Home | History | Annotate | Line # | Download | only in ar5212
      1 /*
      2  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
      3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
      4  *
      5  * Permission to use, copy, modify, and/or distribute this software for any
      6  * purpose with or without fee is hereby granted, provided that the above
      7  * copyright notice and this permission notice appear in all copies.
      8  *
      9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     16  *
     17  * $Id: ar5212_reset.c,v 1.5 2014/02/27 01:31:09 joerg Exp $
     18  */
     19 #include "opt_ah.h"
     20 
     21 #include "ah.h"
     22 #include "ah_internal.h"
     23 #include "ah_devid.h"
     24 
     25 #include "ar5212/ar5212.h"
     26 #include "ar5212/ar5212reg.h"
     27 #include "ar5212/ar5212phy.h"
     28 
     29 #include "ah_eeprom_v3.h"
     30 
     31 /* Additional Time delay to wait after activiting the Base band */
     32 #define BASE_ACTIVATE_DELAY	100	/* 100 usec */
     33 #define PLL_SETTLE_DELAY	300	/* 300 usec */
     34 
     35 static HAL_BOOL ar5212SetResetReg(struct ath_hal *, uint32_t resetMask);
     36 /* NB: public for 5312 use */
     37 HAL_BOOL	ar5212IsSpurChannel(struct ath_hal *, HAL_CHANNEL *);
     38 HAL_BOOL	ar5212ChannelChange(struct ath_hal *, HAL_CHANNEL *);
     39 int16_t		ar5212GetNf(struct ath_hal *, HAL_CHANNEL_INTERNAL *);
     40 HAL_BOOL	ar5212SetBoardValues(struct ath_hal *, HAL_CHANNEL_INTERNAL *);
     41 void		ar5212SetDeltaSlope(struct ath_hal *, HAL_CHANNEL *);
     42 HAL_BOOL	ar5212SetTransmitPower(struct ath_hal *ah,
     43 		HAL_CHANNEL_INTERNAL *chan, uint16_t *rfXpdGain);
     44 static HAL_BOOL ar5212SetRateTable(struct ath_hal *,
     45 		   HAL_CHANNEL *, int16_t tpcScaleReduction, int16_t powerLimit,
     46 		   HAL_BOOL commit, int16_t *minPower, int16_t *maxPower);
     47 static void ar5212CorrectGainDelta(struct ath_hal *, int twiceOfdmCckDelta);
     48 static void ar5212GetTargetPowers(struct ath_hal *, HAL_CHANNEL *,
     49 		   const TRGT_POWER_INFO *pPowerInfo, uint16_t numChannels,
     50 		   TRGT_POWER_INFO *pNewPower);
     51 static uint16_t ar5212GetMaxEdgePower(uint16_t channel,
     52 		   const RD_EDGES_POWER  *pRdEdgesPower);
     53 void		ar5212SetRateDurationTable(struct ath_hal *, HAL_CHANNEL *);
     54 void		ar5212SetIFSTiming(struct ath_hal *, HAL_CHANNEL *);
     55 
     56 /* NB: public for RF backend use */
     57 void		ar5212GetLowerUpperValues(uint16_t value,
     58 		   uint16_t *pList, uint16_t listSize,
     59 		   uint16_t *pLowerValue, uint16_t *pUpperValue);
     60 void		ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
     61 		   uint32_t numBits, uint32_t firstBit, uint32_t column);
     62 
     63 static int
     64 write_common(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
     65 	HAL_BOOL bChannelChange, int writes)
     66 {
     67 #define IS_NO_RESET_TIMER_ADDR(x)                      \
     68     ( (((x) >= AR_BEACON) && ((x) <= AR_CFP_DUR)) || \
     69       (((x) >= AR_SLEEP1) && ((x) <= AR_SLEEP3)))
     70 #define	V(r, c)	(ia)->data[((r)*(ia)->cols) + (c)]
     71 	int r;
     72 
     73 	/* Write Common Array Parameters */
     74 	for (r = 0; r < ia->rows; r++) {
     75 		uint32_t reg = V(r, 0);
     76 		/* XXX timer/beacon setup registers? */
     77 		/* On channel change, don't reset the PCU registers */
     78 		if (!(bChannelChange && IS_NO_RESET_TIMER_ADDR(reg))) {
     79 			OS_REG_WRITE(ah, reg, V(r, 1));
     80 			DMA_YIELD(writes);
     81 		}
     82 	}
     83 	return writes;
     84 #undef IS_NO_RESET_TIMER_ADDR
     85 #undef V
     86 }
     87 
     88 #define IS_DISABLE_FAST_ADC_CHAN(x) (((x) == 2462) || ((x) == 2467))
     89 
     90 /*
     91  * Places the device in and out of reset and then places sane
     92  * values in the registers based on EEPROM config, initialization
     93  * vectors (as determined by the mode), and station configuration
     94  *
     95  * bChannelChange is used to preserve DMA/PCU registers across
     96  * a HW Reset during channel change.
     97  */
     98 HAL_BOOL
     99 ar5212Reset(struct ath_hal *ah, HAL_OPMODE opmode,
    100 	HAL_CHANNEL *chan, HAL_BOOL bChannelChange, HAL_STATUS *status)
    101 {
    102 #define	N(a)	(sizeof (a) / sizeof (a[0]))
    103 #define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
    104 	struct ath_hal_5212 *ahp = AH5212(ah);
    105 	HAL_CHANNEL_INTERNAL *ichan = AH_NULL;
    106 	const HAL_EEPROM *ee;
    107 	uint32_t softLedCfg, softLedState;
    108 	uint32_t saveFrameSeqCount, saveDefAntenna, saveLedState;
    109 	uint32_t macStaId1, synthDelay, txFrm2TxDStart;
    110 	uint16_t rfXpdGain[MAX_NUM_PDGAINS_PER_CHANNEL];
    111 	int16_t cckOfdmPwrDelta = 0;
    112 	u_int modesIndex, freqIndex;
    113 	HAL_STATUS ecode;
    114 	int i, regWrites;
    115 	uint32_t testReg, powerVal;
    116 	int8_t twiceAntennaGain, twiceAntennaReduction;
    117 	uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
    118 	HAL_BOOL isBmode = AH_FALSE;
    119 	HAL_BOOL ichan_isBmode = AH_FALSE;
    120 
    121 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
    122 	ee = AH_PRIVATE(ah)->ah_eeprom;
    123 
    124 	OS_MARK(ah, AH_MARK_RESET, bChannelChange);
    125 #define	IS(_c,_f)	(((_c)->channelFlags & _f) || 0)
    126 	if ((IS(chan, CHANNEL_2GHZ) ^ IS(chan, CHANNEL_5GHZ)) == 0) {
    127 		HALDEBUG(ah, HAL_DEBUG_ANY,
    128 		    "%s: invalid channel %u/0x%x; not marked as 2GHz or 5GHz\n",
    129 		    __func__, chan->channel, chan->channelFlags);
    130 		FAIL(HAL_EINVAL);
    131 	}
    132 	if ((IS(chan, CHANNEL_OFDM) ^ IS(chan, CHANNEL_CCK)) == 0) {
    133 		HALDEBUG(ah, HAL_DEBUG_ANY,
    134 		    "%s: invalid channel %u/0x%x; not marked as OFDM or CCK\n",
    135 		    __func__, chan->channel, chan->channelFlags);
    136 		FAIL(HAL_EINVAL);
    137 	}
    138 #undef IS
    139 
    140 	/* Bring out of sleep mode */
    141 	if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
    142 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
    143 		    __func__);
    144 		FAIL(HAL_EIO);
    145 	}
    146 
    147 	/*
    148 	 * Map public channel to private.
    149 	 */
    150 	ichan = ath_hal_checkchannel(ah, chan);
    151 	if (ichan == AH_NULL) {
    152 		HALDEBUG(ah, HAL_DEBUG_ANY,
    153 		    "%s: invalid channel %u/0x%x; no mapping\n",
    154 		    __func__, chan->channel, chan->channelFlags);
    155 		FAIL(HAL_EINVAL);
    156 	}
    157 	switch (opmode) {
    158 	case HAL_M_STA:
    159 	case HAL_M_IBSS:
    160 	case HAL_M_HOSTAP:
    161 	case HAL_M_MONITOR:
    162 		break;
    163 	default:
    164 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
    165 		    __func__, opmode);
    166 		FAIL(HAL_EINVAL);
    167 		break;
    168 	}
    169 	HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3);
    170 
    171 	SAVE_CCK(ah, ichan, ichan_isBmode);
    172 	SAVE_CCK(ah, chan, isBmode);
    173 
    174 	/* Preserve certain DMA hardware registers on a channel change */
    175 	if (bChannelChange) {
    176 		/*
    177 		 * On Venice, the TSF is almost preserved across a reset;
    178 		 * it requires doubling writes to the RESET_TSF
    179 		 * bit in the AR_BEACON register; it also has the quirk
    180 		 * of the TSF going back in time on the station (station
    181 		 * latches onto the last beacon's tsf during a reset 50%
    182 		 * of the times); the latter is not a problem for adhoc
    183 		 * stations since as long as the TSF is behind, it will
    184 		 * get resynchronized on receiving the next beacon; the
    185 		 * TSF going backwards in time could be a problem for the
    186 		 * sleep operation (supported on infrastructure stations
    187 		 * only) - the best and most general fix for this situation
    188 		 * is to resynchronize the various sleep/beacon timers on
    189 		 * the receipt of the next beacon i.e. when the TSF itself
    190 		 * gets resynchronized to the AP's TSF - power save is
    191 		 * needed to be temporarily disabled until that time
    192 		 *
    193 		 * Need to save the sequence number to restore it after
    194 		 * the reset!
    195 		 */
    196 		saveFrameSeqCount = OS_REG_READ(ah, AR_D_SEQNUM);
    197 	} else
    198 		saveFrameSeqCount = 0;		/* NB: silence compiler */
    199 #if 0
    200 	/*
    201 	 * XXX disable for now; this appears to sometimes cause OFDM
    202 	 * XXX timing error floods when ani is enabled and bg scanning
    203 	 * XXX kicks in
    204 	 */
    205 	/* If the channel change is across the same mode - perform a fast channel change */
    206 	if (IS_2413(ah) || IS_5413(ah)) {
    207 		/*
    208 		 * Fast channel change can only be used when:
    209 		 *  -channel change requested - so it's not the initial reset.
    210 		 *  -it's not a change to the current channel -
    211 		 *	often called when switching modes on a channel
    212 		 *  -the modes of the previous and requested channel are the
    213 		 *	same
    214 		 * XXX opmode shouldn't change either?
    215 		 */
    216 		if (bChannelChange &&
    217 		    (AH_PRIVATE(ah)->ah_curchan != AH_NULL) &&
    218 		    (chan->channel != AH_PRIVATE(ah)->ah_curchan->channel) &&
    219 		    ((chan->channelFlags & CHANNEL_ALL) ==
    220 		     (AH_PRIVATE(ah)->ah_curchan->channelFlags & CHANNEL_ALL))) {
    221 			if (ar5212ChannelChange(ah, chan)) {
    222 				/* If ChannelChange completed - skip the rest of reset */
    223 				/* XXX ani? */
    224 				return AH_TRUE;
    225 			}
    226 		}
    227 	}
    228 #endif
    229 	/*
    230 	 * Preserve the antenna on a channel change
    231 	 */
    232 	saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
    233 	if (saveDefAntenna == 0)		/* XXX magic constants */
    234 		saveDefAntenna = 1;
    235 
    236 	/* Save hardware flag before chip reset clears the register */
    237 	macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
    238 		(AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
    239 
    240 	/* Save led state from pci config register */
    241 	saveLedState = OS_REG_READ(ah, AR_PCICFG) &
    242 		(AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK |
    243 		 AR_PCICFG_LEDSLOW);
    244 	softLedCfg = OS_REG_READ(ah, AR_GPIOCR);
    245 	softLedState = OS_REG_READ(ah, AR_GPIODO);
    246 
    247 	ar5212RestoreClock(ah, opmode);		/* move to refclk operation */
    248 
    249 	/*
    250 	 * Adjust gain parameters before reset if
    251 	 * there's an outstanding gain updated.
    252 	 */
    253 	(void) ar5212GetRfgain(ah);
    254 
    255 	if (!ar5212ChipReset(ah, chan)) {
    256 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
    257 		FAIL(HAL_EIO);
    258 	}
    259 
    260 	/* Setup the indices for the next set of register array writes */
    261 	switch (chan->channelFlags & CHANNEL_ALL) {
    262 	case CHANNEL_A:
    263 		modesIndex = 1;
    264 		freqIndex  = 1;
    265 		break;
    266 	case CHANNEL_T:
    267 		modesIndex = 2;
    268 		freqIndex  = 1;
    269 		break;
    270 	case CHANNEL_B:
    271 		modesIndex = 3;
    272 		freqIndex  = 2;
    273 		break;
    274 	case CHANNEL_PUREG:
    275 		modesIndex = 4;
    276 		freqIndex  = 2;
    277 		break;
    278 	case CHANNEL_108G:
    279 		modesIndex = 5;
    280 		freqIndex  = 2;
    281 		break;
    282 	default:
    283 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
    284 		    __func__, chan->channelFlags);
    285 		FAIL(HAL_EINVAL);
    286 	}
    287 
    288 	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
    289 
    290 	/* Set correct Baseband to analog shift setting to access analog chips. */
    291 	OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);
    292 
    293 	regWrites = ath_hal_ini_write(ah, &ahp->ah_ini_modes, modesIndex, 0);
    294 	regWrites = write_common(ah, &ahp->ah_ini_common, bChannelChange,
    295 		regWrites);
    296 	ahp->ah_rfHal->writeRegs(ah, modesIndex, freqIndex, regWrites);
    297 
    298 	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
    299 
    300 	if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan)) {
    301 		ar5212SetIFSTiming(ah, chan);
    302 		if (IS_5413(ah)) {
    303 			/*
    304 			 * Force window_length for 1/2 and 1/4 rate channels,
    305 			 * the ini file sets this to zero otherwise.
    306 			 */
    307 			OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
    308 				AR_PHY_FRAME_CTL_WINLEN, 3);
    309 		}
    310 	}
    311 
    312 	/* Overwrite INI values for revised chipsets */
    313 	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2) {
    314 		/* ADC_CTL */
    315 		OS_REG_WRITE(ah, AR_PHY_ADC_CTL,
    316 			SM(2, AR_PHY_ADC_CTL_OFF_INBUFGAIN) |
    317 			SM(2, AR_PHY_ADC_CTL_ON_INBUFGAIN) |
    318 			AR_PHY_ADC_CTL_OFF_PWDDAC |
    319 			AR_PHY_ADC_CTL_OFF_PWDADC);
    320 
    321 		/* TX_PWR_ADJ */
    322 		if (chan->channel == 2484) {
    323 			cckOfdmPwrDelta = SCALE_OC_DELTA(
    324 			    ee->ee_cckOfdmPwrDelta -
    325 			    ee->ee_scaledCh14FilterCckDelta);
    326 		} else {
    327 			cckOfdmPwrDelta = SCALE_OC_DELTA(
    328 			    ee->ee_cckOfdmPwrDelta);
    329 		}
    330 
    331 		if (IS_CHAN_G(chan)) {
    332 		    OS_REG_WRITE(ah, AR_PHY_TXPWRADJ,
    333 			SM((ee->ee_cckOfdmPwrDelta*-1),
    334 			    AR_PHY_TXPWRADJ_CCK_GAIN_DELTA) |
    335 			SM((cckOfdmPwrDelta*-1),
    336 			    AR_PHY_TXPWRADJ_CCK_PCDAC_INDEX));
    337 		} else {
    338 			OS_REG_WRITE(ah, AR_PHY_TXPWRADJ, 0);
    339 		}
    340 
    341 		/* Add barker RSSI thresh enable as disabled */
    342 		OS_REG_CLR_BIT(ah, AR_PHY_DAG_CTRLCCK,
    343 			AR_PHY_DAG_CTRLCCK_EN_RSSI_THR);
    344 		OS_REG_RMW_FIELD(ah, AR_PHY_DAG_CTRLCCK,
    345 			AR_PHY_DAG_CTRLCCK_RSSI_THR, 2);
    346 
    347 		/* Set the mute mask to the correct default */
    348 		OS_REG_WRITE(ah, AR_SEQ_MASK, 0x0000000F);
    349 	}
    350 
    351 	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_3) {
    352 		/* Clear reg to alllow RX_CLEAR line debug */
    353 		OS_REG_WRITE(ah, AR_PHY_BLUETOOTH,  0);
    354 	}
    355 	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_4) {
    356 #ifdef notyet
    357 		/* Enable burst prefetch for the data queues */
    358 		OS_REG_RMW_FIELD(ah, AR_D_FPCTL, ... );
    359 		/* Enable double-buffering */
    360 		OS_REG_CLR_BIT(ah, AR_TXCFG, AR_TXCFG_DBL_BUF_DIS);
    361 #endif
    362 	}
    363 
    364 	/* Set ADC/DAC select values */
    365 	OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
    366 
    367 	if (IS_5413(ah) || IS_2417(ah)) {
    368 		uint32_t newReg=1;
    369 		if (IS_DISABLE_FAST_ADC_CHAN(chan->channel))
    370 			newReg = 0;
    371 		/* As it's a clock changing register, only write when the value needs to be changed */
    372 		if (OS_REG_READ(ah, AR_PHY_FAST_ADC) != newReg)
    373 			OS_REG_WRITE(ah, AR_PHY_FAST_ADC, newReg);
    374 	}
    375 
    376 	/* Setup the transmit power values. */
    377 	if (!ar5212SetTransmitPower(ah, ichan, rfXpdGain)) {
    378 		HALDEBUG(ah, HAL_DEBUG_ANY,
    379 		    "%s: error init'ing transmit power\n", __func__);
    380 		FAIL(HAL_EIO);
    381 	}
    382 
    383 	/* Write the analog registers */
    384 	if (!ahp->ah_rfHal->setRfRegs(ah, ichan, modesIndex, rfXpdGain)) {
    385 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: ar5212SetRfRegs failed\n",
    386 		    __func__);
    387 		FAIL(HAL_EIO);
    388 	}
    389 
    390 	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
    391 	if (IS_CHAN_OFDM(chan)) {
    392 		if ((IS_5413(ah) || (AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3)) &&
    393 		    (!IS_CHAN_B(chan)))
    394 			ar5212SetSpurMitigation(ah, ichan);
    395 		ar5212SetDeltaSlope(ah, chan);
    396 	}
    397 
    398 	/* Setup board specific options for EEPROM version 3 */
    399 	if (!ar5212SetBoardValues(ah, ichan)) {
    400 		HALDEBUG(ah, HAL_DEBUG_ANY,
    401 		    "%s: error setting board options\n", __func__);
    402 		FAIL(HAL_EIO);
    403 	}
    404 
    405 	/* Restore certain DMA hardware registers on a channel change */
    406 	if (bChannelChange)
    407 		OS_REG_WRITE(ah, AR_D_SEQNUM, saveFrameSeqCount);
    408 
    409 	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
    410 
    411 	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
    412 	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
    413 		| macStaId1
    414 		| AR_STA_ID1_RTS_USE_DEF
    415 		| ahp->ah_staId1Defaults
    416 	);
    417 	ar5212SetOperatingMode(ah, opmode);
    418 
    419 	/* Set Venice BSSID mask according to current state */
    420 	OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
    421 	OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
    422 
    423 	/* Restore previous led state */
    424 	OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | saveLedState);
    425 
    426 	/* Restore soft Led state to GPIO */
    427 	OS_REG_WRITE(ah, AR_GPIOCR, softLedCfg);
    428 	OS_REG_WRITE(ah, AR_GPIODO, softLedState);
    429 
    430 	/* Restore previous antenna */
    431 	OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
    432 
    433 	/* then our BSSID */
    434 	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
    435 	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
    436 
    437 	/* Restore bmiss rssi & count thresholds */
    438 	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
    439 
    440 	OS_REG_WRITE(ah, AR_ISR, ~0);		/* cleared on write */
    441 
    442 	if (!ar5212SetChannel(ah, ichan))
    443 		FAIL(HAL_EIO);
    444 
    445 	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
    446 
    447 	ar5212SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
    448 
    449 	ar5212SetRateDurationTable(ah, chan);
    450 
    451 	/* Set Tx frame start to tx data start delay */
    452 	if (IS_RAD5112_ANY(ah) &&
    453 	    (IS_CHAN_HALF_RATE(AH_PRIVATE(ah)->ah_curchan) ||
    454 	     IS_CHAN_QUARTER_RATE(AH_PRIVATE(ah)->ah_curchan))) {
    455 		txFrm2TxDStart =
    456 			(IS_CHAN_HALF_RATE(AH_PRIVATE(ah)->ah_curchan)) ?
    457 					TX_FRAME_D_START_HALF_RATE:
    458 					TX_FRAME_D_START_QUARTER_RATE;
    459 		OS_REG_RMW_FIELD(ah, AR_PHY_TX_CTL,
    460 			AR_PHY_TX_FRAME_TO_TX_DATA_START, txFrm2TxDStart);
    461 	}
    462 
    463 	/*
    464 	 * Setup fast diversity.
    465 	 * Fast diversity can be enabled or disabled via regadd.txt.
    466 	 * Default is enabled.
    467 	 * For reference,
    468 	 *    Disable: reg        val
    469 	 *             0x00009860 0x00009d18 (if 11a / 11g, else no change)
    470 	 *             0x00009970 0x192bb514
    471 	 *             0x0000a208 0xd03e4648
    472 	 *
    473 	 *    Enable:  0x00009860 0x00009d10 (if 11a / 11g, else no change)
    474 	 *             0x00009970 0x192fb514
    475 	 *             0x0000a208 0xd03e6788
    476 	 */
    477 
    478 	/* XXX Setup pre PHY ENABLE EAR additions */
    479 	/*
    480 	 * Wait for the frequency synth to settle (synth goes on
    481 	 * via AR_PHY_ACTIVE_EN).  Read the phy active delay register.
    482 	 * Value is in 100ns increments.
    483 	 */
    484 	synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
    485 	if (IS_CHAN_CCK(chan)) {
    486 		synthDelay = (4 * synthDelay) / 22;
    487 	} else {
    488 		synthDelay /= 10;
    489 	}
    490 
    491 	/* Activate the PHY (includes baseband activate and synthesizer on) */
    492 	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
    493 
    494 	/*
    495 	 * There is an issue if the AP starts the calibration before
    496 	 * the base band timeout completes.  This could result in the
    497 	 * rx_clear false triggering.  As a workaround we add delay an
    498 	 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
    499 	 * does not happen.
    500 	 */
    501 	if (IS_CHAN_HALF_RATE(AH_PRIVATE(ah)->ah_curchan)) {
    502 		OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
    503 	} else if (IS_CHAN_QUARTER_RATE(AH_PRIVATE(ah)->ah_curchan)) {
    504 		OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
    505 	} else {
    506 		OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
    507 	}
    508 
    509 	/*
    510 	 * The udelay method is not reliable with notebooks.
    511 	 * Need to check to see if the baseband is ready
    512 	 */
    513 	testReg = OS_REG_READ(ah, AR_PHY_TESTCTRL);
    514 	/* Selects the Tx hold */
    515 	OS_REG_WRITE(ah, AR_PHY_TESTCTRL, AR_PHY_TESTCTRL_TXHOLD);
    516 	i = 0;
    517 	while ((i++ < 20) &&
    518 	       (OS_REG_READ(ah, 0x9c24) & 0x10)) /* test if baseband not ready */		OS_DELAY(200);
    519 	OS_REG_WRITE(ah, AR_PHY_TESTCTRL, testReg);
    520 
    521 	/* Calibrate the AGC and start a NF calculation */
    522 	OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
    523 		  OS_REG_READ(ah, AR_PHY_AGC_CONTROL)
    524 		| AR_PHY_AGC_CONTROL_CAL
    525 		| AR_PHY_AGC_CONTROL_NF);
    526 
    527 	if (!IS_CHAN_B(chan) && ahp->ah_bIQCalibration != IQ_CAL_DONE) {
    528 		/* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
    529 		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
    530 			AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
    531 			INIT_IQCAL_LOG_COUNT_MAX);
    532 		OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
    533 			AR_PHY_TIMING_CTRL4_DO_IQCAL);
    534 		ahp->ah_bIQCalibration = IQ_CAL_RUNNING;
    535 	} else
    536 		ahp->ah_bIQCalibration = IQ_CAL_INACTIVE;
    537 
    538 	/* Setup compression registers */
    539 	ar5212SetCompRegs(ah);
    540 
    541 	/* Set 1:1 QCU to DCU mapping for all queues */
    542 	for (i = 0; i < AR_NUM_DCU; i++)
    543 		OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
    544 
    545 	ahp->ah_intrTxqs = 0;
    546 	for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
    547 		ar5212ResetTxQueue(ah, i);
    548 
    549 	/*
    550 	 * Setup interrupt handling.  Note that ar5212ResetTxQueue
    551 	 * manipulates the secondary IMR's as queues are enabled
    552 	 * and disabled.  This is done with RMW ops to insure the
    553 	 * settings we make here are preserved.
    554 	 */
    555 	ahp->ah_maskReg = AR_IMR_TXOK | AR_IMR_TXERR | AR_IMR_TXURN
    556 			| AR_IMR_RXOK | AR_IMR_RXERR | AR_IMR_RXORN
    557 			| AR_IMR_HIUERR
    558 			;
    559 	if (opmode == HAL_M_HOSTAP)
    560 		ahp->ah_maskReg |= AR_IMR_MIB;
    561 	OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
    562 	/* Enable bus errors that are OR'd to set the HIUERR bit */
    563 	OS_REG_WRITE(ah, AR_IMR_S2,
    564 		OS_REG_READ(ah, AR_IMR_S2)
    565 		| AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR);
    566 
    567 	if (AH_PRIVATE(ah)->ah_rfkillEnabled)
    568 		ar5212EnableRfKill(ah);
    569 
    570 	if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0)) {
    571 		HALDEBUG(ah, HAL_DEBUG_ANY,
    572 		    "%s: offset calibration failed to complete in 1ms;"
    573 		    " noisy environment?\n", __func__);
    574 	}
    575 
    576 	/*
    577 	 * Set clocks back to 32kHz if they had been using refClk, then
    578 	 * use an external 32kHz crystal when sleeping, if one exists.
    579 	 */
    580 	ar5212SetupClock(ah, opmode);
    581 
    582 	/*
    583 	 * Writing to AR_BEACON will start timers. Hence it should
    584 	 * be the last register to be written. Do not reset tsf, do
    585 	 * not enable beacons at this point, but preserve other values
    586 	 * like beaconInterval.
    587 	 */
    588 	OS_REG_WRITE(ah, AR_BEACON,
    589 		(OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF)));
    590 
    591 	/* XXX Setup post reset EAR additions */
    592 
    593 	/* QoS support */
    594 	if (AH_PRIVATE(ah)->ah_macVersion > AR_SREV_VERSION_VENICE ||
    595 	    (AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_VENICE &&
    596 	     AH_PRIVATE(ah)->ah_macRev >= AR_SREV_GRIFFIN_LITE)) {
    597 		OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa);	/* XXX magic */
    598 		OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210);	/* XXX magic */
    599 	}
    600 
    601 	/* Turn on NOACK Support for QoS packets */
    602 	OS_REG_WRITE(ah, AR_NOACK,
    603 		SM(2, AR_NOACK_2BIT_VALUE) |
    604 		SM(5, AR_NOACK_BIT_OFFSET) |
    605 		SM(0, AR_NOACK_BYTE_OFFSET));
    606 
    607 	/* Get Antenna Gain reduction */
    608 	if (IS_CHAN_5GHZ(chan)) {
    609 		ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_5, &twiceAntennaGain);
    610 	} else {
    611 		ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_2, &twiceAntennaGain);
    612 	}
    613 	twiceAntennaReduction =
    614 		ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
    615 
    616 	/* TPC for self-generated frames */
    617 
    618 	ackTpcPow = MS(ahp->ah_macTPC, AR_TPC_ACK);
    619 	if ((ackTpcPow-ahp->ah_txPowerIndexOffset) > ichan->maxTxPower)
    620 		ackTpcPow = ichan->maxTxPower+ahp->ah_txPowerIndexOffset;
    621 
    622 	if (ackTpcPow > (2*ichan->maxRegTxPower - twiceAntennaReduction))
    623 		ackTpcPow = (2*ichan->maxRegTxPower - twiceAntennaReduction)
    624 			+ ahp->ah_txPowerIndexOffset;
    625 
    626 	ctsTpcPow = MS(ahp->ah_macTPC, AR_TPC_CTS);
    627 	if ((ctsTpcPow-ahp->ah_txPowerIndexOffset) > ichan->maxTxPower)
    628 		ctsTpcPow = ichan->maxTxPower+ahp->ah_txPowerIndexOffset;
    629 
    630 	if (ctsTpcPow > (2*ichan->maxRegTxPower - twiceAntennaReduction))
    631 		ctsTpcPow = (2*ichan->maxRegTxPower - twiceAntennaReduction)
    632 			+ ahp->ah_txPowerIndexOffset;
    633 
    634 	chirpTpcPow = MS(ahp->ah_macTPC, AR_TPC_CHIRP);
    635 	if ((chirpTpcPow-ahp->ah_txPowerIndexOffset) > ichan->maxTxPower)
    636 		chirpTpcPow = ichan->maxTxPower+ahp->ah_txPowerIndexOffset;
    637 
    638 	if (chirpTpcPow > (2*ichan->maxRegTxPower - twiceAntennaReduction))
    639 		chirpTpcPow = (2*ichan->maxRegTxPower - twiceAntennaReduction)
    640 			+ ahp->ah_txPowerIndexOffset;
    641 
    642 	if (ackTpcPow > 63)
    643 		ackTpcPow = 63;
    644 	if (ctsTpcPow > 63)
    645 		ctsTpcPow = 63;
    646 	if (chirpTpcPow > 63)
    647 		chirpTpcPow = 63;
    648 
    649 	powerVal = SM(ackTpcPow, AR_TPC_ACK) |
    650 		SM(ctsTpcPow, AR_TPC_CTS) |
    651 		SM(chirpTpcPow, AR_TPC_CHIRP);
    652 
    653 	OS_REG_WRITE(ah, AR_TPC, powerVal);
    654 
    655 	/* Restore user-specified settings */
    656 	if (ahp->ah_miscMode != 0)
    657 		OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
    658 	if (ahp->ah_sifstime != (u_int) -1)
    659 		ar5212SetSifsTime(ah, ahp->ah_sifstime);
    660 	if (ahp->ah_slottime != (u_int) -1)
    661 		ar5212SetSlotTime(ah, ahp->ah_slottime);
    662 	if (ahp->ah_acktimeout != (u_int) -1)
    663 		ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
    664 	if (ahp->ah_ctstimeout != (u_int) -1)
    665 		ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
    666 	if (AH_PRIVATE(ah)->ah_diagreg != 0)
    667 		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
    668 
    669 	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */
    670 
    671 	if (bChannelChange) {
    672 		if (!(ichan->privFlags & CHANNEL_DFS))
    673 			ichan->privFlags &= ~CHANNEL_INTERFERENCE;
    674 		chan->channelFlags = ichan->channelFlags;
    675 		chan->privFlags = ichan->privFlags;
    676 		chan->maxRegTxPower = ichan->maxRegTxPower;
    677 		chan->maxTxPower = ichan->maxTxPower;
    678 		chan->minTxPower = ichan->minTxPower;
    679 	}
    680 
    681 	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
    682 
    683 	RESTORE_CCK(ah, ichan, ichan_isBmode);
    684 	RESTORE_CCK(ah, chan, isBmode);
    685 
    686 	OS_MARK(ah, AH_MARK_RESET_DONE, 0);
    687 
    688 	return AH_TRUE;
    689 bad:
    690 	if (ichan != AH_NULL)
    691 		RESTORE_CCK(ah, ichan, ichan_isBmode);
    692 	RESTORE_CCK(ah, chan, isBmode);
    693 
    694 	OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
    695 	if (status != AH_NULL)
    696 		*status = ecode;
    697 	return AH_FALSE;
    698 #undef FAIL
    699 #undef N
    700 }
    701 
    702 /*
    703  * Call the rf backend to change the channel.
    704  */
    705 HAL_BOOL
    706 ar5212SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
    707 {
    708 	struct ath_hal_5212 *ahp = AH5212(ah);
    709 
    710 	/* Change the synth */
    711 	if (!ahp->ah_rfHal->setChannel(ah, chan))
    712 		return AH_FALSE;
    713 	return AH_TRUE;
    714 }
    715 
    716 /*
    717  * This channel change evaluates whether the selected hardware can
    718  * perform a synthesizer-only channel change (no reset).  If the
    719  * TX is not stopped, or the RFBus cannot be granted in the given
    720  * time, the function returns false as a reset is necessary
    721  */
    722 HAL_BOOL
    723 ar5212ChannelChange(struct ath_hal *ah, HAL_CHANNEL *chan)
    724 {
    725 	uint32_t       ulCount;
    726 	uint32_t   data, synthDelay, qnum;
    727 	uint16_t   rfXpdGain[MAX_NUM_PDGAINS_PER_CHANNEL];
    728 	HAL_BOOL    txStopped = AH_TRUE;
    729 	HAL_CHANNEL_INTERNAL *ichan;
    730 
    731 	/*
    732 	 * Map public channel to private.
    733 	 */
    734 	ichan = ath_hal_checkchannel(ah, chan);
    735 
    736 	/* TX must be stopped or RF Bus grant will not work */
    737 	for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
    738 		if (ar5212NumTxPending(ah, qnum)) {
    739 			txStopped = AH_FALSE;
    740 			break;
    741 		}
    742 	}
    743 	if (!txStopped)
    744 		return AH_FALSE;
    745 
    746 	/* Kill last Baseband Rx Frame */
    747 	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST); /* Request analog bus grant */
    748 	for (ulCount = 0; ulCount < 100; ulCount++) {
    749 		if (OS_REG_READ(ah, AR_PHY_RFBUS_GNT))
    750 			break;
    751 		OS_DELAY(5);
    752 	}
    753 	if (ulCount >= 100)
    754 		return AH_FALSE;
    755 
    756 	/* Change the synth */
    757 	if (!ar5212SetChannel(ah, ichan))
    758 		return AH_FALSE;
    759 
    760 	/*
    761 	 * Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN).
    762 	 * Read the phy active delay register. Value is in 100ns increments.
    763 	 */
    764 	data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
    765 	if (IS_CHAN_CCK(ichan)) {
    766 		synthDelay = (4 * data) / 22;
    767 	} else {
    768 		synthDelay = data / 10;
    769 	}
    770 	OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
    771 
    772 	/* Setup the transmit power values. */
    773 	if (!ar5212SetTransmitPower(ah, ichan, rfXpdGain)) {
    774 		HALDEBUG(ah, HAL_DEBUG_ANY,
    775 		    "%s: error init'ing transmit power\n", __func__);
    776 		return AH_FALSE;
    777 	}
    778 
    779 	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
    780 	if (IS_CHAN_OFDM(ichan)) {
    781 		if ((IS_5413(ah) || (AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3)) &&
    782 		    (!IS_CHAN_B(chan)))
    783 			ar5212SetSpurMitigation(ah, ichan);
    784 		ar5212SetDeltaSlope(ah, chan);
    785 	}
    786 
    787 	/* Release the RFBus Grant */
    788 	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
    789 
    790 	/* Start Noise Floor Cal */
    791 	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
    792 
    793 	if (!(ichan->privFlags & CHANNEL_DFS))
    794 		ichan->privFlags &= ~CHANNEL_INTERFERENCE;
    795 	chan->channelFlags = ichan->channelFlags;
    796 	chan->privFlags = ichan->privFlags;
    797 	chan->maxRegTxPower = ichan->maxRegTxPower;
    798 	chan->maxTxPower = ichan->maxTxPower;
    799 	chan->minTxPower = ichan->minTxPower;
    800 	return AH_TRUE;
    801 }
    802 
    803 void
    804 ar5212SetOperatingMode(struct ath_hal *ah, int opmode)
    805 {
    806 	uint32_t val;
    807 
    808 	val = OS_REG_READ(ah, AR_STA_ID1);
    809 	val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
    810 	switch (opmode) {
    811 	case HAL_M_HOSTAP:
    812 		OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
    813 					| AR_STA_ID1_KSRCH_MODE);
    814 		OS_REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
    815 		break;
    816 	case HAL_M_IBSS:
    817 		OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
    818 					| AR_STA_ID1_KSRCH_MODE);
    819 		OS_REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
    820 		break;
    821 	case HAL_M_STA:
    822 	case HAL_M_MONITOR:
    823 		OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
    824 		break;
    825 	}
    826 }
    827 
    828 /*
    829  * Places the PHY and Radio chips into reset.  A full reset
    830  * must be called to leave this state.  The PCI/MAC/PCU are
    831  * not placed into reset as we must receive interrupt to
    832  * re-enable the hardware.
    833  */
    834 HAL_BOOL
    835 ar5212PhyDisable(struct ath_hal *ah)
    836 {
    837 	return ar5212SetResetReg(ah, AR_RC_BB);
    838 }
    839 
    840 /*
    841  * Places all of hardware into reset
    842  */
    843 HAL_BOOL
    844 ar5212Disable(struct ath_hal *ah)
    845 {
    846 	if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
    847 		return AH_FALSE;
    848 	/*
    849 	 * Reset the HW - PCI must be reset after the rest of the
    850 	 * device has been reset.
    851 	 */
    852 	return ar5212SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI);
    853 }
    854 
    855 /*
    856  * Places the hardware into reset and then pulls it out of reset
    857  *
    858  * TODO: Only write the PLL if we're changing to or from CCK mode
    859  *
    860  * WARNING: The order of the PLL and mode registers must be correct.
    861  */
    862 HAL_BOOL
    863 ar5212ChipReset(struct ath_hal *ah, HAL_CHANNEL *chan)
    864 {
    865 
    866 	OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->channel : 0);
    867 
    868 	/*
    869 	 * Reset the HW - PCI must be reset after the rest of the
    870 	 * device has been reset
    871 	 */
    872 	if (!ar5212SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
    873 		return AH_FALSE;
    874 
    875 	/* Bring out of sleep mode (AGAIN) */
    876 	if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
    877 		return AH_FALSE;
    878 
    879 	/* Clear warm reset register */
    880 	if (!ar5212SetResetReg(ah, 0))
    881 		return AH_FALSE;
    882 
    883 	/*
    884 	 * Perform warm reset before the mode/PLL/turbo registers
    885 	 * are changed in order to deactivate the radio.  Mode changes
    886 	 * with an active radio can result in corrupted shifts to the
    887 	 * radio device.
    888 	 */
    889 
    890 	/*
    891 	 * Set CCK and Turbo modes correctly.
    892 	 */
    893 	if (chan != AH_NULL) {		/* NB: can be null during attach */
    894 		uint32_t rfMode, phyPLL = 0, curPhyPLL, turbo;
    895 
    896 		if (IS_5413(ah)) {	/* NB: =>'s 5424 also */
    897 			rfMode = AR_PHY_MODE_AR5112;
    898 			if (IS_CHAN_HALF_RATE(chan))
    899 				rfMode |= AR_PHY_MODE_HALF;
    900 			else if (IS_CHAN_QUARTER_RATE(chan))
    901 				rfMode |= AR_PHY_MODE_QUARTER;
    902 
    903 			if (IS_CHAN_CCK(chan) || IS_CHAN_G(chan))
    904 				phyPLL = AR_PHY_PLL_CTL_44_5112;
    905 			else
    906 				phyPLL = AR_PHY_PLL_CTL_40_5413;
    907 		} else if (IS_RAD5111(ah)) {
    908 			rfMode = AR_PHY_MODE_AR5111;
    909 			if (IS_CHAN_CCK(chan) || IS_CHAN_G(chan))
    910 				phyPLL = AR_PHY_PLL_CTL_44;
    911 			else
    912 				phyPLL = AR_PHY_PLL_CTL_40;
    913 			if (IS_CHAN_HALF_RATE(chan))
    914 				phyPLL = AR_PHY_PLL_CTL_HALF;
    915 			else if (IS_CHAN_QUARTER_RATE(chan))
    916 				phyPLL = AR_PHY_PLL_CTL_QUARTER;
    917 		} else {		/* 5112, 2413, 2316, 2317 */
    918 			rfMode = AR_PHY_MODE_AR5112;
    919 			if (IS_CHAN_CCK(chan) || IS_CHAN_G(chan))
    920 				phyPLL = AR_PHY_PLL_CTL_44_5112;
    921 			else
    922 				phyPLL = AR_PHY_PLL_CTL_40_5112;
    923 			if (IS_CHAN_HALF_RATE(chan))
    924 				phyPLL |= AR_PHY_PLL_CTL_HALF;
    925 			else if (IS_CHAN_QUARTER_RATE(chan))
    926 				phyPLL |= AR_PHY_PLL_CTL_QUARTER;
    927 		}
    928 		if (IS_CHAN_OFDM(chan) && (IS_CHAN_CCK(chan) ||
    929 					   IS_CHAN_G(chan)))
    930 			rfMode |= AR_PHY_MODE_DYNAMIC;
    931 		else if (IS_CHAN_OFDM(chan))
    932 			rfMode |= AR_PHY_MODE_OFDM;
    933 		else
    934 			rfMode |= AR_PHY_MODE_CCK;
    935 		if (IS_CHAN_5GHZ(chan))
    936 			rfMode |= AR_PHY_MODE_RF5GHZ;
    937 		else
    938 			rfMode |= AR_PHY_MODE_RF2GHZ;
    939 		turbo = IS_CHAN_TURBO(chan) ?
    940 			(AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT) : 0;
    941 		curPhyPLL = OS_REG_READ(ah, AR_PHY_PLL_CTL);
    942 		/*
    943 		 * PLL, Mode, and Turbo values must be written in the correct
    944 		 * order to ensure:
    945 		 * - The PLL cannot be set to 44 unless the CCK or DYNAMIC
    946 		 *   mode bit is set
    947 		 * - Turbo cannot be set at the same time as CCK or DYNAMIC
    948 		 */
    949 		if (IS_CHAN_CCK(chan) || IS_CHAN_G(chan)) {
    950 			OS_REG_WRITE(ah, AR_PHY_TURBO, turbo);
    951 			OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
    952 			if (curPhyPLL != phyPLL) {
    953 				OS_REG_WRITE(ah,  AR_PHY_PLL_CTL,  phyPLL);
    954 				/* Wait for the PLL to settle */
    955 				OS_DELAY(PLL_SETTLE_DELAY);
    956 			}
    957 		} else {
    958 			if (curPhyPLL != phyPLL) {
    959 				OS_REG_WRITE(ah,  AR_PHY_PLL_CTL,  phyPLL);
    960 				/* Wait for the PLL to settle */
    961 				OS_DELAY(PLL_SETTLE_DELAY);
    962 			}
    963 			OS_REG_WRITE(ah, AR_PHY_TURBO, turbo);
    964 			OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
    965 		}
    966 	}
    967 	return AH_TRUE;
    968 }
    969 
    970 /*
    971  * Recalibrate the lower PHY chips to account for temperature/environment
    972  * changes.
    973  */
    974 HAL_BOOL
    975 ar5212PerCalibrationN(struct ath_hal *ah,  HAL_CHANNEL *chan, u_int chainMask,
    976 	HAL_BOOL longCal, HAL_BOOL *isCalDone)
    977 {
    978 #define IQ_CAL_TRIES    10
    979 	struct ath_hal_5212 *ahp = AH5212(ah);
    980 	HAL_CHANNEL_INTERNAL *ichan;
    981 	int32_t qCoff, qCoffDenom;
    982 	int32_t iqCorrMeas, iCoff, iCoffDenom;
    983 	uint32_t powerMeasQ, powerMeasI;
    984 	HAL_BOOL ichan_isBmode = AH_FALSE;
    985 	HAL_BOOL isBmode = AH_FALSE;
    986 
    987 	OS_MARK(ah, AH_MARK_PERCAL, chan->channel);
    988 	*isCalDone = AH_FALSE;
    989 	ichan = ath_hal_checkchannel(ah, chan);
    990 	if (ichan == AH_NULL) {
    991 		HALDEBUG(ah, HAL_DEBUG_ANY,
    992 		    "%s: invalid channel %u/0x%x; no mapping\n",
    993 		    __func__, chan->channel, chan->channelFlags);
    994 		return AH_FALSE;
    995 	}
    996 	SAVE_CCK(ah, ichan, ichan_isBmode);
    997 	SAVE_CCK(ah, chan, isBmode);
    998 
    999 	if (ahp->ah_bIQCalibration == IQ_CAL_DONE ||
   1000 	    ahp->ah_bIQCalibration == IQ_CAL_INACTIVE)
   1001 		*isCalDone = AH_TRUE;
   1002 
   1003 	/* IQ calibration in progress. Check to see if it has finished. */
   1004 	if (ahp->ah_bIQCalibration == IQ_CAL_RUNNING &&
   1005 	    !(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_DO_IQCAL)) {
   1006 		int i;
   1007 
   1008 		/* IQ Calibration has finished. */
   1009 		ahp->ah_bIQCalibration = IQ_CAL_INACTIVE;
   1010 		*isCalDone = AH_TRUE;
   1011 
   1012 		/* workaround for misgated IQ Cal results */
   1013 		i = 0;
   1014 		do {
   1015 			/* Read calibration results. */
   1016 			powerMeasI = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_I);
   1017 			powerMeasQ = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_Q);
   1018 			iqCorrMeas = OS_REG_READ(ah, AR_PHY_IQCAL_RES_IQ_CORR_MEAS);
   1019 			if (powerMeasI && powerMeasQ)
   1020 				break;
   1021 			/* Do we really need this??? */
   1022 			OS_REG_WRITE (ah,  AR_PHY_TIMING_CTRL4,
   1023 				      OS_REG_READ(ah,  AR_PHY_TIMING_CTRL4) |
   1024 				      AR_PHY_TIMING_CTRL4_DO_IQCAL);
   1025 		} while (++i < IQ_CAL_TRIES);
   1026 
   1027 		/*
   1028 		 * Prescale these values to remove 64-bit operation
   1029 		 * requirement at the loss of a little precision.
   1030 		 */
   1031 		iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
   1032 		qCoffDenom = powerMeasQ / 128;
   1033 
   1034 		/* Protect against divide-by-0 and loss of sign bits. */
   1035 		if (iCoffDenom != 0 && qCoffDenom >= 2) {
   1036 			iCoff = (int8_t)(-iqCorrMeas) / iCoffDenom;
   1037 			/* IQCORR_Q_I_COFF is a signed 6 bit number */
   1038 			if (iCoff < -32) {
   1039 				iCoff = -32;
   1040 			} else if (iCoff > 31) {
   1041 				iCoff = 31;
   1042 			}
   1043 
   1044 			/* IQCORR_Q_Q_COFF is a signed 5 bit number */
   1045 			qCoff = (powerMeasI / qCoffDenom) - 128;
   1046 			if (qCoff < -16) {
   1047 				qCoff = -16;
   1048 			} else if (qCoff > 15) {
   1049 				qCoff = 15;
   1050 			}
   1051 
   1052 			HALDEBUG(ah, HAL_DEBUG_PERCAL,
   1053 			    "****************** MISGATED IQ CAL! *******************\n");
   1054 			HALDEBUG(ah, HAL_DEBUG_PERCAL,
   1055 			    "time       = %d, i = %d, \n", OS_GETUPTIME(ah), i);
   1056 			HALDEBUG(ah, HAL_DEBUG_PERCAL,
   1057 			    "powerMeasI = 0x%08x\n", powerMeasI);
   1058 			HALDEBUG(ah, HAL_DEBUG_PERCAL,
   1059 			    "powerMeasQ = 0x%08x\n", powerMeasQ);
   1060 			HALDEBUG(ah, HAL_DEBUG_PERCAL,
   1061 			    "iqCorrMeas = 0x%08x\n", iqCorrMeas);
   1062 			HALDEBUG(ah, HAL_DEBUG_PERCAL,
   1063 			    "iCoff      = %d\n", iCoff);
   1064 			HALDEBUG(ah, HAL_DEBUG_PERCAL,
   1065 			    "qCoff      = %d\n", qCoff);
   1066 
   1067 			/* Write values and enable correction */
   1068 			OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
   1069 				AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, iCoff);
   1070 			OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
   1071 				AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, qCoff);
   1072 			OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
   1073 				AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
   1074 
   1075 			ahp->ah_bIQCalibration = IQ_CAL_DONE;
   1076 			ichan->iqCalValid = AH_TRUE;
   1077 			ichan->iCoff = iCoff;
   1078 			ichan->qCoff = qCoff;
   1079 		}
   1080 	} else if (!IS_CHAN_B(chan) && ahp->ah_bIQCalibration == IQ_CAL_DONE &&
   1081 	    !ichan->iqCalValid) {
   1082 		/*
   1083 		 * Start IQ calibration if configured channel has changed.
   1084 		 * Use a magic number of 15 based on default value.
   1085 		 */
   1086 		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
   1087 			AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
   1088 			INIT_IQCAL_LOG_COUNT_MAX);
   1089 		OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
   1090 			AR_PHY_TIMING_CTRL4_DO_IQCAL);
   1091 		ahp->ah_bIQCalibration = IQ_CAL_RUNNING;
   1092 	}
   1093 	/* XXX EAR */
   1094 
   1095 	if (longCal) {
   1096 		/* Check noise floor results */
   1097 		ar5212GetNf(ah, ichan);
   1098 
   1099 		if ((ichan->channelFlags & CHANNEL_CW_INT) == 0) {
   1100 			/* Perform cal for 5Ghz channels and any OFDM on 5112 */
   1101 			if (IS_CHAN_5GHZ(chan) ||
   1102 			    (IS_RAD5112(ah) && IS_CHAN_OFDM(chan)))
   1103 				ar5212RequestRfgain(ah);
   1104 		} else {
   1105 			/* report up and clear internal state */
   1106 			chan->channelFlags |= CHANNEL_CW_INT;
   1107 			ichan->channelFlags &= ~CHANNEL_CW_INT;
   1108 		}
   1109 	}
   1110 	RESTORE_CCK(ah, ichan, ichan_isBmode);
   1111 	RESTORE_CCK(ah, chan, isBmode);
   1112 
   1113 	return AH_TRUE;
   1114 #undef IQ_CAL_TRIES
   1115 }
   1116 
   1117 HAL_BOOL
   1118 ar5212PerCalibration(struct ath_hal *ah,  HAL_CHANNEL *chan, HAL_BOOL *isIQdone)
   1119 {
   1120 	return ar5212PerCalibrationN(ah, chan, 0x1, AH_TRUE, isIQdone);
   1121 }
   1122 
   1123 HAL_BOOL
   1124 ar5212ResetCalValid(struct ath_hal *ah, HAL_CHANNEL *chan)
   1125 {
   1126 	/* XXX */
   1127 	return AH_TRUE;
   1128 }
   1129 
   1130 /*
   1131  * Write the given reset bit mask into the reset register
   1132  */
   1133 static HAL_BOOL
   1134 ar5212SetResetReg(struct ath_hal *ah, uint32_t resetMask)
   1135 {
   1136 	uint32_t mask = resetMask ? resetMask : ~0;
   1137 	HAL_BOOL rt;
   1138 
   1139 	/* XXX ar5212MacStop & co. */
   1140 
   1141 	if (AH_PRIVATE(ah)->ah_ispcie) {
   1142 		resetMask &= ~AR_RC_PCI;
   1143 	}
   1144 
   1145 	(void) OS_REG_READ(ah, AR_RXDP);/* flush any pending MMR writes */
   1146 	OS_REG_WRITE(ah, AR_RC, resetMask);
   1147 	OS_DELAY(15);			/* need to wait at least 128 clocks
   1148 					   when reseting PCI before read */
   1149 	mask &= (AR_RC_MAC | AR_RC_BB);
   1150 	resetMask &= (AR_RC_MAC | AR_RC_BB);
   1151 	rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
   1152         if ((resetMask & AR_RC_MAC) == 0) {
   1153 		if (isBigEndian()) {
   1154 			/*
   1155 			 * Set CFG, little-endian for register
   1156 			 * and descriptor accesses.
   1157 			 */
   1158 			mask = INIT_CONFIG_STATUS | AR_CFG_SWRD | AR_CFG_SWRG;
   1159 #ifndef AH_NEED_DESC_SWAP
   1160 			mask |= AR_CFG_SWTD;
   1161 #endif
   1162 			OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask));
   1163 		} else
   1164 			OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
   1165 		if (ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
   1166 			(void) OS_REG_READ(ah, AR_ISR_RAC);
   1167 	}
   1168 
   1169 	/* track PHY power state so we don't try to r/w BB registers */
   1170 	AH5212(ah)->ah_phyPowerOn = ((resetMask & AR_RC_BB) == 0);
   1171 	return rt;
   1172 }
   1173 
   1174 int16_t
   1175 ar5212GetNoiseFloor(struct ath_hal *ah)
   1176 {
   1177 	int16_t nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
   1178 	if (nf & 0x100)
   1179 		nf = 0 - ((nf ^ 0x1ff) + 1);
   1180 	return nf;
   1181 }
   1182 
   1183 static HAL_BOOL
   1184 getNoiseFloorThresh(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *chan,
   1185 	int16_t *nft)
   1186 {
   1187 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
   1188 
   1189 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
   1190 
   1191 	switch (chan->channelFlags & CHANNEL_ALL_NOTURBO) {
   1192 	case CHANNEL_A:
   1193 		*nft = ee->ee_noiseFloorThresh[headerInfo11A];
   1194 		break;
   1195 	case CHANNEL_B:
   1196 		*nft = ee->ee_noiseFloorThresh[headerInfo11B];
   1197 		break;
   1198 	case CHANNEL_PUREG:
   1199 		*nft = ee->ee_noiseFloorThresh[headerInfo11G];
   1200 		break;
   1201 	default:
   1202 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
   1203 		    __func__, chan->channelFlags);
   1204 		return AH_FALSE;
   1205 	}
   1206 	return AH_TRUE;
   1207 }
   1208 
   1209 /*
   1210  * Setup the noise floor cal history buffer.
   1211  */
   1212 void
   1213 ar5212InitNfCalHistBuffer(struct ath_hal *ah)
   1214 {
   1215 	struct ath_hal_5212 *ahp = AH5212(ah);
   1216 	int i;
   1217 
   1218 	ahp->ah_nfCalHist.first_run = 1;
   1219 	ahp->ah_nfCalHist.currIndex = 0;
   1220 	ahp->ah_nfCalHist.privNF = AR5212_CCA_MAX_GOOD_VALUE;
   1221 	ahp->ah_nfCalHist.invalidNFcount = AR512_NF_CAL_HIST_MAX;
   1222 	for (i = 0; i < AR512_NF_CAL_HIST_MAX; i ++)
   1223 		ahp->ah_nfCalHist.nfCalBuffer[i] = AR5212_CCA_MAX_GOOD_VALUE;
   1224 }
   1225 
   1226 /*
   1227  * Add a noise floor value to the ring buffer.
   1228  */
   1229 static __inline void
   1230 updateNFHistBuff(struct ar5212NfCalHist *h, int16_t nf)
   1231 {
   1232  	h->nfCalBuffer[h->currIndex] = nf;
   1233      	if (++h->currIndex >= AR512_NF_CAL_HIST_MAX)
   1234 		h->currIndex = 0;
   1235 }
   1236 
   1237 /*
   1238  * Return the median noise floor value in the ring buffer.
   1239  */
   1240 int16_t
   1241 ar5212GetNfHistMid(const int16_t calData[AR512_NF_CAL_HIST_MAX])
   1242 {
   1243 	int16_t sort[AR512_NF_CAL_HIST_MAX];
   1244 	int i, j;
   1245 
   1246 	OS_MEMCPY(sort, calData, AR512_NF_CAL_HIST_MAX*sizeof(int16_t));
   1247 	for (i = 0; i < AR512_NF_CAL_HIST_MAX-1; i ++) {
   1248 		for (j = 1; j < AR512_NF_CAL_HIST_MAX-i; j ++) {
   1249 			if (sort[j] > sort[j-1]) {
   1250 				int16_t nf = sort[j];
   1251 				sort[j] = sort[j-1];
   1252 				sort[j-1] = nf;
   1253 			}
   1254 		}
   1255 	}
   1256 	return sort[(AR512_NF_CAL_HIST_MAX-1)>>1];
   1257 }
   1258 
   1259 /*
   1260  * Read the NF and check it against the noise floor threshhold
   1261  */
   1262 int16_t
   1263 ar5212GetNf(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
   1264 {
   1265 	struct ath_hal_5212 *ahp = AH5212(ah);
   1266 	struct ar5212NfCalHist *h = &ahp->ah_nfCalHist;
   1267 	int16_t nf, nfThresh;
   1268  	int32_t val;
   1269 
   1270 	if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
   1271 		HALDEBUG(ah, HAL_DEBUG_ANY,
   1272 		    "%s: NF did not complete in calibration window\n", __func__);
   1273 		chan->rawNoiseFloor = h->privNF;	/* most recent value */
   1274 		return chan->rawNoiseFloor;
   1275 	}
   1276 
   1277 	/*
   1278 	 * Finished NF cal, check against threshold.
   1279 	 */
   1280 	nf = ar5212GetNoiseFloor(ah);
   1281 	if (getNoiseFloorThresh(ah, chan, &nfThresh)) {
   1282 		if (nf > nfThresh) {
   1283 			HALDEBUG(ah, HAL_DEBUG_ANY,
   1284 			    "%s: noise floor failed detected; detected %u, "
   1285 			    "threshold %u\n", __func__, nf, nfThresh);
   1286 			/*
   1287 			 * NB: Don't discriminate 2.4 vs 5Ghz, if this
   1288 			 *     happens it indicates a problem regardless
   1289 			 *     of the band.
   1290 			 */
   1291 			chan->channelFlags |= CHANNEL_CW_INT;
   1292 			nf = 0;
   1293 		}
   1294 	} else
   1295 		nf = 0;
   1296 
   1297 	/*
   1298 	 * Pass through histogram and write median value as
   1299 	 * calculated from the accrued window.  We require a
   1300 	 * full window of in-range values to be seen before we
   1301 	 * start using the history.
   1302 	 */
   1303 	updateNFHistBuff(h, nf);
   1304 	if (h->first_run) {
   1305 		if (nf < AR5212_CCA_MIN_BAD_VALUE ||
   1306 		    nf > AR5212_CCA_MAX_HIGH_VALUE) {
   1307 			nf = AR5212_CCA_MAX_GOOD_VALUE;
   1308 			h->invalidNFcount = AR512_NF_CAL_HIST_MAX;
   1309 		} else if (--(h->invalidNFcount) == 0) {
   1310 			h->first_run = 0;
   1311 			h->privNF = nf = ar5212GetNfHistMid(h->nfCalBuffer);
   1312 		} else {
   1313 			nf = AR5212_CCA_MAX_GOOD_VALUE;
   1314 		}
   1315 	} else {
   1316 		h->privNF = nf = ar5212GetNfHistMid(h->nfCalBuffer);
   1317 	}
   1318 
   1319 	val = OS_REG_READ(ah, AR_PHY(25));
   1320 	val &= 0xFFFFFE00;
   1321 	val |= (((uint32_t)nf << 1) & 0x1FF);
   1322 	OS_REG_WRITE(ah, AR_PHY(25), val);
   1323 	OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
   1324 	OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
   1325 	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
   1326 
   1327 	if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF, 0)) {
   1328 #ifdef AH_DEBUG
   1329 		ath_hal_printf(ah, "%s: AGC not ready AGC_CONTROL 0x%x\n",
   1330 		    __func__, OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
   1331 #endif
   1332 	}
   1333 
   1334 	/*
   1335 	 * Now load a high maxCCAPower value again so that we're
   1336 	 * not capped by the median we just loaded
   1337 	 */
   1338 	val &= 0xFFFFFE00;
   1339 	val |= (((uint32_t)(-50) << 1) & 0x1FF);
   1340 	OS_REG_WRITE(ah, AR_PHY(25), val);
   1341 	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
   1342 	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
   1343 	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
   1344 
   1345 	return (chan->rawNoiseFloor = nf);
   1346 }
   1347 
   1348 /*
   1349  * Set up compression configuration registers
   1350  */
   1351 void
   1352 ar5212SetCompRegs(struct ath_hal *ah)
   1353 {
   1354 	struct ath_hal_5212 *ahp = AH5212(ah);
   1355 	int i;
   1356 
   1357         /* Check if h/w supports compression */
   1358 	if (!AH_PRIVATE(ah)->ah_caps.halCompressSupport)
   1359 		return;
   1360 
   1361 	OS_REG_WRITE(ah, AR_DCCFG, 1);
   1362 
   1363 	OS_REG_WRITE(ah, AR_CCFG,
   1364 		(AR_COMPRESSION_WINDOW_SIZE >> 8) & AR_CCFG_WIN_M);
   1365 
   1366 	OS_REG_WRITE(ah, AR_CCFG,
   1367 		OS_REG_READ(ah, AR_CCFG) | AR_CCFG_MIB_INT_EN);
   1368 	OS_REG_WRITE(ah, AR_CCUCFG,
   1369 		AR_CCUCFG_RESET_VAL | AR_CCUCFG_CATCHUP_EN);
   1370 
   1371 	OS_REG_WRITE(ah, AR_CPCOVF, 0);
   1372 
   1373 	/* reset decompression mask */
   1374 	for (i = 0; i < HAL_DECOMP_MASK_SIZE; i++) {
   1375 		OS_REG_WRITE(ah, AR_DCM_A, i);
   1376 		OS_REG_WRITE(ah, AR_DCM_D, ahp->ah_decompMask[i]);
   1377 	}
   1378 }
   1379 
   1380 HAL_BOOL
   1381 ar5212SetAntennaSwitchInternal(struct ath_hal *ah, HAL_ANT_SETTING settings,
   1382 	const HAL_CHANNEL_INTERNAL *chan)
   1383 {
   1384 #define	ANT_SWITCH_TABLE1	AR_PHY(88)
   1385 #define	ANT_SWITCH_TABLE2	AR_PHY(89)
   1386 	struct ath_hal_5212 *ahp = AH5212(ah);
   1387 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
   1388 	uint32_t antSwitchA, antSwitchB;
   1389 	int ix;
   1390 	HAL_BOOL isBmode = AH_FALSE;
   1391 	/* NB: need local copy for SAVE/RESTORE 'cuz chan is const */
   1392 	HAL_CHANNEL_INTERNAL ichan = *chan;
   1393 
   1394 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
   1395 	HALASSERT(ahp->ah_phyPowerOn);
   1396 
   1397 	SAVE_CCK(ah, &ichan, isBmode);
   1398 	switch (ichan.channelFlags & CHANNEL_ALL_NOTURBO) {
   1399 	case CHANNEL_A:		ix = 0; break;
   1400 	case CHANNEL_B:		ix = 1; break;
   1401 	case CHANNEL_PUREG:	ix = 2; break;
   1402 	default:
   1403 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
   1404 		    __func__, ichan.channelFlags);
   1405 		RESTORE_CCK(ah, &ichan, isBmode);
   1406 		return AH_FALSE;
   1407 	}
   1408 	RESTORE_CCK(ah, &ichan, isBmode);
   1409 
   1410 	antSwitchA =  ee->ee_antennaControl[1][ix]
   1411 		   | (ee->ee_antennaControl[2][ix] << 6)
   1412 		   | (ee->ee_antennaControl[3][ix] << 12)
   1413 		   | (ee->ee_antennaControl[4][ix] << 18)
   1414 		   | (ee->ee_antennaControl[5][ix] << 24)
   1415 		   ;
   1416 	antSwitchB =  ee->ee_antennaControl[6][ix]
   1417 		   | (ee->ee_antennaControl[7][ix] << 6)
   1418 		   | (ee->ee_antennaControl[8][ix] << 12)
   1419 		   | (ee->ee_antennaControl[9][ix] << 18)
   1420 		   | (ee->ee_antennaControl[10][ix] << 24)
   1421 		   ;
   1422 	/*
   1423 	 * For fixed antenna, give the same setting for both switch banks
   1424 	 */
   1425 	switch (settings) {
   1426 	case HAL_ANT_FIXED_A:
   1427 		antSwitchB = antSwitchA;
   1428 		break;
   1429 	case HAL_ANT_FIXED_B:
   1430 		antSwitchA = antSwitchB;
   1431 		break;
   1432 	case HAL_ANT_VARIABLE:
   1433 		break;
   1434 	default:
   1435 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad antenna setting %u\n",
   1436 		    __func__, settings);
   1437 		return AH_FALSE;
   1438 	}
   1439 	if (antSwitchB == antSwitchA) {
   1440 		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
   1441 		    "%s: Setting fast diversity off.\n", __func__);
   1442 		OS_REG_CLR_BIT(ah,AR_PHY_CCK_DETECT,
   1443 			       AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
   1444 		ahp->ah_diversity = AH_FALSE;
   1445 	} else {
   1446 		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
   1447 		    "%s: Setting fast diversity on.\n", __func__);
   1448 		OS_REG_SET_BIT(ah,AR_PHY_CCK_DETECT,
   1449 			       AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
   1450 		ahp->ah_diversity = AH_TRUE;
   1451 	}
   1452 	ahp->ah_antControl = settings;
   1453 
   1454 	OS_REG_WRITE(ah, ANT_SWITCH_TABLE1, antSwitchA);
   1455 	OS_REG_WRITE(ah, ANT_SWITCH_TABLE2, antSwitchB);
   1456 
   1457 	return AH_TRUE;
   1458 #undef ANT_SWITCH_TABLE2
   1459 #undef ANT_SWITCH_TABLE1
   1460 }
   1461 
   1462 HAL_BOOL
   1463 ar5212IsSpurChannel(struct ath_hal *ah, HAL_CHANNEL *chan)
   1464 {
   1465     uint32_t clockFreq =
   1466 	((IS_5413(ah) || IS_RAD5112_ANY(ah) || IS_2417(ah)) ? 40 : 32);
   1467     return ( ((chan->channel % clockFreq) != 0)
   1468           && (((chan->channel % clockFreq) < 10)
   1469          || (((chan->channel) % clockFreq) > 22)) );
   1470 }
   1471 
   1472 /*
   1473  * Read EEPROM header info and program the device for correct operation
   1474  * given the channel value.
   1475  */
   1476 HAL_BOOL
   1477 ar5212SetBoardValues(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
   1478 {
   1479 #define NO_FALSE_DETECT_BACKOFF   2
   1480 #define CB22_FALSE_DETECT_BACKOFF 6
   1481 #define	AR_PHY_BIS(_ah, _reg, _mask, _val) \
   1482 	OS_REG_WRITE(_ah, AR_PHY(_reg), \
   1483 		(OS_REG_READ(_ah, AR_PHY(_reg)) & _mask) | (_val));
   1484 	struct ath_hal_5212 *ahp = AH5212(ah);
   1485 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
   1486 	int arrayMode, falseDectectBackoff;
   1487 	int is2GHz = IS_CHAN_2GHZ(chan);
   1488 	int8_t adcDesiredSize, pgaDesiredSize;
   1489 	uint16_t switchSettling, txrxAtten, rxtxMargin;
   1490 	int iCoff, qCoff;
   1491 
   1492 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
   1493 
   1494 	switch (chan->channelFlags & CHANNEL_ALL) {
   1495 	case CHANNEL_A:
   1496 	case CHANNEL_T:
   1497 		arrayMode = headerInfo11A;
   1498 		if (!IS_RAD5112_ANY(ah) && !IS_2413(ah) && !IS_5413(ah))
   1499 			OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
   1500 				AR_PHY_FRAME_CTL_TX_CLIP,
   1501 				ahp->ah_gainValues.currStep->paramVal[GP_TXCLIP]);
   1502 		break;
   1503 	case CHANNEL_B:
   1504 		arrayMode = headerInfo11B;
   1505 		break;
   1506 	case CHANNEL_G:
   1507 	case CHANNEL_108G:
   1508 		arrayMode = headerInfo11G;
   1509 		break;
   1510 	default:
   1511 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
   1512 		    __func__, chan->channelFlags);
   1513 		return AH_FALSE;
   1514 	}
   1515 
   1516 	/* Set the antenna register(s) correctly for the chip revision */
   1517 	AR_PHY_BIS(ah, 68, 0xFFFFFC06,
   1518 		(ee->ee_antennaControl[0][arrayMode] << 4) | 0x1);
   1519 
   1520 	ar5212SetAntennaSwitchInternal(ah, ahp->ah_antControl, chan);
   1521 
   1522 	/* Set the Noise Floor Thresh on ar5211 devices */
   1523 	OS_REG_WRITE(ah, AR_PHY(90),
   1524 		(ee->ee_noiseFloorThresh[arrayMode] & 0x1FF)
   1525 		| (1 << 9));
   1526 
   1527 	if (ee->ee_version >= AR_EEPROM_VER5_0 && IS_CHAN_TURBO(chan)) {
   1528 		switchSettling = ee->ee_switchSettlingTurbo[is2GHz];
   1529 		adcDesiredSize = ee->ee_adcDesiredSizeTurbo[is2GHz];
   1530 		pgaDesiredSize = ee->ee_pgaDesiredSizeTurbo[is2GHz];
   1531 		txrxAtten = ee->ee_txrxAttenTurbo[is2GHz];
   1532 		rxtxMargin = ee->ee_rxtxMarginTurbo[is2GHz];
   1533 	} else {
   1534 		switchSettling = ee->ee_switchSettling[arrayMode];
   1535 		adcDesiredSize = ee->ee_adcDesiredSize[arrayMode];
   1536 		pgaDesiredSize = ee->ee_pgaDesiredSize[is2GHz];
   1537 		txrxAtten = ee->ee_txrxAtten[is2GHz];
   1538 		rxtxMargin = ee->ee_rxtxMargin[is2GHz];
   1539 	}
   1540 
   1541 	OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
   1542 			 AR_PHY_SETTLING_SWITCH, switchSettling);
   1543 	OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
   1544 			 AR_PHY_DESIRED_SZ_ADC, adcDesiredSize);
   1545 	OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
   1546 			 AR_PHY_DESIRED_SZ_PGA, pgaDesiredSize);
   1547 	OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
   1548 			 AR_PHY_RXGAIN_TXRX_ATTEN, txrxAtten);
   1549 	OS_REG_WRITE(ah, AR_PHY(13),
   1550 		(ee->ee_txEndToXPAOff[arrayMode] << 24)
   1551 		| (ee->ee_txEndToXPAOff[arrayMode] << 16)
   1552 		| (ee->ee_txFrameToXPAOn[arrayMode] << 8)
   1553 		| ee->ee_txFrameToXPAOn[arrayMode]);
   1554 	AR_PHY_BIS(ah, 10, 0xFFFF00FF,
   1555 		ee->ee_txEndToXLNAOn[arrayMode] << 8);
   1556 	AR_PHY_BIS(ah, 25, 0xFFF80FFF,
   1557 		(ee->ee_thresh62[arrayMode] << 12) & 0x7F000);
   1558 
   1559 	/*
   1560 	 * False detect backoff - suspected 32 MHz spur causes false
   1561 	 * detects in OFDM, causing Tx Hangs.  Decrease weak signal
   1562 	 * sensitivity for this card.
   1563 	 */
   1564 	falseDectectBackoff = NO_FALSE_DETECT_BACKOFF;
   1565 	if (ee->ee_version < AR_EEPROM_VER3_3) {
   1566 		/* XXX magic number */
   1567 		if (AH_PRIVATE(ah)->ah_subvendorid == 0x1022 &&
   1568 		    IS_CHAN_OFDM(chan))
   1569 			falseDectectBackoff += CB22_FALSE_DETECT_BACKOFF;
   1570 	} else {
   1571 		if (ar5212IsSpurChannel(ah, (HAL_CHANNEL *)chan)) {
   1572 			falseDectectBackoff += ee->ee_falseDetectBackoff[arrayMode];
   1573 		}
   1574 	}
   1575 	AR_PHY_BIS(ah, 73, 0xFFFFFF01, (falseDectectBackoff << 1) & 0xFE);
   1576 
   1577 	if (chan->iqCalValid) {
   1578 		iCoff = chan->iCoff;
   1579 		qCoff = chan->qCoff;
   1580 	} else {
   1581 		iCoff = ee->ee_iqCalI[is2GHz];
   1582 		qCoff = ee->ee_iqCalQ[is2GHz];
   1583 	}
   1584 
   1585 	/* write previous IQ results */
   1586 	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
   1587 		AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, iCoff);
   1588 	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
   1589 		AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, qCoff);
   1590 	OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
   1591 		AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
   1592 
   1593 	if (ee->ee_version >= AR_EEPROM_VER4_1) {
   1594 		if (!IS_CHAN_108G(chan) || ee->ee_version >= AR_EEPROM_VER5_0)
   1595 			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
   1596 				AR_PHY_GAIN_2GHZ_RXTX_MARGIN, rxtxMargin);
   1597 	}
   1598 	if (ee->ee_version >= AR_EEPROM_VER5_1) {
   1599 		/* for now always disabled */
   1600 		OS_REG_WRITE(ah,  AR_PHY_HEAVY_CLIP_ENABLE,  0);
   1601 	}
   1602 
   1603 	return AH_TRUE;
   1604 #undef AR_PHY_BIS
   1605 #undef NO_FALSE_DETECT_BACKOFF
   1606 #undef CB22_FALSE_DETECT_BACKOFF
   1607 }
   1608 
   1609 /*
   1610  * Apply Spur Immunity to Boards that require it.
   1611  * Applies only to OFDM RX operation.
   1612  */
   1613 
   1614 void
   1615 ar5212SetSpurMitigation(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan)
   1616 {
   1617 	uint32_t pilotMask[2] = {0, 0}, binMagMask[4] = {0, 0, 0 , 0};
   1618 	uint16_t i, finalSpur, curChanAsSpur, binWidth = 0, spurDetectWidth, spurChan;
   1619 	int32_t spurDeltaPhase = 0, spurFreqSd = 0, spurOffset, binOffsetNumT16, curBinOffset;
   1620 	int16_t numBinOffsets;
   1621 	static const uint16_t magMapFor4[4] = {1, 2, 2, 1};
   1622 	static const uint16_t magMapFor3[3] = {1, 2, 1};
   1623 	const uint16_t *pMagMap;
   1624 	HAL_BOOL is2GHz = IS_CHAN_2GHZ(ichan);
   1625 	uint32_t val;
   1626 
   1627 #define CHAN_TO_SPUR(_f, _freq)   ( ((_freq) - ((_f) ? 2300 : 4900)) * 10 )
   1628 	if (IS_2417(ah)) {
   1629 		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: no spur mitigation\n",
   1630 		    __func__);
   1631 		return;
   1632 	}
   1633 
   1634 	curChanAsSpur = CHAN_TO_SPUR(is2GHz, ichan->channel);
   1635 
   1636 	if (ichan->mainSpur) {
   1637 		/* Pull out the saved spur value */
   1638 		finalSpur = ichan->mainSpur;
   1639 	} else {
   1640 		/*
   1641 		 * Check if spur immunity should be performed for this channel
   1642 		 * Should only be performed once per channel and then saved
   1643 		 */
   1644 		finalSpur = AR_NO_SPUR;
   1645 		spurDetectWidth = HAL_SPUR_CHAN_WIDTH;
   1646 		if (IS_CHAN_TURBO(ichan))
   1647 			spurDetectWidth *= 2;
   1648 
   1649 		/* Decide if any spur affects the current channel */
   1650 		for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
   1651 			spurChan = ath_hal_getSpurChan(ah, i, is2GHz);
   1652 			if (spurChan == AR_NO_SPUR) {
   1653 				break;
   1654 			}
   1655 			if ((curChanAsSpur - spurDetectWidth <= (spurChan & HAL_SPUR_VAL_MASK)) &&
   1656 			    (curChanAsSpur + spurDetectWidth >= (spurChan & HAL_SPUR_VAL_MASK))) {
   1657 				finalSpur = spurChan & HAL_SPUR_VAL_MASK;
   1658 				break;
   1659 			}
   1660 		}
   1661 		/* Save detected spur (or no spur) for this channel */
   1662 		ichan->mainSpur = finalSpur;
   1663 	}
   1664 
   1665 	/* Write spur immunity data */
   1666 	if (finalSpur == AR_NO_SPUR) {
   1667 		/* Disable Spur Immunity Regs if they appear set */
   1668 		if (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER) {
   1669 			/* Clear Spur Delta Phase, Spur Freq, and enable bits */
   1670 			OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_RATE, 0);
   1671 			val = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4);
   1672 			val &= ~(AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
   1673 				 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
   1674 				 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
   1675 			OS_REG_WRITE(ah, AR_PHY_MASK_CTL, val);
   1676 			OS_REG_WRITE(ah, AR_PHY_TIMING11, 0);
   1677 
   1678 			/* Clear pilot masks */
   1679 			OS_REG_WRITE(ah, AR_PHY_TIMING7, 0);
   1680 			OS_REG_RMW_FIELD(ah, AR_PHY_TIMING8, AR_PHY_TIMING8_PILOT_MASK_2, 0);
   1681 			OS_REG_WRITE(ah, AR_PHY_TIMING9, 0);
   1682 			OS_REG_RMW_FIELD(ah, AR_PHY_TIMING10, AR_PHY_TIMING10_PILOT_MASK_2, 0);
   1683 
   1684 			/* Clear magnitude masks */
   1685 			OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, 0);
   1686 			OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, 0);
   1687 			OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, 0);
   1688 			OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_MASK_4, 0);
   1689 			OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, 0);
   1690 			OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, 0);
   1691 			OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, 0);
   1692 			OS_REG_RMW_FIELD(ah, AR_PHY_BIN_MASK2_4, AR_PHY_BIN_MASK2_4_MASK_4, 0);
   1693 		}
   1694 	} else {
   1695 		spurOffset = finalSpur - curChanAsSpur;
   1696 		/*
   1697 		 * Spur calculations:
   1698 		 * spurDeltaPhase is (spurOffsetIn100KHz / chipFrequencyIn100KHz) << 21
   1699 		 * spurFreqSd is (spurOffsetIn100KHz / sampleFrequencyIn100KHz) << 11
   1700 		 */
   1701 		switch (ichan->channelFlags & CHANNEL_ALL) {
   1702 		case CHANNEL_A: /* Chip Frequency & sampleFrequency are 40 MHz */
   1703 			spurDeltaPhase = (spurOffset << 17) / 25;
   1704 			spurFreqSd = spurDeltaPhase >> 10;
   1705 			binWidth = HAL_BIN_WIDTH_BASE_100HZ;
   1706 			break;
   1707 		case CHANNEL_G: /* Chip Frequency is 44MHz, sampleFrequency is 40 MHz */
   1708 			spurFreqSd = (spurOffset << 8) / 55;
   1709 			spurDeltaPhase = (spurOffset << 17) / 25;
   1710 			binWidth = HAL_BIN_WIDTH_BASE_100HZ;
   1711 			break;
   1712 		case CHANNEL_T: /* Chip Frequency & sampleFrequency are 80 MHz */
   1713 		case CHANNEL_108G:
   1714 			spurDeltaPhase = (spurOffset << 16) / 25;
   1715 			spurFreqSd = spurDeltaPhase >> 10;
   1716 			binWidth = HAL_BIN_WIDTH_TURBO_100HZ;
   1717 			break;
   1718 		}
   1719 
   1720 		/* Compute Pilot Mask */
   1721 		binOffsetNumT16 = ((spurOffset * 1000) << 4) / binWidth;
   1722 		/* The spur is on a bin if it's remainder at times 16 is 0 */
   1723 		if (binOffsetNumT16 & 0xF) {
   1724 			numBinOffsets = 4;
   1725 			pMagMap = magMapFor4;
   1726 		} else {
   1727 			numBinOffsets = 3;
   1728 			pMagMap = magMapFor3;
   1729 		}
   1730 		for (i = 0; i < numBinOffsets; i++) {
   1731 			if ((binOffsetNumT16 >> 4) > HAL_MAX_BINS_ALLOWED) {
   1732 				HALDEBUG(ah, HAL_DEBUG_ANY,
   1733 				    "Too man bins in spur mitigation\n");
   1734 				return;
   1735 			}
   1736 
   1737 			/* Get Pilot Mask values */
   1738 			curBinOffset = (binOffsetNumT16 >> 4) + i + 25;
   1739 			if ((curBinOffset >= 0) && (curBinOffset <= 32)) {
   1740 				if (curBinOffset <= 25)
   1741 					pilotMask[0] |= 1 << curBinOffset;
   1742 				else if (curBinOffset >= 27)
   1743 					pilotMask[0] |= 1 << (curBinOffset - 1);
   1744 			} else if ((curBinOffset >= 33) && (curBinOffset <= 52))
   1745 				pilotMask[1] |= 1 << (curBinOffset - 33);
   1746 
   1747 			/* Get viterbi values */
   1748 			if ((curBinOffset >= -1) && (curBinOffset <= 14))
   1749 				binMagMask[0] |= pMagMap[i] << (curBinOffset + 1) * 2;
   1750 			else if ((curBinOffset >= 15) && (curBinOffset <= 30))
   1751 				binMagMask[1] |= pMagMap[i] << (curBinOffset - 15) * 2;
   1752 			else if ((curBinOffset >= 31) && (curBinOffset <= 46))
   1753 				binMagMask[2] |= pMagMap[i] << (curBinOffset -31) * 2;
   1754 			else if((curBinOffset >= 47) && (curBinOffset <= 53))
   1755 				binMagMask[3] |= pMagMap[i] << (curBinOffset -47) * 2;
   1756 		}
   1757 
   1758 		/* Write Spur Delta Phase, Spur Freq, and enable bits */
   1759 		OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_RATE, 0xFF);
   1760 		val = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4);
   1761 		val |= (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
   1762 			AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
   1763 			AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
   1764 		OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, val);
   1765 		OS_REG_WRITE(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_IN_AGC |
   1766 			     SM(spurFreqSd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
   1767 			     SM(spurDeltaPhase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
   1768 
   1769 		/* Write pilot masks */
   1770 		OS_REG_WRITE(ah, AR_PHY_TIMING7, pilotMask[0]);
   1771 		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING8, AR_PHY_TIMING8_PILOT_MASK_2, pilotMask[1]);
   1772 		OS_REG_WRITE(ah, AR_PHY_TIMING9, pilotMask[0]);
   1773 		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING10, AR_PHY_TIMING10_PILOT_MASK_2, pilotMask[1]);
   1774 
   1775 		/* Write magnitude masks */
   1776 		OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, binMagMask[0]);
   1777 		OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, binMagMask[1]);
   1778 		OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, binMagMask[2]);
   1779 		OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_MASK_4, binMagMask[3]);
   1780 		OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, binMagMask[0]);
   1781 		OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, binMagMask[1]);
   1782 		OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, binMagMask[2]);
   1783 		OS_REG_RMW_FIELD(ah, AR_PHY_BIN_MASK2_4, AR_PHY_BIN_MASK2_4_MASK_4, binMagMask[3]);
   1784 	}
   1785 #undef CHAN_TO_SPUR
   1786 }
   1787 
   1788 
   1789 /*
   1790  * Delta slope coefficient computation.
   1791  * Required for OFDM operation.
   1792  */
   1793 void
   1794 ar5212SetDeltaSlope(struct ath_hal *ah, HAL_CHANNEL *chan)
   1795 {
   1796 #define COEF_SCALE_S 24
   1797 #define INIT_CLOCKMHZSCALED	0x64000000
   1798 	unsigned long coef_scaled, coef_exp, coef_man, ds_coef_exp, ds_coef_man;
   1799 	unsigned long clockMhzScaled = INIT_CLOCKMHZSCALED;
   1800 
   1801 	if (IS_CHAN_TURBO(chan))
   1802 		clockMhzScaled *= 2;
   1803 	/* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
   1804 	/* scale for selected channel bandwidth */
   1805 	if (IS_CHAN_HALF_RATE(chan)) {
   1806 		clockMhzScaled = clockMhzScaled >> 1;
   1807 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
   1808 		clockMhzScaled = clockMhzScaled >> 2;
   1809 	}
   1810 
   1811 	/*
   1812 	 * ALGO -> coef = 1e8/fcarrier*fclock/40;
   1813 	 * scaled coef to provide precision for this floating calculation
   1814 	 */
   1815 	coef_scaled = clockMhzScaled / chan->channel;
   1816 
   1817 	/*
   1818 	 * ALGO -> coef_exp = 14-floor(log2(coef));
   1819 	 * floor(log2(x)) is the highest set bit position
   1820 	 */
   1821 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
   1822 		if ((coef_scaled >> coef_exp) & 0x1)
   1823 			break;
   1824 	/* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
   1825 	HALASSERT(coef_exp);
   1826 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
   1827 
   1828 	/*
   1829 	 * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
   1830 	 * The coefficient is already shifted up for scaling
   1831 	 */
   1832 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
   1833 	ds_coef_man = coef_man >> (COEF_SCALE_S - coef_exp);
   1834 	ds_coef_exp = coef_exp - 16;
   1835 
   1836 	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
   1837 		AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
   1838 	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
   1839 		AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
   1840 #undef INIT_CLOCKMHZSCALED
   1841 #undef COEF_SCALE_S
   1842 }
   1843 
   1844 /*
   1845  * Set a limit on the overall output power.  Used for dynamic
   1846  * transmit power control and the like.
   1847  *
   1848  * NB: limit is in units of 0.5 dbM.
   1849  */
   1850 HAL_BOOL
   1851 ar5212SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
   1852 {
   1853 	uint16_t dummyXpdGains[2];
   1854 	HAL_BOOL ret, isBmode = AH_FALSE;
   1855 
   1856 	SAVE_CCK(ah, AH_PRIVATE(ah)->ah_curchan, isBmode);
   1857 	AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
   1858 	ret = ar5212SetTransmitPower(ah, AH_PRIVATE(ah)->ah_curchan,
   1859 			dummyXpdGains);
   1860 	RESTORE_CCK(ah, AH_PRIVATE(ah)->ah_curchan, isBmode);
   1861 	return ret;
   1862 }
   1863 
   1864 /*
   1865  * Set the transmit power in the baseband for the given
   1866  * operating channel and mode.
   1867  */
   1868 HAL_BOOL
   1869 ar5212SetTransmitPower(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan,
   1870 	uint16_t *rfXpdGain)
   1871 {
   1872 #define	POW_OFDM(_r, _s)	(((0 & 1)<< ((_s)+6)) | (((_r) & 0x3f) << (_s)))
   1873 #define	POW_CCK(_r, _s)		(((_r) & 0x3f) << (_s))
   1874 #define	N(a)			(sizeof (a) / sizeof (a[0]))
   1875 	static const uint16_t tpcScaleReductionTable[5] =
   1876 		{ 0, 3, 6, 9, MAX_RATE_POWER };
   1877 	struct ath_hal_5212 *ahp = AH5212(ah);
   1878 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
   1879 	int16_t minPower, maxPower, tpcInDb, powerLimit;
   1880 	int i;
   1881 
   1882 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
   1883 
   1884 	OS_MEMZERO(ahp->ah_pcdacTable, ahp->ah_pcdacTableSize);
   1885 	OS_MEMZERO(ahp->ah_ratesArray, sizeof(ahp->ah_ratesArray));
   1886 
   1887 	powerLimit = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
   1888 	if (powerLimit >= MAX_RATE_POWER || powerLimit == 0)
   1889 		tpcInDb = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
   1890 	else
   1891 		tpcInDb = 0;
   1892 	if (!ar5212SetRateTable(ah, (HAL_CHANNEL *) chan, tpcInDb, powerLimit,
   1893 				AH_TRUE, &minPower, &maxPower)) {
   1894 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set rate table\n",
   1895 		    __func__);
   1896 		return AH_FALSE;
   1897 	}
   1898 	if (!ahp->ah_rfHal->setPowerTable(ah,
   1899 		&minPower, &maxPower, chan, rfXpdGain)) {
   1900 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
   1901 		    __func__);
   1902 		return AH_FALSE;
   1903 	}
   1904 
   1905 	/*
   1906 	 * Adjust XR power/rate up by 2 dB to account for greater peak
   1907 	 * to avg ratio - except in newer avg power designs
   1908 	 */
   1909 	if (!IS_2413(ah) && !IS_5413(ah))
   1910 		ahp->ah_ratesArray[15] += 4;
   1911 	/*
   1912 	 * txPowerIndexOffset is set by the SetPowerTable() call -
   1913 	 *  adjust the rate table
   1914 	 */
   1915 	for (i = 0; i < N(ahp->ah_ratesArray); i++) {
   1916 		ahp->ah_ratesArray[i] += ahp->ah_txPowerIndexOffset;
   1917 		if (ahp->ah_ratesArray[i] > 63)
   1918 			ahp->ah_ratesArray[i] = 63;
   1919 	}
   1920 
   1921 	if (ee->ee_eepMap < 2) {
   1922 		/*
   1923 		 * Correct gain deltas for 5212 G operation -
   1924 		 * Removed with revised chipset
   1925 		 */
   1926 		if (AH_PRIVATE(ah)->ah_phyRev < AR_PHY_CHIP_ID_REV_2 &&
   1927 		    IS_CHAN_G(chan)) {
   1928 			uint16_t cckOfdmPwrDelta;
   1929 
   1930 			if (chan->channel == 2484)
   1931 				cckOfdmPwrDelta = SCALE_OC_DELTA(
   1932 					ee->ee_cckOfdmPwrDelta -
   1933 					ee->ee_scaledCh14FilterCckDelta);
   1934 			else
   1935 				cckOfdmPwrDelta = SCALE_OC_DELTA(
   1936 					ee->ee_cckOfdmPwrDelta);
   1937 			ar5212CorrectGainDelta(ah, cckOfdmPwrDelta);
   1938 		}
   1939 		/*
   1940 		 * Finally, write the power values into the
   1941 		 * baseband power table
   1942 		 */
   1943 		for (i = 0; i < (PWR_TABLE_SIZE/2); i++) {
   1944 			OS_REG_WRITE(ah, AR_PHY_PCDAC_TX_POWER(i),
   1945 				 ((((ahp->ah_pcdacTable[2*i + 1] << 8) | 0xff) & 0xffff) << 16)
   1946 				| (((ahp->ah_pcdacTable[2*i]     << 8) | 0xff) & 0xffff)
   1947 			);
   1948 		}
   1949 	}
   1950 
   1951 	/* Write the OFDM power per rate set */
   1952 	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
   1953 		POW_OFDM(ahp->ah_ratesArray[3], 24)
   1954 	      | POW_OFDM(ahp->ah_ratesArray[2], 16)
   1955 	      | POW_OFDM(ahp->ah_ratesArray[1],  8)
   1956 	      | POW_OFDM(ahp->ah_ratesArray[0],  0)
   1957 	);
   1958 	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
   1959 		POW_OFDM(ahp->ah_ratesArray[7], 24)
   1960 	      | POW_OFDM(ahp->ah_ratesArray[6], 16)
   1961 	      | POW_OFDM(ahp->ah_ratesArray[5],  8)
   1962 	      | POW_OFDM(ahp->ah_ratesArray[4],  0)
   1963 	);
   1964 
   1965 	/* Write the CCK power per rate set */
   1966 	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
   1967 		POW_CCK(ahp->ah_ratesArray[10], 24)
   1968 	      | POW_CCK(ahp->ah_ratesArray[9],  16)
   1969 	      | POW_CCK(ahp->ah_ratesArray[15],  8)	/* XR target power */
   1970 	      | POW_CCK(ahp->ah_ratesArray[8],   0)
   1971 	);
   1972 	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
   1973 		POW_CCK(ahp->ah_ratesArray[14], 24)
   1974 	      | POW_CCK(ahp->ah_ratesArray[13], 16)
   1975 	      | POW_CCK(ahp->ah_ratesArray[12],  8)
   1976 	      | POW_CCK(ahp->ah_ratesArray[11],  0)
   1977 	);
   1978 
   1979 	/*
   1980 	 * Set max power to 30 dBm and, optionally,
   1981 	 * enable TPC in tx descriptors.
   1982 	 */
   1983 	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER |
   1984 		(ahp->ah_tpcEnabled ? AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE : 0));
   1985 
   1986 	return AH_TRUE;
   1987 #undef N
   1988 #undef POW_CCK
   1989 #undef POW_OFDM
   1990 }
   1991 
   1992 /*
   1993  * Sets the transmit power in the baseband for the given
   1994  * operating channel and mode.
   1995  */
   1996 static HAL_BOOL
   1997 ar5212SetRateTable(struct ath_hal *ah, HAL_CHANNEL *chan,
   1998 		   int16_t tpcScaleReduction, int16_t powerLimit, HAL_BOOL commit,
   1999                    int16_t *pMinPower, int16_t *pMaxPower)
   2000 {
   2001 	struct ath_hal_5212 *ahp = AH5212(ah);
   2002 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
   2003 	uint16_t *rpow = ahp->ah_ratesArray;
   2004 	uint16_t twiceMaxEdgePower = MAX_RATE_POWER;
   2005 	uint16_t twiceMaxEdgePowerCck = MAX_RATE_POWER;
   2006 	uint16_t twiceMaxRDPower = MAX_RATE_POWER;
   2007 	int i;
   2008 	uint8_t cfgCtl;
   2009 	int8_t twiceAntennaGain, twiceAntennaReduction;
   2010 	const RD_EDGES_POWER *rep;
   2011 	TRGT_POWER_INFO targetPowerOfdm, targetPowerCck;
   2012 	int16_t scaledPower, maxAvailPower = 0;
   2013 	int16_t r13, r9, r7, r0;
   2014 
   2015 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
   2016 
   2017 	twiceMaxRDPower = chan->maxRegTxPower * 2;
   2018 	*pMaxPower = -MAX_RATE_POWER;
   2019 	*pMinPower = MAX_RATE_POWER;
   2020 
   2021 	/* Get conformance test limit maximum for this channel */
   2022 	cfgCtl = ath_hal_getctl(ah, chan);
   2023 	for (i = 0; i < ee->ee_numCtls; i++) {
   2024 		uint16_t twiceMinEdgePower;
   2025 
   2026 		if (ee->ee_ctl[i] == 0)
   2027 			continue;
   2028 		if (ee->ee_ctl[i] == cfgCtl ||
   2029 		    cfgCtl == ((ee->ee_ctl[i] & CTL_MODE_M) | SD_NO_CTL)) {
   2030 			rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
   2031 			twiceMinEdgePower = ar5212GetMaxEdgePower(chan->channel, rep);
   2032 			if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
   2033 				/* Find the minimum of all CTL edge powers that apply to this channel */
   2034 				twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
   2035 			} else {
   2036 				twiceMaxEdgePower = twiceMinEdgePower;
   2037 				break;
   2038 			}
   2039 		}
   2040 	}
   2041 
   2042 	if (IS_CHAN_G(chan)) {
   2043 		/* Check for a CCK CTL for 11G CCK powers */
   2044 		cfgCtl = (cfgCtl & ~CTL_MODE_M) | CTL_11B;
   2045 		for (i = 0; i < ee->ee_numCtls; i++) {
   2046 			uint16_t twiceMinEdgePowerCck;
   2047 
   2048 			if (ee->ee_ctl[i] == 0)
   2049 				continue;
   2050 			if (ee->ee_ctl[i] == cfgCtl ||
   2051 			    cfgCtl == ((ee->ee_ctl[i] & CTL_MODE_M) | SD_NO_CTL)) {
   2052 				rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
   2053 				twiceMinEdgePowerCck = ar5212GetMaxEdgePower(chan->channel, rep);
   2054 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
   2055 					/* Find the minimum of all CTL edge powers that apply to this channel */
   2056 					twiceMaxEdgePowerCck = AH_MIN(twiceMaxEdgePowerCck, twiceMinEdgePowerCck);
   2057 				} else {
   2058 					twiceMaxEdgePowerCck = twiceMinEdgePowerCck;
   2059 					break;
   2060 				}
   2061 			}
   2062 		}
   2063 	} else {
   2064 		/* Set the 11B cck edge power to the one found before */
   2065 		twiceMaxEdgePowerCck = twiceMaxEdgePower;
   2066 	}
   2067 
   2068 	/* Get Antenna Gain reduction */
   2069 	if (IS_CHAN_5GHZ(chan)) {
   2070 		ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_5, &twiceAntennaGain);
   2071 	} else {
   2072 		ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_2, &twiceAntennaGain);
   2073 	}
   2074 	twiceAntennaReduction =
   2075 		ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
   2076 
   2077 	if (IS_CHAN_OFDM(chan)) {
   2078 		/* Get final OFDM target powers */
   2079 		if (IS_CHAN_2GHZ(chan)) {
   2080 			ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11g,
   2081 				ee->ee_numTargetPwr_11g, &targetPowerOfdm);
   2082 		} else {
   2083 			ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11a,
   2084 				ee->ee_numTargetPwr_11a, &targetPowerOfdm);
   2085 		}
   2086 
   2087 		/* Get Maximum OFDM power */
   2088 		/* Minimum of target and edge powers */
   2089 		scaledPower = AH_MIN(twiceMaxEdgePower,
   2090 				twiceMaxRDPower - twiceAntennaReduction);
   2091 
   2092 		/*
   2093 		 * If turbo is set, reduce power to keep power
   2094 		 * consumption under 2 Watts.  Note that we always do
   2095 		 * this unless specially configured.  Then we limit
   2096 		 * power only for non-AP operation.
   2097 		 */
   2098 		if (IS_CHAN_TURBO(chan)
   2099 #ifdef AH_ENABLE_AP_SUPPORT
   2100 		    && AH_PRIVATE(ah)->ah_opmode != HAL_M_HOSTAP
   2101 #endif
   2102 		) {
   2103 			/*
   2104 			 * If turbo is set, reduce power to keep power
   2105 			 * consumption under 2 Watts
   2106 			 */
   2107 			if (ee->ee_version >= AR_EEPROM_VER3_1)
   2108 				scaledPower = AH_MIN(scaledPower,
   2109 					ee->ee_turbo2WMaxPower5);
   2110 			/*
   2111 			 * EEPROM version 4.0 added an additional
   2112 			 * constraint on 2.4GHz channels.
   2113 			 */
   2114 			if (ee->ee_version >= AR_EEPROM_VER4_0 &&
   2115 			    IS_CHAN_2GHZ(chan))
   2116 				scaledPower = AH_MIN(scaledPower,
   2117 					ee->ee_turbo2WMaxPower2);
   2118 		}
   2119 
   2120 		maxAvailPower = AH_MIN(scaledPower,
   2121 					targetPowerOfdm.twicePwr6_24);
   2122 
   2123 		/* Reduce power by max regulatory domain allowed restrictions */
   2124 		scaledPower = maxAvailPower - (tpcScaleReduction * 2);
   2125 		scaledPower = (scaledPower < 0) ? 0 : scaledPower;
   2126 		scaledPower = AH_MIN(scaledPower, powerLimit);
   2127 
   2128 		if (commit) {
   2129 			/* Set OFDM rates 9, 12, 18, 24 */
   2130 			r0 = rpow[0] = rpow[1] = rpow[2] = rpow[3] = rpow[4] = scaledPower;
   2131 
   2132 			/* Set OFDM rates 36, 48, 54, XR */
   2133 			rpow[5] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr36);
   2134 			rpow[6] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr48);
   2135 			r7 = rpow[7] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr54);
   2136 
   2137 			if (ee->ee_version >= AR_EEPROM_VER4_0) {
   2138 				/* Setup XR target power from EEPROM */
   2139 				rpow[15] = AH_MIN(scaledPower, IS_CHAN_2GHZ(chan) ?
   2140 						  ee->ee_xrTargetPower2 : ee->ee_xrTargetPower5);
   2141 			} else {
   2142 				/* XR uses 6mb power */
   2143 				rpow[15] = rpow[0];
   2144 			}
   2145 			ahp->ah_ofdmTxPower = *pMaxPower;
   2146 
   2147 		} else {
   2148 			r0 = scaledPower;
   2149 			r7 = AH_MIN(r0, targetPowerOfdm.twicePwr54);
   2150 		}
   2151 		*pMinPower = r7;
   2152 		*pMaxPower = r0;
   2153 
   2154 		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
   2155 		    "%s: MaxRD: %d TurboMax: %d MaxCTL: %d "
   2156 		    "TPC_Reduction %d chan=%d (0x%x) maxAvailPower=%d pwr6_24=%d, maxPower=%d\n",
   2157 		    __func__, twiceMaxRDPower, ee->ee_turbo2WMaxPower5,
   2158 		    twiceMaxEdgePower, tpcScaleReduction * 2,
   2159 		    chan->channel, chan->channelFlags,
   2160 		    maxAvailPower, targetPowerOfdm.twicePwr6_24, *pMaxPower);
   2161 	}
   2162 
   2163 	if (IS_CHAN_CCK(chan) || IS_CHAN_G(chan)) {
   2164 		/* Get final CCK target powers */
   2165 		ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11b,
   2166 			ee->ee_numTargetPwr_11b, &targetPowerCck);
   2167 
   2168 		/* Reduce power by max regulatory domain allowed restrictions */
   2169 		scaledPower = AH_MIN(twiceMaxEdgePowerCck,
   2170 			twiceMaxRDPower - twiceAntennaReduction);
   2171 		if (maxAvailPower < AH_MIN(scaledPower, targetPowerCck.twicePwr6_24))
   2172 			maxAvailPower = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24);
   2173 
   2174 		/* Reduce power by user selection */
   2175 		scaledPower = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24) - (tpcScaleReduction * 2);
   2176 		scaledPower = (scaledPower < 0) ? 0 : scaledPower;
   2177 		scaledPower = AH_MIN(scaledPower, powerLimit);
   2178 
   2179 		if (commit) {
   2180 			/* Set CCK rates 2L, 2S, 5.5L, 5.5S, 11L, 11S */
   2181 			rpow[8]  = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24);
   2182 			r9 = rpow[9]  = AH_MIN(scaledPower, targetPowerCck.twicePwr36);
   2183 			rpow[10] = rpow[9];
   2184 			rpow[11] = AH_MIN(scaledPower, targetPowerCck.twicePwr48);
   2185 			rpow[12] = rpow[11];
   2186 			r13 = rpow[13] = AH_MIN(scaledPower, targetPowerCck.twicePwr54);
   2187 			rpow[14] = rpow[13];
   2188 		} else {
   2189 			r9 = AH_MIN(scaledPower, targetPowerCck.twicePwr36);
   2190 			r13 = AH_MIN(scaledPower, targetPowerCck.twicePwr54);
   2191 		}
   2192 
   2193 		/* Set min/max power based off OFDM values or initialization */
   2194 		if (r13 < *pMinPower)
   2195 			*pMinPower = r13;
   2196 		if (r9 > *pMaxPower)
   2197 			*pMaxPower = r9;
   2198 
   2199 		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
   2200 		    "%s: cck: MaxRD: %d MaxCTL: %d "
   2201 		    "TPC_Reduction %d chan=%d (0x%x) maxAvailPower=%d pwr6_24=%d, maxPower=%d\n",
   2202 		    __func__, twiceMaxRDPower, twiceMaxEdgePowerCck,
   2203 		    tpcScaleReduction * 2, chan->channel, chan->channelFlags,
   2204 		    maxAvailPower, targetPowerCck.twicePwr6_24, *pMaxPower);
   2205 	}
   2206 	if (commit) {
   2207 		ahp->ah_tx6PowerInHalfDbm = *pMaxPower;
   2208 		AH_PRIVATE(ah)->ah_maxPowerLevel = ahp->ah_tx6PowerInHalfDbm;
   2209 	}
   2210 	return AH_TRUE;
   2211 }
   2212 
   2213 HAL_BOOL
   2214 ar5212GetChipPowerLimits(struct ath_hal *ah, HAL_CHANNEL *chans, uint32_t nchans)
   2215 {
   2216 	struct ath_hal_5212 *ahp = AH5212(ah);
   2217 	static const uint16_t tpcScaleReductionTable[5] =
   2218 		{ 0, 3, 6, 9, MAX_RATE_POWER };
   2219 	int16_t minPower, maxPower, tpcInDb, powerLimit;
   2220 	HAL_CHANNEL *chan;
   2221 	int i;
   2222 
   2223 	/*
   2224 	 * Get Pier table max and min powers.
   2225 	 */
   2226 	for (i = 0; i < nchans; i++) {
   2227 		chan = &chans[i];
   2228 		if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
   2229 			/* NB: rf code returns 1/4 dBm units, convert */
   2230 			chan->maxTxPower = maxPower / 2;
   2231 			chan->minTxPower = minPower / 2;
   2232 		} else {
   2233 			HALDEBUG(ah, HAL_DEBUG_ANY,
   2234 			    "%s: no min/max power for %u/0x%x\n",
   2235 			    __func__, chan->channel, chan->channelFlags);
   2236 			chan->maxTxPower = MAX_RATE_POWER;
   2237 			chan->minTxPower = 0;
   2238 		}
   2239 	}
   2240 	/*
   2241 	 * Now adjust to reflect any global scale and/or CTL's.
   2242 	 * (XXX is that correct?)
   2243 	 */
   2244 	powerLimit = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
   2245 	if (powerLimit >= MAX_RATE_POWER || powerLimit == 0)
   2246 		tpcInDb = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
   2247 	else
   2248 		tpcInDb = 0;
   2249 	for (i=0; i<nchans; i++) {
   2250 		chan = &chans[i];
   2251 		if (!ar5212SetRateTable(ah, (HAL_CHANNEL *) chan, tpcInDb, powerLimit,
   2252 					AH_FALSE, &minPower, &maxPower)) {
   2253 			HALDEBUG(ah, HAL_DEBUG_ANY,
   2254 			    "%s: unable to find max/min power\n",__func__);
   2255 			return AH_FALSE;
   2256 		}
   2257 		if (maxPower < chan->maxTxPower)
   2258 			chan->maxTxPower = maxPower;
   2259 		if (minPower < chan->minTxPower)
   2260 			chan->minTxPower = minPower;
   2261 	}
   2262 #ifdef AH_DEBUG
   2263 	for (i=0; i<nchans; i++) {
   2264 		HALDEBUG(ah, HAL_DEBUG_RESET,
   2265 		    "Chan %d: MaxPow = %d MinPow = %d\n",
   2266 		    chans[i].channel,chans[i].maxTxPower, chans[i].minTxPower);
   2267 	}
   2268 #endif
   2269 	return AH_TRUE;
   2270 }
   2271 
   2272 /*
   2273  * Correct for the gain-delta between ofdm and cck mode target
   2274  * powers. Write the results to the rate table and the power table.
   2275  *
   2276  *   Conventions :
   2277  *   1. rpow[ii] is the integer value of 2*(desired power
   2278  *    for the rate ii in dBm) to provide 0.5dB resolution. rate
   2279  *    mapping is as following :
   2280  *     [0..7]  --> ofdm 6, 9, .. 48, 54
   2281  *     [8..14] --> cck 1L, 2L, 2S, .. 11L, 11S
   2282  *     [15]    --> XR (all rates get the same power)
   2283  *   2. powv[ii]  is the pcdac corresponding to ii/2 dBm.
   2284  */
   2285 static void
   2286 ar5212CorrectGainDelta(struct ath_hal *ah, int twiceOfdmCckDelta)
   2287 {
   2288 #define	N(_a)	(sizeof(_a) / sizeof(_a[0]))
   2289 	struct ath_hal_5212 *ahp = AH5212(ah);
   2290 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
   2291 	int16_t ratesIndex[N(ahp->ah_ratesArray)];
   2292 	uint16_t ii, jj, iter;
   2293 	int32_t cckIndex;
   2294 	int16_t gainDeltaAdjust;
   2295 
   2296 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
   2297 
   2298 	gainDeltaAdjust = ee->ee_cckOfdmGainDelta;
   2299 
   2300 	/* make a local copy of desired powers as initial indices */
   2301 	OS_MEMCPY(ratesIndex, ahp->ah_ratesArray, sizeof(ratesIndex));
   2302 
   2303 	/* fix only the CCK indices */
   2304 	for (ii = 8; ii < 15; ii++) {
   2305 		/* apply a gain_delta correction of -15 for CCK */
   2306 		ratesIndex[ii] -= gainDeltaAdjust;
   2307 
   2308 		/* Now check for contention with all ofdm target powers */
   2309 		jj = 0;
   2310 		iter = 0;
   2311 		/* indicates not all ofdm rates checked forcontention yet */
   2312 		while (jj < 16) {
   2313 			if (ratesIndex[ii] < 0)
   2314 				ratesIndex[ii] = 0;
   2315 			if (jj == 8) {		/* skip CCK rates */
   2316 				jj = 15;
   2317 				continue;
   2318 			}
   2319 			if (ratesIndex[ii] == ahp->ah_ratesArray[jj]) {
   2320 				if (ahp->ah_ratesArray[jj] == 0)
   2321 					ratesIndex[ii]++;
   2322 				else if (iter > 50) {
   2323 					/*
   2324 					 * To avoid pathological case of of
   2325 					 * dm target powers 0 and 0.5dBm
   2326 					 */
   2327 					ratesIndex[ii]++;
   2328 				} else
   2329 					ratesIndex[ii]--;
   2330 				/* check with all rates again */
   2331 				jj = 0;
   2332 				iter++;
   2333 			} else
   2334 				jj++;
   2335 		}
   2336 		if (ratesIndex[ii] >= PWR_TABLE_SIZE)
   2337 			ratesIndex[ii] = PWR_TABLE_SIZE -1;
   2338 		cckIndex = ahp->ah_ratesArray[ii] - twiceOfdmCckDelta;
   2339 		if (cckIndex < 0)
   2340 			cckIndex = 0;
   2341 
   2342 		/*
   2343 		 * Validate that the indexes for the powv are not
   2344 		 * out of bounds.
   2345 		 */
   2346 		HALASSERT(cckIndex < PWR_TABLE_SIZE);
   2347 		HALASSERT(ratesIndex[ii] < PWR_TABLE_SIZE);
   2348 		ahp->ah_pcdacTable[ratesIndex[ii]] =
   2349 			ahp->ah_pcdacTable[cckIndex];
   2350 	}
   2351 	/* Override rate per power table with new values */
   2352 	for (ii = 8; ii < 15; ii++)
   2353 		ahp->ah_ratesArray[ii] = ratesIndex[ii];
   2354 #undef N
   2355 }
   2356 
   2357 /*
   2358  * Find the maximum conformance test limit for the given channel and CTL info
   2359  */
   2360 static uint16_t
   2361 ar5212GetMaxEdgePower(uint16_t channel, const RD_EDGES_POWER *pRdEdgesPower)
   2362 {
   2363 	/* temp array for holding edge channels */
   2364 	uint16_t tempChannelList[NUM_EDGES];
   2365 	uint16_t clo = 0, chi = 0, twiceMaxEdgePower;
   2366 	int i, numEdges;
   2367 
   2368 	/* Get the edge power */
   2369 	for (i = 0; i < NUM_EDGES; i++) {
   2370 		if (pRdEdgesPower[i].rdEdge == 0)
   2371 			break;
   2372 		tempChannelList[i] = pRdEdgesPower[i].rdEdge;
   2373 	}
   2374 	numEdges = i;
   2375 
   2376 	ar5212GetLowerUpperValues(channel, tempChannelList,
   2377 		numEdges, &clo, &chi);
   2378 	/* Get the index for the lower channel */
   2379 	for (i = 0; i < numEdges && clo != tempChannelList[i]; i++)
   2380 		;
   2381 	/* Is lower channel ever outside the rdEdge? */
   2382 	HALASSERT(i != numEdges);
   2383 
   2384 	if ((clo == chi && clo == channel) || (pRdEdgesPower[i].flag)) {
   2385 		/*
   2386 		 * If there's an exact channel match or an inband flag set
   2387 		 * on the lower channel use the given rdEdgePower
   2388 		 */
   2389 		twiceMaxEdgePower = pRdEdgesPower[i].twice_rdEdgePower;
   2390 		HALASSERT(twiceMaxEdgePower > 0);
   2391 	} else
   2392 		twiceMaxEdgePower = MAX_RATE_POWER;
   2393 	return twiceMaxEdgePower;
   2394 }
   2395 
   2396 /*
   2397  * Returns interpolated or the scaled up interpolated value
   2398  */
   2399 static uint16_t
   2400 interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
   2401 	uint16_t targetLeft, uint16_t targetRight)
   2402 {
   2403 	uint16_t rv;
   2404 	int16_t lRatio;
   2405 
   2406 	/* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
   2407 	if ((targetLeft * targetRight) == 0)
   2408 		return 0;
   2409 
   2410 	if (srcRight != srcLeft) {
   2411 		/*
   2412 		 * Note the ratio always need to be scaled,
   2413 		 * since it will be a fraction.
   2414 		 */
   2415 		lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
   2416 		if (lRatio < 0) {
   2417 		    /* Return as Left target if value would be negative */
   2418 		    rv = targetLeft;
   2419 		} else if (lRatio > EEP_SCALE) {
   2420 		    /* Return as Right target if Ratio is greater than 100% (SCALE) */
   2421 		    rv = targetRight;
   2422 		} else {
   2423 			rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
   2424 					targetLeft) / EEP_SCALE;
   2425 		}
   2426 	} else {
   2427 		rv = targetLeft;
   2428 	}
   2429 	return rv;
   2430 }
   2431 
   2432 /*
   2433  * Return the four rates of target power for the given target power table
   2434  * channel, and number of channels
   2435  */
   2436 static void
   2437 ar5212GetTargetPowers(struct ath_hal *ah, HAL_CHANNEL *chan,
   2438 	const TRGT_POWER_INFO *powInfo,
   2439 	uint16_t numChannels, TRGT_POWER_INFO *pNewPower)
   2440 {
   2441 	/* temp array for holding target power channels */
   2442 	uint16_t tempChannelList[NUM_TEST_FREQUENCIES];
   2443 	uint16_t clo = 0, chi = 0, ixlo, ixhi;
   2444 	int i;
   2445 
   2446 	/* Copy the target powers into the temp channel list */
   2447 	for (i = 0; i < numChannels; i++)
   2448 		tempChannelList[i] = powInfo[i].testChannel;
   2449 
   2450 	ar5212GetLowerUpperValues(chan->channel, tempChannelList,
   2451 		numChannels, &clo, &chi);
   2452 
   2453 	/* Get the indices for the channel */
   2454 	ixlo = ixhi = 0;
   2455 	for (i = 0; i < numChannels; i++) {
   2456 		if (clo == tempChannelList[i]) {
   2457 			ixlo = i;
   2458 		}
   2459 		if (chi == tempChannelList[i]) {
   2460 			ixhi = i;
   2461 			break;
   2462 		}
   2463 	}
   2464 
   2465 	/*
   2466 	 * Get the lower and upper channels, target powers,
   2467 	 * and interpolate between them.
   2468 	 */
   2469 	pNewPower->twicePwr6_24 = interpolate(chan->channel, clo, chi,
   2470 		powInfo[ixlo].twicePwr6_24, powInfo[ixhi].twicePwr6_24);
   2471 	pNewPower->twicePwr36 = interpolate(chan->channel, clo, chi,
   2472 		powInfo[ixlo].twicePwr36, powInfo[ixhi].twicePwr36);
   2473 	pNewPower->twicePwr48 = interpolate(chan->channel, clo, chi,
   2474 		powInfo[ixlo].twicePwr48, powInfo[ixhi].twicePwr48);
   2475 	pNewPower->twicePwr54 = interpolate(chan->channel, clo, chi,
   2476 		powInfo[ixlo].twicePwr54, powInfo[ixhi].twicePwr54);
   2477 }
   2478 
   2479 /*
   2480  * Search a list for a specified value v that is within
   2481  * EEP_DELTA of the search values.  Return the closest
   2482  * values in the list above and below the desired value.
   2483  * EEP_DELTA is a factional value; everything is scaled
   2484  * so only integer arithmetic is used.
   2485  *
   2486  * NB: the input list is assumed to be sorted in ascending order
   2487  */
   2488 void
   2489 ar5212GetLowerUpperValues(uint16_t v, uint16_t *lp, uint16_t listSize,
   2490                           uint16_t *vlo, uint16_t *vhi)
   2491 {
   2492 	uint32_t target = v * EEP_SCALE;
   2493 	uint16_t *ep = lp+listSize;
   2494 
   2495 	/*
   2496 	 * Check first and last elements for out-of-bounds conditions.
   2497 	 */
   2498 	if (target < (uint32_t)(lp[0] * EEP_SCALE - EEP_DELTA)) {
   2499 		*vlo = *vhi = lp[0];
   2500 		return;
   2501 	}
   2502 	if (target > (uint32_t)(ep[-1] * EEP_SCALE + EEP_DELTA)) {
   2503 		*vlo = *vhi = ep[-1];
   2504 		return;
   2505 	}
   2506 
   2507 	/* look for value being near or between 2 values in list */
   2508 	for (; lp < ep; lp++) {
   2509 		/*
   2510 		 * If value is close to the current value of the list
   2511 		 * then target is not between values, it is one of the values
   2512 		 */
   2513 		if (lp[0] * EEP_SCALE - target < EEP_DELTA) {
   2514 			*vlo = *vhi = lp[0];
   2515 			return;
   2516 		}
   2517 		/*
   2518 		 * Look for value being between current value and next value
   2519 		 * if so return these 2 values
   2520 		 */
   2521 		if (target < (uint32_t)(lp[1] * EEP_SCALE - EEP_DELTA)) {
   2522 			*vlo = lp[0];
   2523 			*vhi = lp[1];
   2524 			return;
   2525 		}
   2526 	}
   2527 	HALASSERT(AH_FALSE);		/* should not reach here */
   2528 }
   2529 
   2530 /*
   2531  * Perform analog "swizzling" of parameters into their location
   2532  *
   2533  * NB: used by RF backends
   2534  */
   2535 void
   2536 ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, uint32_t numBits,
   2537                      uint32_t firstBit, uint32_t column)
   2538 {
   2539 #define	MAX_ANALOG_START	319		/* XXX */
   2540 	uint32_t tmp32, mask, arrayEntry, lastBit;
   2541 	int32_t bitPosition, bitsLeft;
   2542 
   2543 	HALASSERT(column <= 3);
   2544 	HALASSERT(numBits <= 32);
   2545 	HALASSERT(firstBit + numBits <= MAX_ANALOG_START);
   2546 
   2547 	tmp32 = ath_hal_reverseBits(reg32, numBits);
   2548 	arrayEntry = (firstBit - 1) / 8;
   2549 	bitPosition = (firstBit - 1) % 8;
   2550 	bitsLeft = numBits;
   2551 	while (bitsLeft > 0) {
   2552 		lastBit = (bitPosition + bitsLeft > 8) ?
   2553 			8 : bitPosition + bitsLeft;
   2554 		mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
   2555 			(column * 8);
   2556 		rfBuf[arrayEntry] &= ~mask;
   2557 		rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
   2558 			(column * 8)) & mask;
   2559 		bitsLeft -= 8 - bitPosition;
   2560 		tmp32 = tmp32 >> (8 - bitPosition);
   2561 		bitPosition = 0;
   2562 		arrayEntry++;
   2563 	}
   2564 #undef MAX_ANALOG_START
   2565 }
   2566 
   2567 /*
   2568  * Sets the rate to duration values in MAC - used for multi-
   2569  * rate retry.
   2570  * The rate duration table needs to cover all valid rate codes;
   2571  * the 11g table covers all ofdm rates, while the 11b table
   2572  * covers all cck rates => all valid rates get covered between
   2573  * these two mode's ratetables!
   2574  * But if we're turbo, the ofdm phy is replaced by the turbo phy
   2575  * and cck is not valid with turbo => all rates get covered
   2576  * by the turbo ratetable only
   2577  */
   2578 void
   2579 ar5212SetRateDurationTable(struct ath_hal *ah, HAL_CHANNEL *chan)
   2580 {
   2581 	const HAL_RATE_TABLE *rt;
   2582 	int i;
   2583 
   2584 	/* NB: band doesn't matter for 1/2 and 1/4 rate */
   2585 	if (IS_CHAN_HALF_RATE(chan)) {
   2586 		rt = ar5212GetRateTable(ah, HAL_MODE_11A_HALF_RATE);
   2587 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
   2588 		rt = ar5212GetRateTable(ah, HAL_MODE_11A_QUARTER_RATE);
   2589 	} else {
   2590 		rt = ar5212GetRateTable(ah,
   2591 			IS_CHAN_TURBO(chan) ? HAL_MODE_TURBO : HAL_MODE_11G);
   2592 	}
   2593 
   2594 	for (i = 0; i < rt->rateCount; ++i)
   2595 		OS_REG_WRITE(ah,
   2596 			AR_RATE_DURATION(rt->info[i].rateCode),
   2597 			ath_hal_computetxtime(ah, rt,
   2598 				WLAN_CTRL_FRAME_SIZE,
   2599 				rt->info[i].controlRate, AH_FALSE));
   2600 	if (!IS_CHAN_TURBO(chan)) {
   2601 		/* 11g Table is used to cover the CCK rates. */
   2602 		rt = ar5212GetRateTable(ah, HAL_MODE_11G);
   2603 		for (i = 0; i < rt->rateCount; ++i) {
   2604 			uint32_t reg = AR_RATE_DURATION(rt->info[i].rateCode);
   2605 
   2606 			if (rt->info[i].phy != IEEE80211_T_CCK)
   2607 				continue;
   2608 
   2609 			OS_REG_WRITE(ah, reg,
   2610 				ath_hal_computetxtime(ah, rt,
   2611 					WLAN_CTRL_FRAME_SIZE,
   2612 					rt->info[i].controlRate, AH_FALSE));
   2613 			/* cck rates have short preamble option also */
   2614 			if (rt->info[i].shortPreamble) {
   2615 				reg += rt->info[i].shortPreamble << 2;
   2616 				OS_REG_WRITE(ah, reg,
   2617 					ath_hal_computetxtime(ah, rt,
   2618 						WLAN_CTRL_FRAME_SIZE,
   2619 						rt->info[i].controlRate,
   2620 						AH_TRUE));
   2621 			}
   2622 		}
   2623 	}
   2624 }
   2625 
   2626 /* Adjust various register settings based on half/quarter rate clock setting.
   2627  * This includes: +USEC, TX/RX latency,
   2628  *                + IFS params: slot, eifs, misc etc.
   2629  */
   2630 void
   2631 ar5212SetIFSTiming(struct ath_hal *ah, HAL_CHANNEL *chan)
   2632 {
   2633 	uint32_t txLat, rxLat, usec, slot, refClock, eifs, init_usec;
   2634 
   2635 	HALASSERT(IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan));
   2636 
   2637 	refClock = OS_REG_READ(ah, AR_USEC) & AR_USEC_USEC32;
   2638 	if (IS_CHAN_HALF_RATE(chan)) {
   2639 		slot = IFS_SLOT_HALF_RATE;
   2640 		rxLat = RX_NON_FULL_RATE_LATENCY << AR5212_USEC_RX_LAT_S;
   2641 		txLat = TX_HALF_RATE_LATENCY << AR5212_USEC_TX_LAT_S;
   2642 		usec = HALF_RATE_USEC;
   2643 		eifs = IFS_EIFS_HALF_RATE;
   2644 		init_usec = INIT_USEC >> 1;
   2645 	} else { /* quarter rate */
   2646 		slot = IFS_SLOT_QUARTER_RATE;
   2647 		rxLat = RX_NON_FULL_RATE_LATENCY << AR5212_USEC_RX_LAT_S;
   2648 		txLat = TX_QUARTER_RATE_LATENCY << AR5212_USEC_TX_LAT_S;
   2649 		usec = QUARTER_RATE_USEC;
   2650 		eifs = IFS_EIFS_QUARTER_RATE;
   2651 		init_usec = INIT_USEC >> 2;
   2652 	}
   2653 
   2654 	OS_REG_WRITE(ah, AR_USEC, (usec | refClock | txLat | rxLat));
   2655 	OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
   2656 	OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
   2657 	OS_REG_RMW_FIELD(ah, AR_D_GBL_IFS_MISC,
   2658 				AR_D_GBL_IFS_MISC_USEC_DURATION, init_usec);
   2659 }
   2660