Home | History | Annotate | Line # | Download | only in hash
      1 /*	$NetBSD: hash_page.c,v 1.29 2016/09/24 20:08:29 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1990, 1993, 1994
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Margo Seltzer.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  */
     34 
     35 #if HAVE_NBTOOL_CONFIG_H
     36 #include "nbtool_config.h"
     37 #endif
     38 
     39 #include <sys/cdefs.h>
     40 __RCSID("$NetBSD: hash_page.c,v 1.29 2016/09/24 20:08:29 christos Exp $");
     41 
     42 /*
     43  * PACKAGE:  hashing
     44  *
     45  * DESCRIPTION:
     46  *	Page manipulation for hashing package.
     47  *
     48  * ROUTINES:
     49  *
     50  * External
     51  *	__get_page
     52  *	__add_ovflpage
     53  * Internal
     54  *	overflow_page
     55  */
     56 
     57 #include "namespace.h"
     58 
     59 #include <sys/types.h>
     60 
     61 #include <errno.h>
     62 #include <fcntl.h>
     63 #include <signal.h>
     64 #include <stdio.h>
     65 #include <stdlib.h>
     66 #include <string.h>
     67 #include <unistd.h>
     68 #include <paths.h>
     69 #include <assert.h>
     70 
     71 #include <db.h>
     72 #include "hash.h"
     73 #include "page.h"
     74 #include "extern.h"
     75 
     76 static uint32_t	*fetch_bitmap(HTAB *, int);
     77 static uint32_t	 first_free(uint32_t);
     78 static uint16_t	 overflow_page(HTAB *);
     79 static void	 putpair(char *, const DBT *, const DBT *);
     80 static void	 squeeze_key(uint16_t *, const DBT *, const DBT *);
     81 static int	 ugly_split(HTAB *, uint32_t, BUFHEAD *, BUFHEAD *, int, int);
     82 
     83 #define	PAGE_INIT(P) { \
     84 	((uint16_t *)(void *)(P))[0] = 0; \
     85 	temp = 3 * sizeof(uint16_t); \
     86 	_DIAGASSERT((size_t)HASH_BSIZE(hashp) >= temp); \
     87 	((uint16_t *)(void *)(P))[1] = (uint16_t)(HASH_BSIZE(hashp) - temp); \
     88 	((uint16_t *)(void *)(P))[2] = HASH_BSIZE(hashp); \
     89 }
     90 
     91 /*
     92  * This is called AFTER we have verified that there is room on the page for
     93  * the pair (PAIRFITS has returned true) so we go right ahead and start moving
     94  * stuff on.
     95  */
     96 static void
     97 putpair(char *p, const DBT *key, const DBT *val)
     98 {
     99 	uint16_t *bp, n, off;
    100 	size_t temp;
    101 
    102 	bp = (uint16_t *)(void *)p;
    103 
    104 	/* Enter the key first. */
    105 	n = bp[0];
    106 
    107 	temp = OFFSET(bp);
    108 	_DIAGASSERT(temp >= key->size);
    109 	off = (uint16_t)(temp - key->size);
    110 	memmove(p + off, key->data, key->size);
    111 	bp[++n] = off;
    112 
    113 	/* Now the data. */
    114 	_DIAGASSERT(off >= val->size);
    115 	off -= (uint16_t)val->size;
    116 	memmove(p + off, val->data, val->size);
    117 	bp[++n] = off;
    118 
    119 	/* Adjust page info. */
    120 	bp[0] = n;
    121 	temp = (n + 3) * sizeof(uint16_t);
    122 	_DIAGASSERT(off >= temp);
    123 	bp[n + 1] = (uint16_t)(off - temp);
    124 	bp[n + 2] = off;
    125 }
    126 
    127 /*
    128  * Returns:
    129  *	 0 OK
    130  *	-1 error
    131  */
    132 int
    133 __delpair(HTAB *hashp, BUFHEAD *bufp, int ndx)
    134 {
    135 	uint16_t *bp, newoff;
    136 	int n;
    137 	uint16_t pairlen;
    138 	size_t temp;
    139 
    140 	bp = (uint16_t *)(void *)bufp->page;
    141 	n = bp[0];
    142 
    143 	if (bp[ndx + 1] < REAL_KEY)
    144 		return (__big_delete(hashp, bufp));
    145 	if (ndx != 1)
    146 		newoff = bp[ndx - 1];
    147 	else
    148 		newoff = HASH_BSIZE(hashp);
    149 	pairlen = newoff - bp[ndx + 1];
    150 
    151 	if (ndx != (n - 1)) {
    152 		/* Hard Case -- need to shuffle keys */
    153 		int i;
    154 		char *src = bufp->page + (int)OFFSET(bp);
    155 		char *dst = src + (int)pairlen;
    156 		memmove(dst, src, (size_t)(bp[ndx + 1] - OFFSET(bp)));
    157 
    158 		/* Now adjust the pointers */
    159 		for (i = ndx + 2; i <= n; i += 2) {
    160 			if (bp[i + 1] == OVFLPAGE) {
    161 				bp[i - 2] = bp[i];
    162 				bp[i - 1] = bp[i + 1];
    163 			} else {
    164 				bp[i - 2] = bp[i] + pairlen;
    165 				bp[i - 1] = bp[i + 1] + pairlen;
    166 			}
    167 		}
    168 	}
    169 	/* Finally adjust the page data */
    170 	bp[n] = OFFSET(bp) + pairlen;
    171 	temp = bp[n + 1] + pairlen + 2 * sizeof(uint16_t);
    172 	_DIAGASSERT(temp <= 0xffff);
    173 	bp[n - 1] = (uint16_t)temp;
    174 	bp[0] = n - 2;
    175 	hashp->NKEYS--;
    176 
    177 	bufp->flags |= BUF_MOD;
    178 	return (0);
    179 }
    180 /*
    181  * Returns:
    182  *	 0 ==> OK
    183  *	-1 ==> Error
    184  */
    185 int
    186 __split_page(HTAB *hashp, uint32_t obucket, uint32_t nbucket)
    187 {
    188 	BUFHEAD *new_bufp, *old_bufp;
    189 	uint16_t *ino;
    190 	char *np;
    191 	DBT key, val;
    192 	int n, ndx, retval;
    193 	uint16_t copyto, diff, off, moved;
    194 	char *op;
    195 	size_t temp;
    196 
    197 	copyto = HASH_BSIZE(hashp);
    198 	off = HASH_BSIZE(hashp);
    199 	old_bufp = __get_buf(hashp, obucket, NULL, 0);
    200 	if (old_bufp == NULL)
    201 		return (-1);
    202 	new_bufp = __get_buf(hashp, nbucket, NULL, 0);
    203 	if (new_bufp == NULL)
    204 		return (-1);
    205 
    206 	old_bufp->flags |= (BUF_MOD | BUF_PIN);
    207 	new_bufp->flags |= (BUF_MOD | BUF_PIN);
    208 
    209 	ino = (uint16_t *)(void *)(op = old_bufp->page);
    210 	np = new_bufp->page;
    211 
    212 	moved = 0;
    213 
    214 	for (n = 1, ndx = 1; n < ino[0]; n += 2) {
    215 		if (ino[n + 1] < REAL_KEY) {
    216 			retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
    217 			    (int)copyto, (int)moved);
    218 			old_bufp->flags &= ~BUF_PIN;
    219 			new_bufp->flags &= ~BUF_PIN;
    220 			return (retval);
    221 
    222 		}
    223 		key.data = (uint8_t *)op + ino[n];
    224 		key.size = off - ino[n];
    225 
    226 		if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
    227 			/* Don't switch page */
    228 			diff = copyto - off;
    229 			if (diff) {
    230 				copyto = ino[n + 1] + diff;
    231 				memmove(op + copyto, op + ino[n + 1],
    232 				    (size_t)(off - ino[n + 1]));
    233 				ino[ndx] = copyto + ino[n] - ino[n + 1];
    234 				ino[ndx + 1] = copyto;
    235 			} else
    236 				copyto = ino[n + 1];
    237 			ndx += 2;
    238 		} else {
    239 			/* Switch page */
    240 			val.data = (uint8_t *)op + ino[n + 1];
    241 			val.size = ino[n] - ino[n + 1];
    242 			putpair(np, &key, &val);
    243 			moved += 2;
    244 		}
    245 
    246 		off = ino[n + 1];
    247 	}
    248 
    249 	/* Now clean up the page */
    250 	ino[0] -= moved;
    251 	temp = sizeof(uint16_t) * (ino[0] + 3);
    252 	_DIAGASSERT(copyto >= temp);
    253 	FREESPACE(ino) = (uint16_t)(copyto - temp);
    254 	OFFSET(ino) = copyto;
    255 
    256 #ifdef DEBUG3
    257 	(void)fprintf(stderr, "split %d/%d\n",
    258 	    ((uint16_t *)np)[0] / 2,
    259 	    ((uint16_t *)op)[0] / 2);
    260 #endif
    261 	/* unpin both pages */
    262 	old_bufp->flags &= ~BUF_PIN;
    263 	new_bufp->flags &= ~BUF_PIN;
    264 	return (0);
    265 }
    266 
    267 /*
    268  * Called when we encounter an overflow or big key/data page during split
    269  * handling.  This is special cased since we have to begin checking whether
    270  * the key/data pairs fit on their respective pages and because we may need
    271  * overflow pages for both the old and new pages.
    272  *
    273  * The first page might be a page with regular key/data pairs in which case
    274  * we have a regular overflow condition and just need to go on to the next
    275  * page or it might be a big key/data pair in which case we need to fix the
    276  * big key/data pair.
    277  *
    278  * Returns:
    279  *	 0 ==> success
    280  *	-1 ==> failure
    281  */
    282 static int
    283 ugly_split(
    284 	HTAB *hashp,
    285 	uint32_t obucket,	/* Same as __split_page. */
    286 	BUFHEAD *old_bufp,
    287 	BUFHEAD *new_bufp,
    288 	int copyto,	/* First byte on page which contains key/data values. */
    289 	int moved	/* Number of pairs moved to new page. */
    290 )
    291 {
    292 	BUFHEAD *bufp;	/* Buffer header for ino */
    293 	uint16_t *ino;	/* Page keys come off of */
    294 	uint16_t *np;	/* New page */
    295 	uint16_t *op;	/* Page keys go on to if they aren't moving */
    296 	size_t temp;
    297 
    298 	BUFHEAD *last_bfp;	/* Last buf header OVFL needing to be freed */
    299 	DBT key, val;
    300 	SPLIT_RETURN ret;
    301 	uint16_t n, off, ov_addr, scopyto;
    302 	char *cino;		/* Character value of ino */
    303 
    304 	bufp = old_bufp;
    305 	ino = (uint16_t *)(void *)old_bufp->page;
    306 	np = (uint16_t *)(void *)new_bufp->page;
    307 	op = (uint16_t *)(void *)old_bufp->page;
    308 	last_bfp = NULL;
    309 	scopyto = (uint16_t)copyto;	/* ANSI */
    310 
    311 	n = ino[0] - 1;
    312 	while (n < ino[0]) {
    313 		if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
    314 			if (__big_split(hashp, old_bufp,
    315 			    new_bufp, bufp, (int)bufp->addr, obucket, &ret))
    316 				return (-1);
    317 			old_bufp = ret.oldp;
    318 			if (!old_bufp)
    319 				return (-1);
    320 			op = (uint16_t *)(void *)old_bufp->page;
    321 			new_bufp = ret.newp;
    322 			if (!new_bufp)
    323 				return (-1);
    324 			np = (uint16_t *)(void *)new_bufp->page;
    325 			bufp = ret.nextp;
    326 			if (!bufp)
    327 				return (0);
    328 			cino = (char *)bufp->page;
    329 			ino = (uint16_t *)(void *)cino;
    330 			last_bfp = ret.nextp;
    331 		} else if (ino[n + 1] == OVFLPAGE) {
    332 			ov_addr = ino[n];
    333 			/*
    334 			 * Fix up the old page -- the extra 2 are the fields
    335 			 * which contained the overflow information.
    336 			 */
    337 			ino[0] -= (moved + 2);
    338 			temp = sizeof(uint16_t) * (ino[0] + 3);
    339 			_DIAGASSERT(scopyto >= temp);
    340 			FREESPACE(ino) = (uint16_t)(scopyto - temp);
    341 			OFFSET(ino) = scopyto;
    342 
    343 			bufp = __get_buf(hashp, (uint32_t)ov_addr, bufp, 0);
    344 			if (!bufp)
    345 				return (-1);
    346 
    347 			ino = (uint16_t *)(void *)bufp->page;
    348 			n = 1;
    349 			scopyto = HASH_BSIZE(hashp);
    350 			moved = 0;
    351 
    352 			if (last_bfp)
    353 				__free_ovflpage(hashp, last_bfp);
    354 			last_bfp = bufp;
    355 		}
    356 		/* Move regular sized pairs of there are any */
    357 		off = HASH_BSIZE(hashp);
    358 		for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
    359 			cino = (char *)(void *)ino;
    360 			key.data = (uint8_t *)cino + ino[n];
    361 			key.size = off - ino[n];
    362 			val.data = (uint8_t *)cino + ino[n + 1];
    363 			val.size = ino[n] - ino[n + 1];
    364 			off = ino[n + 1];
    365 
    366 			if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
    367 				/* Keep on old page */
    368 				if (PAIRFITS(op, (&key), (&val)))
    369 					putpair((char *)(void *)op, &key, &val);
    370 				else {
    371 					old_bufp =
    372 					    __add_ovflpage(hashp, old_bufp);
    373 					if (!old_bufp)
    374 						return (-1);
    375 					op = (uint16_t *)(void *)old_bufp->page;
    376 					putpair((char *)(void *)op, &key, &val);
    377 				}
    378 				old_bufp->flags |= BUF_MOD;
    379 			} else {
    380 				/* Move to new page */
    381 				if (PAIRFITS(np, (&key), (&val)))
    382 					putpair((char *)(void *)np, &key, &val);
    383 				else {
    384 					new_bufp =
    385 					    __add_ovflpage(hashp, new_bufp);
    386 					if (!new_bufp)
    387 						return (-1);
    388 					np = (uint16_t *)(void *)new_bufp->page;
    389 					putpair((char *)(void *)np, &key, &val);
    390 				}
    391 				new_bufp->flags |= BUF_MOD;
    392 			}
    393 		}
    394 	}
    395 	if (last_bfp)
    396 		__free_ovflpage(hashp, last_bfp);
    397 	return (0);
    398 }
    399 
    400 /*
    401  * Add the given pair to the page
    402  *
    403  * Returns:
    404  *	0 ==> OK
    405  *	1 ==> failure
    406  */
    407 int
    408 __addel(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val)
    409 {
    410 	uint16_t *bp, *sop;
    411 	int do_expand;
    412 
    413 	bp = (uint16_t *)(void *)bufp->page;
    414 	do_expand = 0;
    415 	while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
    416 		/* Exception case */
    417 		if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
    418 			/* This is the last page of a big key/data pair
    419 			   and we need to add another page */
    420 			break;
    421 		else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
    422 			bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp,
    423 			    0);
    424 			if (!bufp)
    425 				return (-1);
    426 			bp = (uint16_t *)(void *)bufp->page;
    427 		} else if (bp[bp[0]] != OVFLPAGE) {
    428 			/* Short key/data pairs, no more pages */
    429 			break;
    430 		} else {
    431 			/* Try to squeeze key on this page */
    432 			if (bp[2] >= REAL_KEY &&
    433 			    FREESPACE(bp) >= PAIRSIZE(key, val)) {
    434 				squeeze_key(bp, key, val);
    435 				goto stats;
    436 			} else {
    437 				bufp = __get_buf(hashp,
    438 				    (uint32_t)bp[bp[0] - 1], bufp, 0);
    439 				if (!bufp)
    440 					return (-1);
    441 				bp = (uint16_t *)(void *)bufp->page;
    442 			}
    443 		}
    444 
    445 	if (PAIRFITS(bp, key, val))
    446 		putpair(bufp->page, key, val);
    447 	else {
    448 		do_expand = 1;
    449 		bufp = __add_ovflpage(hashp, bufp);
    450 		if (!bufp)
    451 			return (-1);
    452 		sop = (uint16_t *)(void *)bufp->page;
    453 
    454 		if (PAIRFITS(sop, key, val))
    455 			putpair((char *)(void *)sop, key, val);
    456 		else
    457 			if (__big_insert(hashp, bufp, key, val))
    458 				return (-1);
    459 	}
    460 stats:
    461 	bufp->flags |= BUF_MOD;
    462 	/*
    463 	 * If the average number of keys per bucket exceeds the fill factor,
    464 	 * expand the table.
    465 	 */
    466 	hashp->NKEYS++;
    467 	if (do_expand ||
    468 	    (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
    469 		return (__expand_table(hashp));
    470 	return (0);
    471 }
    472 
    473 /*
    474  *
    475  * Returns:
    476  *	pointer on success
    477  *	NULL on error
    478  */
    479 BUFHEAD *
    480 __add_ovflpage(HTAB *hashp, BUFHEAD *bufp)
    481 {
    482 	uint16_t *sp;
    483 	uint16_t ndx, ovfl_num;
    484 	size_t temp;
    485 #ifdef DEBUG1
    486 	int tmp1, tmp2;
    487 #endif
    488 	sp = (uint16_t *)(void *)bufp->page;
    489 
    490 	/* Check if we are dynamically determining the fill factor */
    491 	if (hashp->FFACTOR == DEF_FFACTOR) {
    492 		hashp->FFACTOR = (uint32_t)sp[0] >> 1;
    493 		if (hashp->FFACTOR < MIN_FFACTOR)
    494 			hashp->FFACTOR = MIN_FFACTOR;
    495 	}
    496 	bufp->flags |= BUF_MOD;
    497 	ovfl_num = overflow_page(hashp);
    498 #ifdef DEBUG1
    499 	tmp1 = bufp->addr;
    500 	tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
    501 #endif
    502 	if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, (uint32_t)ovfl_num,
    503 	    bufp, 1)))
    504 		return (NULL);
    505 	bufp->ovfl->flags |= BUF_MOD;
    506 #ifdef DEBUG1
    507 	(void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
    508 	    tmp1, tmp2, bufp->ovfl->addr);
    509 #endif
    510 	ndx = sp[0];
    511 	/*
    512 	 * Since a pair is allocated on a page only if there's room to add
    513 	 * an overflow page, we know that the OVFL information will fit on
    514 	 * the page.
    515 	 */
    516 	sp[ndx + 4] = OFFSET(sp);
    517 	temp = FREESPACE(sp);
    518 	_DIAGASSERT(temp >= OVFLSIZE);
    519 	sp[ndx + 3] = (uint16_t)(temp - OVFLSIZE);
    520 	sp[ndx + 1] = ovfl_num;
    521 	sp[ndx + 2] = OVFLPAGE;
    522 	sp[0] = ndx + 2;
    523 #ifdef HASH_STATISTICS
    524 	hash_overflows++;
    525 #endif
    526 	return (bufp->ovfl);
    527 }
    528 
    529 /*
    530  * Returns:
    531  *	 0 indicates SUCCESS
    532  *	-1 indicates FAILURE
    533  */
    534 int
    535 __get_page(HTAB *hashp, char *p, uint32_t bucket, int is_bucket, int is_disk,
    536     int is_bitmap)
    537 {
    538 	int fd, page, size;
    539 	ssize_t rsize;
    540 	uint16_t *bp;
    541 	size_t temp;
    542 
    543 	fd = hashp->fp;
    544 	size = HASH_BSIZE(hashp);
    545 
    546 	if ((fd == -1) || !is_disk) {
    547 		PAGE_INIT(p);
    548 		return (0);
    549 	}
    550 	if (is_bucket)
    551 		page = BUCKET_TO_PAGE(bucket);
    552 	else
    553 		page = OADDR_TO_PAGE(bucket);
    554 	if ((rsize = pread(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1)
    555 		return (-1);
    556 	bp = (uint16_t *)(void *)p;
    557 	if (!rsize)
    558 		bp[0] = 0;	/* We hit the EOF, so initialize a new page */
    559 	else
    560 		if (rsize != size) {
    561 			errno = EFTYPE;
    562 			return (-1);
    563 		}
    564 	if (!is_bitmap && !bp[0]) {
    565 		PAGE_INIT(p);
    566 	} else
    567 		if (hashp->LORDER != BYTE_ORDER) {
    568 			int i, max;
    569 
    570 			if (is_bitmap) {
    571 				max = (uint32_t)hashp->BSIZE >> 2; /* divide by 4 */
    572 				for (i = 0; i < max; i++)
    573 					M_32_SWAP(((int *)(void *)p)[i]);
    574 			} else {
    575 				M_16_SWAP(bp[0]);
    576 				max = bp[0] + 2;
    577 				for (i = 1; i <= max; i++)
    578 					M_16_SWAP(bp[i]);
    579 			}
    580 		}
    581 	return (0);
    582 }
    583 
    584 /*
    585  * Write page p to disk
    586  *
    587  * Returns:
    588  *	 0 ==> OK
    589  *	-1 ==>failure
    590  */
    591 int
    592 __put_page(HTAB *hashp, char *p, uint32_t bucket, int is_bucket, int is_bitmap)
    593 {
    594 	int fd, page, size;
    595 	ssize_t wsize;
    596 	char pbuf[MAX_BSIZE];
    597 
    598 	size = HASH_BSIZE(hashp);
    599 	if ((hashp->fp == -1) && (hashp->fp = __dbtemp("_hash", NULL)) == -1)
    600 		return (-1);
    601 	fd = hashp->fp;
    602 
    603 	if (hashp->LORDER != BYTE_ORDER) {
    604 		int i;
    605 		int max;
    606 
    607 		memcpy(pbuf, p, size);
    608 		if (is_bitmap) {
    609 			max = (uint32_t)hashp->BSIZE >> 2;	/* divide by 4 */
    610 			for (i = 0; i < max; i++)
    611 				M_32_SWAP(((int *)(void *)pbuf)[i]);
    612 		} else {
    613 			uint16_t *bp = (uint16_t *)(void *)pbuf;
    614 			max = bp[0] + 2;
    615 			for (i = 0; i <= max; i++)
    616 				M_16_SWAP(bp[i]);
    617 		}
    618 		p = pbuf;
    619 	}
    620 	if (is_bucket)
    621 		page = BUCKET_TO_PAGE(bucket);
    622 	else
    623 		page = OADDR_TO_PAGE(bucket);
    624 	if ((wsize = pwrite(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1)
    625 		/* Errno is set */
    626 		return (-1);
    627 	if (wsize != size) {
    628 		errno = EFTYPE;
    629 		return (-1);
    630 	}
    631 	return (0);
    632 }
    633 
    634 #define BYTE_MASK	((1 << INT_BYTE_SHIFT) -1)
    635 /*
    636  * Initialize a new bitmap page.  Bitmap pages are left in memory
    637  * once they are read in.
    638  */
    639 int
    640 __ibitmap(HTAB *hashp, int pnum, int nbits, int ndx)
    641 {
    642 	uint32_t *ip;
    643 	int clearbytes, clearints;
    644 
    645 	if ((ip = malloc((size_t)hashp->BSIZE)) == NULL)
    646 		return (1);
    647 	hashp->nmaps++;
    648 	clearints = ((uint32_t)(nbits - 1) >> INT_BYTE_SHIFT) + 1;
    649 	clearbytes = clearints << INT_TO_BYTE;
    650 	(void)memset(ip, 0, (size_t)clearbytes);
    651 	(void)memset(((char *)(void *)ip) + clearbytes, 0xFF,
    652 	    (size_t)(hashp->BSIZE - clearbytes));
    653 	ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
    654 	SETBIT(ip, 0);
    655 	hashp->BITMAPS[ndx] = (uint16_t)pnum;
    656 	hashp->mapp[ndx] = ip;
    657 	return (0);
    658 }
    659 
    660 static uint32_t
    661 first_free(uint32_t map)
    662 {
    663 	uint32_t i, mask;
    664 
    665 	mask = 0x1;
    666 	for (i = 0; i < BITS_PER_MAP; i++) {
    667 		if (!(mask & map))
    668 			return (i);
    669 		mask = mask << 1;
    670 	}
    671 	return (i);
    672 }
    673 
    674 static uint16_t
    675 overflow_page(HTAB *hashp)
    676 {
    677 	uint32_t *freep = NULL;
    678 	int max_free, offset, splitnum;
    679 	uint16_t addr;
    680 	int bit, first_page, free_bit, free_page, i, in_use_bits, j;
    681 #ifdef DEBUG2
    682 	int tmp1, tmp2;
    683 #endif
    684 	splitnum = hashp->OVFL_POINT;
    685 	max_free = hashp->SPARES[splitnum];
    686 
    687 	free_page = (uint32_t)(max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
    688 	free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
    689 
    690 	/* Look through all the free maps to find the first free block */
    691 	first_page = (uint32_t)hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
    692 	for ( i = first_page; i <= free_page; i++ ) {
    693 		if (!(freep = (uint32_t *)hashp->mapp[i]) &&
    694 		    !(freep = fetch_bitmap(hashp, i)))
    695 			return (0);
    696 		if (i == free_page)
    697 			in_use_bits = free_bit;
    698 		else
    699 			in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
    700 
    701 		if (i == first_page) {
    702 			bit = hashp->LAST_FREED &
    703 			    ((hashp->BSIZE << BYTE_SHIFT) - 1);
    704 			j = bit / BITS_PER_MAP;
    705 			bit = bit & ~(BITS_PER_MAP - 1);
    706 		} else {
    707 			bit = 0;
    708 			j = 0;
    709 		}
    710 		for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
    711 			if (freep[j] != ALL_SET)
    712 				goto found;
    713 	}
    714 
    715 	/* No Free Page Found */
    716 	hashp->LAST_FREED = hashp->SPARES[splitnum];
    717 	hashp->SPARES[splitnum]++;
    718 	offset = hashp->SPARES[splitnum] -
    719 	    (splitnum ? hashp->SPARES[splitnum - 1] : 0);
    720 
    721 #define	OVMSG	"HASH: Out of overflow pages.  Increase page size\n"
    722 	if (offset > SPLITMASK) {
    723 		if (++splitnum >= NCACHED) {
    724 			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
    725 			errno = EFBIG;
    726 			return (0);
    727 		}
    728 		hashp->OVFL_POINT = splitnum;
    729 		hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
    730 		hashp->SPARES[splitnum-1]--;
    731 		offset = 1;
    732 	}
    733 
    734 	/* Check if we need to allocate a new bitmap page */
    735 	if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
    736 		free_page++;
    737 		if (free_page >= NCACHED) {
    738 			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
    739 			errno = EFBIG;
    740 			return (0);
    741 		}
    742 		/*
    743 		 * This is tricky.  The 1 indicates that you want the new page
    744 		 * allocated with 1 clear bit.  Actually, you are going to
    745 		 * allocate 2 pages from this map.  The first is going to be
    746 		 * the map page, the second is the overflow page we were
    747 		 * looking for.  The init_bitmap routine automatically, sets
    748 		 * the first bit of itself to indicate that the bitmap itself
    749 		 * is in use.  We would explicitly set the second bit, but
    750 		 * don't have to if we tell init_bitmap not to leave it clear
    751 		 * in the first place.
    752 		 */
    753 		if (__ibitmap(hashp,
    754 		    (int)OADDR_OF(splitnum, offset), 1, free_page))
    755 			return (0);
    756 		hashp->SPARES[splitnum]++;
    757 #ifdef DEBUG2
    758 		free_bit = 2;
    759 #endif
    760 		offset++;
    761 		if (offset > SPLITMASK) {
    762 			if (++splitnum >= NCACHED) {
    763 				(void)write(STDERR_FILENO, OVMSG,
    764 				    sizeof(OVMSG) - 1);
    765 				errno = EFBIG;
    766 				return (0);
    767 			}
    768 			hashp->OVFL_POINT = splitnum;
    769 			hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
    770 			hashp->SPARES[splitnum-1]--;
    771 			offset = 0;
    772 		}
    773 	} else {
    774 		/*
    775 		 * Free_bit addresses the last used bit.  Bump it to address
    776 		 * the first available bit.
    777 		 */
    778 		free_bit++;
    779 		SETBIT(freep, free_bit);
    780 	}
    781 
    782 	/* Calculate address of the new overflow page */
    783 	addr = OADDR_OF(splitnum, offset);
    784 #ifdef DEBUG2
    785 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
    786 	    addr, free_bit, free_page);
    787 #endif
    788 	return (addr);
    789 
    790 found:
    791 	bit = bit + first_free(freep[j]);
    792 	SETBIT(freep, bit);
    793 #ifdef DEBUG2
    794 	tmp1 = bit;
    795 	tmp2 = i;
    796 #endif
    797 	/*
    798 	 * Bits are addressed starting with 0, but overflow pages are addressed
    799 	 * beginning at 1. Bit is a bit addressnumber, so we need to increment
    800 	 * it to convert it to a page number.
    801 	 */
    802 	bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
    803 	if (bit >= hashp->LAST_FREED)
    804 		hashp->LAST_FREED = bit - 1;
    805 
    806 	/* Calculate the split number for this page */
    807 	for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
    808 	offset = (i ? bit - hashp->SPARES[i - 1] : bit);
    809 	if (offset >= SPLITMASK) {
    810 		(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
    811 		errno = EFBIG;
    812 		return (0);	/* Out of overflow pages */
    813 	}
    814 	addr = OADDR_OF(i, offset);
    815 #ifdef DEBUG2
    816 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
    817 	    addr, tmp1, tmp2);
    818 #endif
    819 
    820 	/* Allocate and return the overflow page */
    821 	return (addr);
    822 }
    823 
    824 /*
    825  * Mark this overflow page as free.
    826  */
    827 void
    828 __free_ovflpage(HTAB *hashp, BUFHEAD *obufp)
    829 {
    830 	uint16_t addr;
    831 	uint32_t *freep;
    832 	int bit_address, free_page, free_bit;
    833 	uint16_t ndx;
    834 
    835 	addr = obufp->addr;
    836 #ifdef DEBUG1
    837 	(void)fprintf(stderr, "Freeing %d\n", addr);
    838 #endif
    839 	ndx = (((uint32_t)addr) >> SPLITSHIFT);
    840 	bit_address =
    841 	    (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
    842 	 if (bit_address < hashp->LAST_FREED)
    843 		hashp->LAST_FREED = bit_address;
    844 	free_page = ((uint32_t)bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
    845 	free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
    846 
    847 	if (!(freep = hashp->mapp[free_page]))
    848 		freep = fetch_bitmap(hashp, free_page);
    849 	/*
    850 	 * This had better never happen.  It means we tried to read a bitmap
    851 	 * that has already had overflow pages allocated off it, and we
    852 	 * failed to read it from the file.
    853 	 */
    854 	_DIAGASSERT(freep != NULL);
    855 	CLRBIT(freep, free_bit);
    856 #ifdef DEBUG2
    857 	(void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
    858 	    obufp->addr, free_bit, free_page);
    859 #endif
    860 	__reclaim_buf(hashp, obufp);
    861 }
    862 
    863 /*
    864  * We have to know that the key will fit, but the last entry on the page is
    865  * an overflow pair, so we need to shift things.
    866  */
    867 static void
    868 squeeze_key(uint16_t *sp, const DBT *key, const DBT *val)
    869 {
    870 	char *p;
    871 	uint16_t free_space, n, off, pageno;
    872 	size_t temp;
    873 
    874 	p = (char *)(void *)sp;
    875 	n = sp[0];
    876 	free_space = FREESPACE(sp);
    877 	off = OFFSET(sp);
    878 
    879 	pageno = sp[n - 1];
    880 	_DIAGASSERT(off >= key->size);
    881 	off -= (uint16_t)key->size;
    882 	sp[n - 1] = off;
    883 	memmove(p + off, key->data, key->size);
    884 	_DIAGASSERT(off >= val->size);
    885 	off -= (uint16_t)val->size;
    886 	sp[n] = off;
    887 	memmove(p + off, val->data, val->size);
    888 	sp[0] = n + 2;
    889 	sp[n + 1] = pageno;
    890 	sp[n + 2] = OVFLPAGE;
    891 	temp = PAIRSIZE(key, val);
    892 	_DIAGASSERT(free_space >= temp);
    893 	FREESPACE(sp) = (uint16_t)(free_space - temp);
    894 	OFFSET(sp) = off;
    895 }
    896 
    897 static uint32_t *
    898 fetch_bitmap(HTAB *hashp, int ndx)
    899 {
    900 	if (ndx >= hashp->nmaps)
    901 		return (NULL);
    902 	if ((hashp->mapp[ndx] = malloc((size_t)hashp->BSIZE)) == NULL)
    903 		return (NULL);
    904 	if (__get_page(hashp,
    905 	    (char *)(void *)hashp->mapp[ndx], (uint32_t)hashp->BITMAPS[ndx], 0, 1, 1)) {
    906 		free(hashp->mapp[ndx]);
    907 		return (NULL);
    908 	}
    909 	return (hashp->mapp[ndx]);
    910 }
    911 
    912 #ifdef DEBUG4
    913 void print_chain(HTAB *, uint32_t);
    914 void
    915 print_chain(HTAB *hashp, uint32_t addr)
    916 {
    917 	BUFHEAD *bufp;
    918 	uint16_t *bp, oaddr;
    919 
    920 	(void)fprintf(stderr, "%d ", addr);
    921 	bufp = __get_buf(hashp, addr, NULL, 0);
    922 	bp = (uint16_t *)bufp->page;
    923 	while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
    924 		((bp[0] > 2) && bp[2] < REAL_KEY))) {
    925 		oaddr = bp[bp[0] - 1];
    926 		(void)fprintf(stderr, "%d ", (int)oaddr);
    927 		bufp = __get_buf(hashp, (uint32_t)oaddr, bufp, 0);
    928 		bp = (uint16_t *)bufp->page;
    929 	}
    930 	(void)fprintf(stderr, "\n");
    931 }
    932 #endif
    933