ret)
   1177 				break;
   1178 
   1179 			dma_fence_put(shared[i]);
   1180 		}
   1181 
   1182 		for (; i < count; i++)
   1183 			dma_fence_put(shared[i]);
   1184 		kfree(shared);
   1185 	} else {
   1186 		excl = dma_resv_get_excl_rcu(obj->base.resv);
   1187 	}
   1188 
   1189 	if (excl) {
   1190 		if (ret == 0)
   1191 			ret = i915_request_await_dma_fence(to, excl);
   1192 
   1193 		dma_fence_put(excl);
   1194 	}
   1195 
   1196 	return ret;
   1197 }
   1198 
   1199 void i915_request_skip(struct i915_request *rq, int error)
   1200 {
   1201 	void *vaddr = rq->ring->vaddr;
   1202 	u32 head;
   1203 
   1204 	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
   1205 	dma_fence_set_error(&rq->fence, error);
   1206 
   1207 	if (rq->infix == rq->postfix)
   1208 		return;
   1209 
   1210 	/*
   1211 	 * As this request likely depends on state from the lost
   1212 	 * context, clear out all the user operations leaving the
   1213 	 * breadcrumb at the end (so we get the fence notifications).
   1214 	 */
   1215 	head = rq->infix;
   1216 	if (rq->postfix < head) {
   1217 		memset(vaddr + head, 0, rq->ring->size - head);
   1218 		head = 0;
   1219 	}
   1220 	memset(vaddr + head, 0, rq->postfix - head);
   1221 	rq->infix = rq->postfix;
   1222 }
   1223 
   1224 static struct i915_request *
   1225 __i915_request_add_to_timeline(struct i915_request *rq)
   1226 {
   1227 	struct intel_timeline *timeline = i915_request_timeline(rq);
   1228 	struct i915_request *prev;
   1229 
   1230 	/*
   1231 	 * Dependency tracking and request ordering along the timeline
   1232 	 * is special cased so that we can eliminate redundant ordering
   1233 	 * operations while building the request (we know that the timeline
   1234 	 * itself is ordered, and here we guarantee it).
   1235 	 *
   1236 	 * As we know we will need to emit tracking along the timeline,
   1237 	 * we embed the hooks into our request struct -- at the cost of
   1238 	 * having to have specialised no-allocation interfaces (which will
   1239 	 * be beneficial elsewhere).
   1240 	 *
   1241 	 * A second benefit to open-coding i915_request_await_request is
   1242 	 * that we can apply a slight variant of the rules specialised
   1243 	 * for timelines that jump between engines (such as virtual engines).
   1244 	 * If we consider the case of virtual engine, we must emit a dma-fence
   1245 	 * to prevent scheduling of the second request until the first is
   1246 	 * complete (to maximise our greedy late load balancing) and this
   1247 	 * precludes optimising to use semaphores serialisation of a single
   1248 	 * timeline across engines.
   1249 	 */
   1250 	prev = to_request(__i915_active_fence_set(&timeline->last_request,
   1251 						  &rq->fence));
   1252 	if (prev && !i915_request_completed(prev)) {
   1253 		if (is_power_of_2(prev->engine->mask | rq->engine->mask))
   1254 			i915_sw_fence_await_sw_fence(&rq->submit,
   1255 						     &prev->submit,
   1256 						     &rq->submitq);
   1257 		else
   1258 			__i915_sw_fence_await_dma_fence(&rq->submit,
   1259 							&prev->fence,
   1260 							&rq->dmaq);
   1261 		if (rq->engine->schedule)
   1262 			__i915_sched_node_add_dependency(&rq->sched,
   1263 							 &prev->sched,
   1264 							 &rq->dep,
   1265 							 0);
   1266 	}
   1267 
   1268 	list_add_tail(&rq->link, &timeline->requests);
   1269 
   1270 	/*
   1271 	 * Make sure that no request gazumped us - if it was allocated after
   1272 	 * our i915_request_alloc() and called __i915_request_add() before
   1273 	 * us, the timeline will hold its seqno which is later than ours.
   1274 	 */
   1275 	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
   1276 
   1277 	return prev;
   1278 }
   1279 
   1280 /*
   1281  * NB: This function is not allowed to fail. Doing so would mean the the
   1282  * request is not being tracked for completion but the work itself is
   1283  * going to happen on the hardware. This would be a Bad Thing(tm).
   1284  */
   1285 struct i915_request *__i915_request_commit(struct i915_request *rq)
   1286 {
   1287 	struct intel_engine_cs *engine = rq->engine;
   1288 	struct intel_ring *ring = rq->ring;
   1289 	u32 *cs;
   1290 
   1291 	RQ_TRACE(rq, "\n");
   1292 
   1293 	/*
   1294 	 * To ensure that this call will not fail, space for its emissions
   1295 	 * should already have been reserved in the ring buffer. Let the ring
   1296 	 * know that it is time to use that space up.
   1297 	 */
   1298 	GEM_BUG_ON(rq->reserved_space > ring->space);
   1299 	rq->reserved_space = 0;
   1300 	rq->emitted_jiffies = jiffies;
   1301 
   1302 	/*
   1303 	 * Record the position of the start of the breadcrumb so that
   1304 	 * should we detect the updated seqno part-way through the
   1305 	 * GPU processing the request, we never over-estimate the
   1306 	 * position of the ring's HEAD.
   1307 	 */
   1308 	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
   1309 	GEM_BUG_ON(IS_ERR(cs));
   1310 	rq->postfix = intel_ring_offset(rq, cs);
   1311 
   1312 	return __i915_request_add_to_timeline(rq);
   1313 }
   1314 
   1315 void __i915_request_queue(struct i915_request *rq,
   1316 			  const struct i915_sched_attr *attr)
   1317 {
   1318 	/*
   1319 	 * Let the backend know a new request has arrived that may need
   1320 	 * to adjust the existing execution schedule due to a high priority
   1321 	 * request - i.e. we may want to preempt the current request in order
   1322 	 * to run a high priority dependency chain *before* we can execute this
   1323 	 * request.
   1324 	 *
   1325 	 * This is called before the request is ready to run so that we can
   1326 	 * decide whether to preempt the entire chain so that it is ready to
   1327 	 * run at the earliest possible convenience.
   1328 	 */
   1329 	i915_sw_fence_commit(&rq->semaphore);
   1330 	if (attr && rq->engine->schedule)
   1331 		rq->engine->schedule(rq, attr);
   1332 	i915_sw_fence_commit(&rq->submit);
   1333 }
   1334 
   1335 void i915_request_add(struct i915_request *rq)
   1336 {
   1337 	struct intel_timeline * const tl = i915_request_timeline(rq);
   1338 	struct i915_sched_attr attr = {};
   1339 	struct i915_request *prev;
   1340 
   1341 	lockdep_assert_held(&tl->mutex);
   1342 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
   1343 
   1344 	trace_i915_request_add(rq);
   1345 
   1346 	prev = __i915_request_commit(rq);
   1347 
   1348 	if (rcu_access_pointer(rq->context->gem_context))
   1349 		attr = i915_request_gem_context(rq)->sched;
   1350 
   1351 	/*
   1352 	 * Boost actual workloads past semaphores!
   1353 	 *
   1354 	 * With semaphores we spin on one engine waiting for another,
   1355 	 * simply to reduce the latency of starting our work when
   1356 	 * the signaler completes. However, if there is any other
   1357 	 * work that we could be doing on this engine instead, that
   1358 	 * is better utilisation and will reduce the overall duration
   1359 	 * of the current work. To avoid PI boosting a semaphore
   1360 	 * far in the distance past over useful work, we keep a history
   1361 	 * of any semaphore use along our dependency chain.
   1362 	 */
   1363 	if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
   1364 		attr.priority |= I915_PRIORITY_NOSEMAPHORE;
   1365 
   1366 	/*
   1367 	 * Boost priorities to new clients (new request flows).
   1368 	 *
   1369 	 * Allow interactive/synchronous clients to jump ahead of
   1370 	 * the bulk clients. (FQ_CODEL)
   1371 	 */
   1372 	if (list_empty(&rq->sched.signalers_list))
   1373 		attr.priority |= I915_PRIORITY_WAIT;
   1374 
   1375 #ifdef __NetBSD__
   1376 	int s = splsoftserial();
   1377 #else
   1378 	local_bh_disable();
   1379 #endif
   1380 	__i915_request_queue(rq, &attr);
   1381 #ifdef __NetBSD__
   1382 	splx(s);
   1383 #else
   1384 	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
   1385 #endif
   1386 
   1387 	/*
   1388 	 * In typical scenarios, we do not expect the previous request on
   1389 	 * the timeline to be still tracked by timeline->last_request if it
   1390 	 * has been completed. If the completed request is still here, that
   1391 	 * implies that request retirement is a long way behind submission,
   1392 	 * suggesting that we haven't been retiring frequently enough from
   1393 	 * the combination of retire-before-alloc, waiters and the background
   1394 	 * retirement worker. So if the last request on this timeline was
   1395 	 * already completed, do a catch up pass, flushing the retirement queue
   1396 	 * up to this client. Since we have now moved the heaviest operations
   1397 	 * during retirement onto secondary workers, such as freeing objects
   1398 	 * or contexts, retiring a bunch of requests is mostly list management
   1399 	 * (and cache misses), and so we should not be overly penalizing this
   1400 	 * client by performing excess work, though we may still performing
   1401 	 * work on behalf of others -- but instead we should benefit from
   1402 	 * improved resource management. (Well, that's the theory at least.)
   1403 	 */
   1404 	if (prev &&
   1405 	    i915_request_completed(prev) &&
   1406 	    rcu_access_pointer(prev->timeline) == tl)
   1407 		i915_request_retire_upto(prev);
   1408 
   1409 	mutex_unlock(&tl->mutex);
   1410 }
   1411 
   1412 static unsigned long local_clock_us(unsigned int *cpu)
   1413 {
   1414 	unsigned long t;
   1415 
   1416 	/*
   1417 	 * Cheaply and approximately convert from nanoseconds to microseconds.
   1418 	 * The result and subsequent calculations are also defined in the same
   1419 	 * approximate microseconds units. The principal source of timing
   1420 	 * error here is from the simple truncation.
   1421 	 *
   1422 	 * Note that local_clock() is only defined wrt to the current CPU;
   1423 	 * the comparisons are no longer valid if we switch CPUs. Instead of
   1424 	 * blocking preemption for the entire busywait, we can detect the CPU
   1425 	 * switch and use that as indicator of system load and a reason to
   1426 	 * stop busywaiting, see busywait_stop().
   1427 	 */
   1428 	*cpu = get_cpu();
   1429 	t = local_clock() >> 10;
   1430 	put_cpu();
   1431 
   1432 	return t;
   1433 }
   1434 
   1435 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
   1436 {
   1437 	unsigned int this_cpu;
   1438 
   1439 	if (time_after(local_clock_us(&this_cpu), timeout))
   1440 		return true;
   1441 
   1442 	return this_cpu != cpu;
   1443 }
   1444 
   1445 static bool __i915_spin_request(const struct i915_request * const rq,
   1446 				int state, unsigned long timeout_us)
   1447 {
   1448 	unsigned int cpu;
   1449 
   1450 	/*
   1451 	 * Only wait for the request if we know it is likely to complete.
   1452 	 *
   1453 	 * We don't track the timestamps around requests, nor the average
   1454 	 * request length, so we do not have a good indicator that this
   1455 	 * request will complete within the timeout. What we do know is the
   1456 	 * order in which requests are executed by the context and so we can
   1457 	 * tell if the request has been started. If the request is not even
   1458 	 * running yet, it is a fair assumption that it will not complete
   1459 	 * within our relatively short timeout.
   1460 	 */
   1461 	if (!i915_request_is_running(rq))
   1462 		return false;
   1463 
   1464 	/*
   1465 	 * When waiting for high frequency requests, e.g. during synchronous
   1466 	 * rendering split between the CPU and GPU, the finite amount of time
   1467 	 * required to set up the irq and wait upon it limits the response
   1468 	 * rate. By busywaiting on the request completion for a short while we
   1469 	 * can service the high frequency waits as quick as possible. However,
   1470 	 * if it is a slow request, we want to sleep as quickly as possible.
   1471 	 * The tradeoff between waiting and sleeping is roughly the time it
   1472 	 * takes to sleep on a request, on the order of a microsecond.
   1473 	 */
   1474 
   1475 	timeout_us += local_clock_us(&cpu);
   1476 	do {
   1477 		if (i915_request_completed(rq))
   1478 			return true;
   1479 
   1480 		if (signal_pending_state(state, current))
   1481 			break;
   1482 
   1483 		if (busywait_stop(timeout_us, cpu))
   1484 			break;
   1485 
   1486 		cpu_relax();
   1487 	} while (!need_resched());
   1488 
   1489 	return false;
   1490 }
   1491 
   1492 struct request_wait {
   1493 	struct dma_fence_cb cb;
   1494 #ifdef __NetBSD__
   1495 	drm_waitqueue_t wq;
   1496 #else
   1497 	struct task_struct *tsk;
   1498 #endif
   1499 };
   1500 
   1501 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
   1502 {
   1503 	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
   1504 
   1505 #ifdef __NetBSD__
   1506 	DRM_SPIN_WAKEUP_ALL(&wait->wq, fence->lock);
   1507 #else
   1508 	wake_up_process(wait->tsk);
   1509 #endif
   1510 }
   1511 
   1512 /**
   1513  * i915_request_wait - wait until execution of request has finished
   1514  * @rq: the request to wait upon
   1515  * @flags: how to wait
   1516  * @timeout: how long to wait in jiffies
   1517  *
   1518  * i915_request_wait() waits for the request to be completed, for a
   1519  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
   1520  * unbounded wait).
   1521  *
   1522  * Returns the remaining time (in jiffies) if the request completed, which may
   1523  * be zero or -ETIME if the request is unfinished after the timeout expires.
   1524  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
   1525  * pending before the request completes.
   1526  */
   1527 long i915_request_wait(struct i915_request *rq,
   1528 		       unsigned int flags,
   1529 		       long timeout)
   1530 {
   1531 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
   1532 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
   1533 	struct request_wait wait;
   1534 
   1535 	might_sleep();
   1536 	GEM_BUG_ON(timeout < 0);
   1537 
   1538 	if (dma_fence_is_signaled(&rq->fence))
   1539 		return timeout;
   1540 
   1541 	if (!timeout)
   1542 		return -ETIME;
   1543 
   1544 	trace_i915_request_wait_begin(rq, flags);
   1545 
   1546 	/*
   1547 	 * We must never wait on the GPU while holding a lock as we
   1548 	 * may need to perform a GPU reset. So while we don't need to
   1549 	 * serialise wait/reset with an explicit lock, we do want
   1550 	 * lockdep to detect potential dependency cycles.
   1551 	 */
   1552 	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
   1553 
   1554 	/*
   1555 	 * Optimistic spin before touching IRQs.
   1556 	 *
   1557 	 * We may use a rather large value here to offset the penalty of
   1558 	 * switching away from the active task. Frequently, the client will
   1559 	 * wait upon an old swapbuffer to throttle itself to remain within a
   1560 	 * frame of the gpu. If the client is running in lockstep with the gpu,
   1561 	 * then it should not be waiting long at all, and a sleep now will incur
   1562 	 * extra scheduler latency in producing the next frame. To try to
   1563 	 * avoid adding the cost of enabling/disabling the interrupt to the
   1564 	 * short wait, we first spin to see if the request would have completed
   1565 	 * in the time taken to setup the interrupt.
   1566 	 *
   1567 	 * We need upto 5us to enable the irq, and upto 20us to hide the
   1568 	 * scheduler latency of a context switch, ignoring the secondary
   1569 	 * impacts from a context switch such as cache eviction.
   1570 	 *
   1571 	 * The scheme used for low-latency IO is called "hybrid interrupt
   1572 	 * polling". The suggestion there is to sleep until just before you
   1573 	 * expect to be woken by the device interrupt and then poll for its
   1574 	 * completion. That requires having a good predictor for the request
   1575 	 * duration, which we currently lack.
   1576 	 */
   1577 	if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) &&
   1578 	    __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
   1579 		dma_fence_signal(&rq->fence);
   1580 		goto out;
   1581 	}
   1582 
   1583 	/*
   1584 	 * This client is about to stall waiting for the GPU. In many cases
   1585 	 * this is undesirable and limits the throughput of the system, as
   1586 	 * many clients cannot continue processing user input/output whilst
   1587 	 * blocked. RPS autotuning may take tens of milliseconds to respond
   1588 	 * to the GPU load and thus incurs additional latency for the client.
   1589 	 * We can circumvent that by promoting the GPU frequency to maximum
   1590 	 * before we sleep. This makes the GPU throttle up much more quickly
   1591 	 * (good for benchmarks and user experience, e.g. window animations),
   1592 	 * but at a cost of spending more power processing the workload
   1593 	 * (bad for battery).
   1594 	 */
   1595 	if (flags & I915_WAIT_PRIORITY) {
   1596 		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
   1597 			intel_rps_boost(rq);
   1598 		i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
   1599 	}
   1600 
   1601 #ifdef __NetBSD__
   1602 	DRM_INIT_WAITQUEUE(&wait.wq, "i915req");
   1603 #else
   1604 	wait.tsk = current;
   1605 #endif
   1606 	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
   1607 		goto out;
   1608 
   1609 #ifdef __NetBSD__
   1610 	spin_lock(rq->fence.lock);
   1611 #define	C	(i915_request_completed(rq) ? 1 :			      \
   1612 		    (spin_unlock(rq->fence.lock),			      \
   1613 			intel_engine_flush_submission(rq->engine),	      \
   1614 			spin_lock(rq->fence.lock),			      \
   1615 			i915_request_completed(rq)))
   1616 	if (flags & I915_WAIT_INTERRUPTIBLE) {
   1617 		DRM_SPIN_TIMED_WAIT_UNTIL(timeout, &wait.wq,
   1618 		    rq->fence.lock, timeout,
   1619 		    C);
   1620 	} else {
   1621 		DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(timeout, &wait.wq,
   1622 		    rq->fence.lock, timeout,
   1623 		    C);
   1624 	}
   1625 #undef	C
   1626 	if (timeout > 0) {	/* succeeded before timeout */
   1627 		KASSERT(i915_request_completed(rq));
   1628 		dma_fence_signal_locked(&rq->fence);
   1629 	} else if (timeout == 0) {	/* timed out */
   1630 		timeout = -ETIME;
   1631 	}
   1632 	spin_unlock(rq->fence.lock);
   1633 #else
   1634 	for (;;) {
   1635 		set_current_state(state);
   1636 
   1637 		if (i915_request_completed(rq)) {
   1638 			dma_fence_signal(&rq->fence);
   1639 			break;
   1640 		}
   1641 
   1642 		if (signal_pending_state(state, current)) {
   1643 			timeout = -ERESTARTSYS;
   1644 			break;
   1645 		}
   1646 
   1647 		if (!timeout) {
   1648 			timeout = -ETIME;
   1649 			break;
   1650 		}
   1651 
   1652 		intel_engine_flush_submission(rq->engine);
   1653 		timeout = io_schedule_timeout(timeout);
   1654 	}
   1655 	__set_current_state(TASK_RUNNING);
   1656 #endif
   1657 
   1658 	dma_fence_remove_callback(&rq->fence, &wait.cb);
   1659 #ifdef __NetBSD__
   1660 	DRM_DESTROY_WAITQUEUE(&wait.wq);
   1661 #endif
   1662 
   1663 out:
   1664 	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
   1665 	trace_i915_request_wait_end(rq);
   1666 	return timeout;
   1667 }
   1668 
   1669 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
   1670 #include "selftests/mock_request.c"
   1671 #include "selftests/i915_request.c"
   1672 #endif
   1673 
   1674 static void i915_global_request_shrink(void)
   1675 {
   1676 	kmem_cache_shrink(global.slab_dependencies);
   1677 	kmem_cache_shrink(global.slab_execute_cbs);
   1678 	kmem_cache_shrink(global.slab_requests);
   1679 }
   1680 
   1681 static void i915_global_request_exit(void)
   1682 {
   1683 	kmem_cache_destroy(global.slab_dependencies);
   1684 	kmem_cache_destroy(global.slab_execute_cbs);
   1685 	kmem_cache_destroy(global.slab_requests);
   1686 }
   1687 
   1688 static struct i915_global_request global = { {
   1689 	.shrink = i915_global_request_shrink,
   1690 	.exit = i915_global_request_exit,
   1691 } };
   1692 
   1693 int __init i915_global_request_init(void)
   1694 {
   1695 	global.slab_requests =
   1696 		kmem_cache_create_dtor("i915_request",
   1697 				  sizeof(struct i915_request),
   1698 				  __alignof__(struct i915_request),
   1699 				  SLAB_HWCACHE_ALIGN |
   1700 				  SLAB_RECLAIM_ACCOUNT |
   1701 				  SLAB_TYPESAFE_BY_RCU,
   1702 				  __i915_request_ctor,
   1703 				  __i915_request_dtor);
   1704 	if (!global.slab_requests)
   1705 		return -ENOMEM;
   1706 
   1707 	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
   1708 					     SLAB_HWCACHE_ALIGN |
   1709 					     SLAB_RECLAIM_ACCOUNT |
   1710 					     SLAB_TYPESAFE_BY_RCU);
   1711 	if (!global.slab_execute_cbs)
   1712 		goto err_requests;
   1713 
   1714 	global.slab_dependencies = KMEM_CACHE(i915_dependency,
   1715 					      SLAB_HWCACHE_ALIGN |
   1716 					      SLAB_RECLAIM_ACCOUNT);
   1717 	if (!global.slab_dependencies)
   1718 		goto err_execute_cbs;
   1719 
   1720 	i915_global_register(&global.base);
   1721 	return 0;
   1722 
   1723 err_execute_cbs:
   1724 	kmem_cache_destroy(global.slab_execute_cbs);
   1725 err_requests:
   1726 	kmem_cache_destroy(global.slab_requests);
   1727 	return -ENOMEM;
   1728 }
   1729