Home | History | Annotate | Line # | Download | only in kern
      1 /*	$NetBSD: kern_event.c,v 1.152 2026/01/04 01:33:13 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008, 2009, 2021 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
     34  * Copyright (c) 2009 Apple, Inc
     35  * All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  *
     46  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     56  * SUCH DAMAGE.
     57  *
     58  * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
     59  */
     60 
     61 #ifdef _KERNEL_OPT
     62 #include "opt_ddb.h"
     63 #endif /* _KERNEL_OPT */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.152 2026/01/04 01:33:13 riastradh Exp $");
     67 
     68 #include <sys/param.h>
     69 #include <sys/types.h>
     70 
     71 #include <sys/atomic.h>
     72 #include <sys/conf.h>
     73 #include <sys/event.h>
     74 #include <sys/eventvar.h>
     75 #include <sys/file.h>
     76 #include <sys/filedesc.h>
     77 #include <sys/kauth.h>
     78 #include <sys/kernel.h>
     79 #include <sys/kmem.h>
     80 #include <sys/poll.h>
     81 #include <sys/proc.h>
     82 #include <sys/queue.h>
     83 #include <sys/sdt.h>
     84 #include <sys/select.h>
     85 #include <sys/stat.h>
     86 #include <sys/syscallargs.h>
     87 #include <sys/systm.h>
     88 #include <sys/wait.h>
     89 
     90 static int	kqueue_scan(file_t *, size_t, struct kevent *,
     91 			    const struct timespec *, register_t *,
     92 			    const struct kevent_ops *, struct kevent *,
     93 			    size_t);
     94 static int	kqueue_ioctl(file_t *, u_long, void *);
     95 static int	kqueue_fcntl(file_t *, u_int, void *);
     96 static int	kqueue_poll(file_t *, int);
     97 static int	kqueue_kqfilter(file_t *, struct knote *);
     98 static int	kqueue_stat(file_t *, struct stat *);
     99 static int	kqueue_close(file_t *);
    100 static void	kqueue_restart(file_t *);
    101 static int	kqueue_fpathconf(file_t *, int, register_t *);
    102 static int	kqueue_register(struct kqueue *, struct kevent *);
    103 static void	kqueue_doclose(struct kqueue *, struct klist *, int);
    104 
    105 static void	knote_detach(struct knote *, filedesc_t *fdp, bool);
    106 static void	knote_enqueue(struct knote *);
    107 static void	knote_activate(struct knote *);
    108 static void	knote_activate_locked(struct knote *);
    109 static void	knote_deactivate_locked(struct knote *);
    110 
    111 static void	filt_kqdetach(struct knote *);
    112 static int	filt_kqueue(struct knote *, long hint);
    113 static int	filt_procattach(struct knote *);
    114 static void	filt_procdetach(struct knote *);
    115 static int	filt_proc(struct knote *, long hint);
    116 static int	filt_fileattach(struct knote *);
    117 static void	filt_timerexpire(void *x);
    118 static int	filt_timerattach(struct knote *);
    119 static void	filt_timerdetach(struct knote *);
    120 static int	filt_timer(struct knote *, long hint);
    121 static int	filt_timertouch(struct knote *, struct kevent *, long type);
    122 static int	filt_userattach(struct knote *);
    123 static void	filt_userdetach(struct knote *);
    124 static int	filt_user(struct knote *, long hint);
    125 static int	filt_usertouch(struct knote *, struct kevent *, long type);
    126 
    127 /*
    128  * Private knote state that should never be exposed outside
    129  * of kern_event.c
    130  *
    131  * Field locking:
    132  *
    133  * q	kn_kq->kq_lock
    134  */
    135 struct knote_impl {
    136 	struct knote	ki_knote;
    137 	unsigned int	ki_influx;	/* q: in-flux counter */
    138 	kmutex_t	ki_foplock;	/* for kn_filterops */
    139 };
    140 
    141 #define	KIMPL_TO_KNOTE(kip)	(&(kip)->ki_knote)
    142 #define	KNOTE_TO_KIMPL(knp)	container_of((knp), struct knote_impl, ki_knote)
    143 
    144 static inline struct knote *
    145 knote_alloc(bool sleepok)
    146 {
    147 	struct knote_impl *ki;
    148 
    149 	ki = kmem_zalloc(sizeof(*ki), sleepok ? KM_SLEEP : KM_NOSLEEP);
    150 	mutex_init(&ki->ki_foplock, MUTEX_DEFAULT, IPL_NONE);
    151 
    152 	return KIMPL_TO_KNOTE(ki);
    153 }
    154 
    155 static inline void
    156 knote_free(struct knote *kn)
    157 {
    158 	struct knote_impl *ki = KNOTE_TO_KIMPL(kn);
    159 
    160 	mutex_destroy(&ki->ki_foplock);
    161 	kmem_free(ki, sizeof(*ki));
    162 }
    163 
    164 static inline void
    165 knote_foplock_enter(struct knote *kn)
    166 {
    167 	mutex_enter(&KNOTE_TO_KIMPL(kn)->ki_foplock);
    168 }
    169 
    170 static inline void
    171 knote_foplock_exit(struct knote *kn)
    172 {
    173 	mutex_exit(&KNOTE_TO_KIMPL(kn)->ki_foplock);
    174 }
    175 
    176 static inline bool __diagused
    177 knote_foplock_owned(struct knote *kn)
    178 {
    179 	return mutex_owned(&KNOTE_TO_KIMPL(kn)->ki_foplock);
    180 }
    181 
    182 static const struct fileops kqueueops = {
    183 	.fo_name = "kqueue",
    184 	.fo_read = (void *)enxio,
    185 	.fo_write = (void *)enxio,
    186 	.fo_ioctl = kqueue_ioctl,
    187 	.fo_fcntl = kqueue_fcntl,
    188 	.fo_poll = kqueue_poll,
    189 	.fo_stat = kqueue_stat,
    190 	.fo_close = kqueue_close,
    191 	.fo_kqfilter = kqueue_kqfilter,
    192 	.fo_restart = kqueue_restart,
    193 	.fo_fpathconf = kqueue_fpathconf,
    194 };
    195 
    196 static void
    197 filt_nopdetach(struct knote *kn __unused)
    198 {
    199 }
    200 
    201 static int
    202 filt_nopevent(struct knote *kn __unused, long hint __unused)
    203 {
    204 	return 0;
    205 }
    206 
    207 static const struct filterops nop_fd_filtops = {
    208 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
    209 	.f_attach = NULL,
    210 	.f_detach = filt_nopdetach,
    211 	.f_event = filt_nopevent,
    212 };
    213 
    214 static const struct filterops nop_filtops = {
    215 	.f_flags = FILTEROP_MPSAFE,
    216 	.f_attach = NULL,
    217 	.f_detach = filt_nopdetach,
    218 	.f_event = filt_nopevent,
    219 };
    220 
    221 static const struct filterops kqread_filtops = {
    222 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
    223 	.f_attach = NULL,
    224 	.f_detach = filt_kqdetach,
    225 	.f_event = filt_kqueue,
    226 };
    227 
    228 static const struct filterops proc_filtops = {
    229 	.f_flags = FILTEROP_MPSAFE,
    230 	.f_attach = filt_procattach,
    231 	.f_detach = filt_procdetach,
    232 	.f_event = filt_proc,
    233 };
    234 
    235 /*
    236  * file_filtops is not marked MPSAFE because it's going to call
    237  * fileops::fo_kqfilter(), which might not be.  That function,
    238  * however, will override the knote's filterops, and thus will
    239  * inherit the MPSAFE-ness of the back-end at that time.
    240  */
    241 static const struct filterops file_filtops = {
    242 	.f_flags = FILTEROP_ISFD,
    243 	.f_attach = filt_fileattach,
    244 	.f_detach = NULL,
    245 	.f_event = NULL,
    246 };
    247 
    248 static const struct filterops timer_filtops = {
    249 	.f_flags = FILTEROP_MPSAFE,
    250 	.f_attach = filt_timerattach,
    251 	.f_detach = filt_timerdetach,
    252 	.f_event = filt_timer,
    253 	.f_touch = filt_timertouch,
    254 };
    255 
    256 static const struct filterops user_filtops = {
    257 	.f_flags = FILTEROP_MPSAFE,
    258 	.f_attach = filt_userattach,
    259 	.f_detach = filt_userdetach,
    260 	.f_event = filt_user,
    261 	.f_touch = filt_usertouch,
    262 };
    263 
    264 static u_int	kq_ncallouts = 0;
    265 static int	kq_calloutmax = (4 * 1024);
    266 
    267 #define	KN_HASHSIZE		64		/* XXX should be tunable */
    268 #define	KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
    269 
    270 extern const struct filterops fs_filtops;	/* vfs_syscalls.c */
    271 extern const struct filterops sig_filtops;	/* kern_sig.c */
    272 
    273 /*
    274  * Table for all system-defined filters.
    275  * These should be listed in the numeric order of the EVFILT_* defines.
    276  * If filtops is NULL, the filter isn't implemented in NetBSD.
    277  * End of list is when name is NULL.
    278  *
    279  * Note that 'refcnt' is meaningless for built-in filters.
    280  */
    281 struct kfilter {
    282 	const char	*name;		/* name of filter */
    283 	uint32_t	filter;		/* id of filter */
    284 	unsigned	refcnt;		/* reference count */
    285 	const struct filterops *filtops;/* operations for filter */
    286 	size_t		namelen;	/* length of name string */
    287 };
    288 
    289 /* System defined filters */
    290 static struct kfilter sys_kfilters[] = {
    291 	{ "EVFILT_READ",	EVFILT_READ,	0, &file_filtops, 0 },
    292 	{ "EVFILT_WRITE",	EVFILT_WRITE,	0, &file_filtops, 0, },
    293 	{ "EVFILT_AIO",		EVFILT_AIO,	0, NULL, 0 },
    294 	{ "EVFILT_VNODE",	EVFILT_VNODE,	0, &file_filtops, 0 },
    295 	{ "EVFILT_PROC",	EVFILT_PROC,	0, &proc_filtops, 0 },
    296 	{ "EVFILT_SIGNAL",	EVFILT_SIGNAL,	0, &sig_filtops, 0 },
    297 	{ "EVFILT_TIMER",	EVFILT_TIMER,	0, &timer_filtops, 0 },
    298 	{ "EVFILT_FS",		EVFILT_FS,	0, &fs_filtops, 0 },
    299 	{ "EVFILT_USER",	EVFILT_USER,	0, &user_filtops, 0 },
    300 	{ "EVFILT_EMPTY",	EVFILT_EMPTY,	0, &file_filtops, 0 },
    301 	{ NULL,			0,		0, NULL, 0 },
    302 };
    303 
    304 /* User defined kfilters */
    305 static struct kfilter	*user_kfilters;		/* array */
    306 static int		user_kfilterc;		/* current offset */
    307 static int		user_kfiltermaxc;	/* max size so far */
    308 static size_t		user_kfiltersz;		/* size of allocated memory */
    309 
    310 /*
    311  * Global Locks.
    312  *
    313  * Lock order:
    314  *
    315  *	kqueue_filter_lock
    316  *	-> kn_kq->kq_fdp->fd_lock
    317  *	-> knote foplock (if taken)
    318  *	-> object lock (e.g., device driver lock, &c.)
    319  *	-> kn_kq->kq_lock
    320  *
    321  * Locking rules.  ==> indicates the lock is acquired by the backing
    322  * object, locks prior are acquired before calling filter ops:
    323  *
    324  *	f_attach: fdp->fd_lock -> knote foplock ->
    325  *	  (maybe) KERNEL_LOCK ==> backing object lock
    326  *
    327  *	f_detach: fdp->fd_lock -> knote foplock ->
    328  *	   (maybe) KERNEL_LOCK ==> backing object lock
    329  *
    330  *	f_event via kevent: fdp->fd_lock -> knote foplock ->
    331  *	   (maybe) KERNEL_LOCK ==> backing object lock
    332  *	   N.B. NOTE_SUBMIT will never be set in the "hint" argument
    333  *	   in this case.
    334  *
    335  *	f_event via knote (via backing object: Whatever caller guarantees.
    336  *	Typically:
    337  *		f_event(NOTE_SUBMIT): caller has already acquired backing
    338  *		    object lock.
    339  *		f_event(!NOTE_SUBMIT): caller has not acquired backing object,
    340  *		    lock or has possibly acquired KERNEL_LOCK.  Backing object
    341  *		    lock may or may not be acquired as-needed.
    342  *	N.B. the knote foplock will **not** be acquired in this case.  The
    343  *	caller guarantees that klist_fini() will not be called concurrently
    344  *	with knote().
    345  *
    346  *	f_touch: fdp->fd_lock -> kn_kq->kq_lock (spin lock)
    347  *	    N.B. knote foplock is **not** acquired in this case and
    348  *	    the caller must guarantee that klist_fini() will never
    349  *	    be called.  kevent_register() restricts filters that
    350  *	    provide f_touch to known-safe cases.
    351  *
    352  *	klist_fini(): Caller must guarantee that no more knotes can
    353  *	    be attached to the klist, and must **not** hold the backing
    354  *	    object's lock; klist_fini() itself will acquire the foplock
    355  *	    of each knote on the klist.
    356  *
    357  * Locking rules when detaching knotes:
    358  *
    359  * There are some situations where knote submission may require dropping
    360  * locks (see knote_proc_fork()).  In order to support this, it's possible
    361  * to mark a knote as being 'in-flux'.  Such a knote is guaranteed not to
    362  * be detached while it remains in-flux.  Because it will not be detached,
    363  * locks can be dropped so e.g. memory can be allocated, locks on other
    364  * data structures can be acquired, etc.  During this time, any attempt to
    365  * detach an in-flux knote must wait until the knote is no longer in-flux.
    366  * When this happens, the knote is marked for death (KN_WILLDETACH) and the
    367  * LWP who gets to finish the detach operation is recorded in the knote's
    368  * 'udata' field (which is no longer required for its original purpose once
    369  * a knote is so marked).  Code paths that lead to knote_detach() must ensure
    370  * that their LWP is the one tasked with its final demise after waiting for
    371  * the in-flux status of the knote to clear.  Note that once a knote is
    372  * marked KN_WILLDETACH, no code paths may put it into an in-flux state.
    373  *
    374  * Once the special circumstances have been handled, the locks are re-
    375  * acquired in the proper order (object lock -> kq_lock), the knote taken
    376  * out of flux, and any waiters are notified.  Because waiters must have
    377  * also dropped *their* locks in order to safely block, they must re-
    378  * validate all of their assumptions; see knote_detach_quiesce().  See also
    379  * the kqueue_register() (EV_ADD, EV_DELETE) and kqueue_scan() (EV_ONESHOT)
    380  * cases.
    381  *
    382  * When kqueue_scan() encounters an in-flux knote, the situation is
    383  * treated like another LWP's list marker.
    384  *
    385  * LISTEN WELL: It is important to not hold knotes in flux for an
    386  * extended period of time! In-flux knotes effectively block any
    387  * progress of the kqueue_scan() operation.  Any code paths that place
    388  * knotes in-flux should be careful to not block for indefinite periods
    389  * of time, such as for memory allocation (i.e. KM_NOSLEEP is OK, but
    390  * KM_SLEEP is not).
    391  */
    392 static krwlock_t	kqueue_filter_lock;	/* lock on filter lists */
    393 
    394 #define	KQ_FLUX_WAIT(kq)	(void)cv_wait(&kq->kq_cv, &kq->kq_lock)
    395 #define	KQ_FLUX_WAKEUP(kq)	cv_broadcast(&kq->kq_cv)
    396 
    397 static inline bool
    398 kn_in_flux(struct knote *kn)
    399 {
    400 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
    401 	return KNOTE_TO_KIMPL(kn)->ki_influx != 0;
    402 }
    403 
    404 static inline bool
    405 kn_enter_flux(struct knote *kn)
    406 {
    407 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
    408 
    409 	if (kn->kn_status & KN_WILLDETACH) {
    410 		return false;
    411 	}
    412 
    413 	struct knote_impl *ki = KNOTE_TO_KIMPL(kn);
    414 	KASSERT(ki->ki_influx < UINT_MAX);
    415 	ki->ki_influx++;
    416 
    417 	return true;
    418 }
    419 
    420 static inline bool
    421 kn_leave_flux(struct knote *kn)
    422 {
    423 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
    424 
    425 	struct knote_impl *ki = KNOTE_TO_KIMPL(kn);
    426 	KASSERT(ki->ki_influx > 0);
    427 	ki->ki_influx--;
    428 	return ki->ki_influx == 0;
    429 }
    430 
    431 static void
    432 kn_wait_flux(struct knote *kn, bool can_loop)
    433 {
    434 	struct knote_impl *ki = KNOTE_TO_KIMPL(kn);
    435 	bool loop;
    436 
    437 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
    438 
    439 	/*
    440 	 * It may not be safe for us to touch the knote again after
    441 	 * dropping the kq_lock.  The caller has let us know in
    442 	 * 'can_loop'.
    443 	 */
    444 	for (loop = true; loop && ki->ki_influx != 0; loop = can_loop) {
    445 		KQ_FLUX_WAIT(kn->kn_kq);
    446 	}
    447 }
    448 
    449 #define	KNOTE_WILLDETACH(kn)						\
    450 do {									\
    451 	(kn)->kn_status |= KN_WILLDETACH;				\
    452 	(kn)->kn_kevent.udata = curlwp;					\
    453 } while (/*CONSTCOND*/0)
    454 
    455 /*
    456  * Wait until the specified knote is in a quiescent state and
    457  * safe to detach.  Returns true if we potentially blocked (and
    458  * thus dropped our locks).
    459  */
    460 static bool
    461 knote_detach_quiesce(struct knote *kn)
    462 {
    463 	struct kqueue *kq = kn->kn_kq;
    464 	filedesc_t *fdp = kq->kq_fdp;
    465 
    466 	KASSERT(mutex_owned(&fdp->fd_lock));
    467 
    468 	mutex_spin_enter(&kq->kq_lock);
    469 	/*
    470 	 * There are two cases where we might see KN_WILLDETACH here:
    471 	 *
    472 	 * 1. Someone else has already started detaching the knote but
    473 	 *    had to wait for it to settle first.
    474 	 *
    475 	 * 2. We had to wait for it to settle, and had to come back
    476 	 *    around after re-acquiring the locks.
    477 	 *
    478 	 * When KN_WILLDETACH is set, we also set the LWP that claimed
    479 	 * the prize of finishing the detach in the 'udata' field of the
    480 	 * knote (which will never be used again for its usual purpose
    481 	 * once the note is in this state).  If it doesn't point to us,
    482 	 * we must drop the locks and let them in to finish the job.
    483 	 *
    484 	 * Otherwise, once we have claimed the knote for ourselves, we
    485 	 * can finish waiting for it to settle.  The is the only scenario
    486 	 * where touching a detaching knote is safe after dropping the
    487 	 * locks.
    488 	 */
    489 	if ((kn->kn_status & KN_WILLDETACH) != 0 &&
    490 	    kn->kn_kevent.udata != curlwp) {
    491 		/*
    492 		 * N.B. it is NOT safe for us to touch the knote again
    493 		 * after dropping the locks here.  The caller must go
    494 		 * back around and re-validate everything.  However, if
    495 		 * the knote is in-flux, we want to block to minimize
    496 		 * busy-looping.
    497 		 */
    498 		mutex_exit(&fdp->fd_lock);
    499 		if (kn_in_flux(kn)) {
    500 			kn_wait_flux(kn, false);
    501 			mutex_spin_exit(&kq->kq_lock);
    502 			return true;
    503 		}
    504 		mutex_spin_exit(&kq->kq_lock);
    505 		preempt_point();
    506 		return true;
    507 	}
    508 	/*
    509 	 * If we get here, we know that we will be claiming the
    510 	 * detach responsibilies, or that we already have and
    511 	 * this is the second attempt after re-validation.
    512 	 */
    513 	KASSERT((kn->kn_status & KN_WILLDETACH) == 0 ||
    514 		kn->kn_kevent.udata == curlwp);
    515 	/*
    516 	 * Similarly, if we get here, either we are just claiming it
    517 	 * and may have to wait for it to settle, or if this is the
    518 	 * second attempt after re-validation that no other code paths
    519 	 * have put it in-flux.
    520 	 */
    521 	KASSERT((kn->kn_status & KN_WILLDETACH) == 0 ||
    522 		kn_in_flux(kn) == false);
    523 	KNOTE_WILLDETACH(kn);
    524 	if (kn_in_flux(kn)) {
    525 		mutex_exit(&fdp->fd_lock);
    526 		kn_wait_flux(kn, true);
    527 		/*
    528 		 * It is safe for us to touch the knote again after
    529 		 * dropping the locks, but the caller must still
    530 		 * re-validate everything because other aspects of
    531 		 * the environment may have changed while we blocked.
    532 		 */
    533 		KASSERT(kn_in_flux(kn) == false);
    534 		mutex_spin_exit(&kq->kq_lock);
    535 		return true;
    536 	}
    537 	mutex_spin_exit(&kq->kq_lock);
    538 
    539 	return false;
    540 }
    541 
    542 /*
    543  * Calls into the filterops need to be resilient against things which
    544  * destroy a klist, e.g. device detach, freeing a vnode, etc., to avoid
    545  * chasing garbage pointers (to data, or even potentially code in a
    546  * module about to be unloaded).  To that end, we acquire the
    547  * knote foplock before calling into the filter ops.  When a driver
    548  * (or anything else) is tearing down its klist, klist_fini() enumerates
    549  * each knote, acquires its foplock, and replaces the filterops with a
    550  * nop stub, allowing knote detach (when descriptors are closed) to safely
    551  * proceed.
    552  */
    553 
    554 static int
    555 filter_attach(struct knote *kn)
    556 {
    557 	int rv;
    558 
    559 	KASSERT(knote_foplock_owned(kn));
    560 	KASSERT(kn->kn_fop != NULL);
    561 	KASSERT(kn->kn_fop->f_attach != NULL);
    562 
    563 	/*
    564 	 * N.B. that kn->kn_fop may change as the result of calling
    565 	 * f_attach().  After f_attach() returns, kn->kn_fop may not
    566 	 * be modified by code outside of klist_fini().
    567 	 */
    568 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
    569 		rv = kn->kn_fop->f_attach(kn);
    570 	} else {
    571 		KERNEL_LOCK(1, NULL);
    572 		rv = kn->kn_fop->f_attach(kn);
    573 		KERNEL_UNLOCK_ONE(NULL);
    574 	}
    575 
    576 	return rv;
    577 }
    578 
    579 static void
    580 filter_detach(struct knote *kn)
    581 {
    582 
    583 	KASSERT(knote_foplock_owned(kn));
    584 	KASSERT(kn->kn_fop != NULL);
    585 	KASSERT(kn->kn_fop->f_detach != NULL);
    586 
    587 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
    588 		kn->kn_fop->f_detach(kn);
    589 	} else {
    590 		KERNEL_LOCK(1, NULL);
    591 		kn->kn_fop->f_detach(kn);
    592 		KERNEL_UNLOCK_ONE(NULL);
    593 	}
    594 }
    595 
    596 static int
    597 filter_event(struct knote *kn, long hint, bool submitting)
    598 {
    599 	int rv;
    600 
    601 	/* See knote(). */
    602 	KASSERT(submitting || knote_foplock_owned(kn));
    603 	KASSERT(kn->kn_fop != NULL);
    604 	KASSERT(kn->kn_fop->f_event != NULL);
    605 
    606 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
    607 		rv = kn->kn_fop->f_event(kn, hint);
    608 	} else {
    609 		KERNEL_LOCK(1, NULL);
    610 		rv = kn->kn_fop->f_event(kn, hint);
    611 		KERNEL_UNLOCK_ONE(NULL);
    612 	}
    613 
    614 	return rv;
    615 }
    616 
    617 static int
    618 filter_touch(struct knote *kn, struct kevent *kev, long type)
    619 {
    620 
    621 	/*
    622 	 * XXX We cannot assert that the knote foplock is held here
    623 	 * XXX beause we cannot safely acquire it in all cases
    624 	 * XXX where "touch" will be used in kqueue_scan().  We just
    625 	 * XXX have to assume that f_touch will always be safe to call,
    626 	 * XXX and kqueue_register() allows only the two known-safe
    627 	 * XXX users of that op.
    628 	 */
    629 
    630 	KASSERT(kn->kn_fop != NULL);
    631 	KASSERT(kn->kn_fop->f_touch != NULL);
    632 
    633 	return kn->kn_fop->f_touch(kn, kev, type);
    634 }
    635 
    636 static kauth_listener_t	kqueue_listener;
    637 
    638 static int
    639 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    640     void *arg0, void *arg1, void *arg2, void *arg3)
    641 {
    642 	struct proc *p;
    643 	int result;
    644 
    645 	result = KAUTH_RESULT_DEFER;
    646 	p = arg0;
    647 
    648 	if (action != KAUTH_PROCESS_KEVENT_FILTER)
    649 		return result;
    650 
    651 	if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
    652 	    ISSET(p->p_flag, PK_SUGID)))
    653 		return result;
    654 
    655 	result = KAUTH_RESULT_ALLOW;
    656 
    657 	return result;
    658 }
    659 
    660 /*
    661  * Initialize the kqueue subsystem.
    662  */
    663 void
    664 kqueue_init(void)
    665 {
    666 
    667 	rw_init(&kqueue_filter_lock);
    668 
    669 	kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    670 	    kqueue_listener_cb, NULL);
    671 }
    672 
    673 /*
    674  * Find kfilter entry by name, or NULL if not found.
    675  */
    676 static struct kfilter *
    677 kfilter_byname_sys(const char *name)
    678 {
    679 	int i;
    680 
    681 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    682 
    683 	for (i = 0; sys_kfilters[i].name != NULL; i++) {
    684 		if (strcmp(name, sys_kfilters[i].name) == 0)
    685 			return &sys_kfilters[i];
    686 	}
    687 	return NULL;
    688 }
    689 
    690 static struct kfilter *
    691 kfilter_byname_user(const char *name)
    692 {
    693 	int i;
    694 
    695 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    696 
    697 	/* user filter slots have a NULL name if previously deregistered */
    698 	for (i = 0; i < user_kfilterc ; i++) {
    699 		if (user_kfilters[i].name != NULL &&
    700 		    strcmp(name, user_kfilters[i].name) == 0)
    701 			return &user_kfilters[i];
    702 	}
    703 	return NULL;
    704 }
    705 
    706 static struct kfilter *
    707 kfilter_byname(const char *name)
    708 {
    709 	struct kfilter *kfilter;
    710 
    711 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    712 
    713 	if ((kfilter = kfilter_byname_sys(name)) != NULL)
    714 		return kfilter;
    715 
    716 	return kfilter_byname_user(name);
    717 }
    718 
    719 /*
    720  * Find kfilter entry by filter id, or NULL if not found.
    721  * Assumes entries are indexed in filter id order, for speed.
    722  */
    723 static struct kfilter *
    724 kfilter_byfilter(uint32_t filter)
    725 {
    726 	struct kfilter *kfilter;
    727 
    728 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    729 
    730 	if (filter < EVFILT_SYSCOUNT)	/* it's a system filter */
    731 		kfilter = &sys_kfilters[filter];
    732 	else if (user_kfilters != NULL &&
    733 	    filter < EVFILT_SYSCOUNT + user_kfilterc)
    734 					/* it's a user filter */
    735 		kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
    736 	else
    737 		return (NULL);		/* out of range */
    738 	KASSERT(kfilter->filter == filter);	/* sanity check! */
    739 	return (kfilter);
    740 }
    741 
    742 /*
    743  * Register a new kfilter. Stores the entry in user_kfilters.
    744  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
    745  * If retfilter != NULL, the new filterid is returned in it.
    746  */
    747 int
    748 kfilter_register(const char *name, const struct filterops *filtops,
    749 		 int *retfilter)
    750 {
    751 	struct kfilter *kfilter;
    752 	size_t len;
    753 	int i;
    754 
    755 	if (name == NULL || name[0] == '\0' || filtops == NULL)
    756 		return SET_ERROR(EINVAL);	/* invalid args */
    757 
    758 	rw_enter(&kqueue_filter_lock, RW_WRITER);
    759 	if (kfilter_byname(name) != NULL) {
    760 		rw_exit(&kqueue_filter_lock);
    761 		return SET_ERROR(EEXIST);	/* already exists */
    762 	}
    763 	if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
    764 		rw_exit(&kqueue_filter_lock);
    765 		return SET_ERROR(EINVAL);	/* too many */
    766 	}
    767 
    768 	for (i = 0; i < user_kfilterc; i++) {
    769 		kfilter = &user_kfilters[i];
    770 		if (kfilter->name == NULL) {
    771 			/* Previously deregistered slot.  Reuse. */
    772 			goto reuse;
    773 		}
    774 	}
    775 
    776 	/* check if need to grow user_kfilters */
    777 	if (user_kfilterc + 1 > user_kfiltermaxc) {
    778 		/* Grow in KFILTER_EXTENT chunks. */
    779 		user_kfiltermaxc += KFILTER_EXTENT;
    780 		len = user_kfiltermaxc * sizeof(*kfilter);
    781 		kfilter = kmem_alloc(len, KM_SLEEP);
    782 		memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
    783 		if (user_kfilters != NULL) {
    784 			memcpy(kfilter, user_kfilters, user_kfiltersz);
    785 			kmem_free(user_kfilters, user_kfiltersz);
    786 		}
    787 		user_kfiltersz = len;
    788 		user_kfilters = kfilter;
    789 	}
    790 	/* Adding new slot */
    791 	kfilter = &user_kfilters[user_kfilterc++];
    792 reuse:
    793 	kfilter->name = kmem_strdupsize(name, &kfilter->namelen, KM_SLEEP);
    794 
    795 	kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
    796 
    797 	kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
    798 	memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
    799 
    800 	if (retfilter != NULL)
    801 		*retfilter = kfilter->filter;
    802 	rw_exit(&kqueue_filter_lock);
    803 
    804 	return (0);
    805 }
    806 
    807 /*
    808  * Unregister a kfilter previously registered with kfilter_register.
    809  * This retains the filter id, but clears the name and frees filtops (filter
    810  * operations), so that the number isn't reused during a boot.
    811  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
    812  */
    813 int
    814 kfilter_unregister(const char *name)
    815 {
    816 	struct kfilter *kfilter;
    817 
    818 	if (name == NULL || name[0] == '\0')
    819 		return SET_ERROR(EINVAL);	/* invalid name */
    820 
    821 	rw_enter(&kqueue_filter_lock, RW_WRITER);
    822 	if (kfilter_byname_sys(name) != NULL) {
    823 		rw_exit(&kqueue_filter_lock);
    824 		return SET_ERROR(EINVAL); /* can't detach system filters */
    825 	}
    826 
    827 	kfilter = kfilter_byname_user(name);
    828 	if (kfilter == NULL) {
    829 		rw_exit(&kqueue_filter_lock);
    830 		return SET_ERROR(ENOENT);
    831 	}
    832 	if (kfilter->refcnt != 0) {
    833 		rw_exit(&kqueue_filter_lock);
    834 		return SET_ERROR(EBUSY);
    835 	}
    836 
    837 	/* Cast away const (but we know it's safe. */
    838 	kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
    839 	kfilter->name = NULL;	/* mark as `not implemented' */
    840 
    841 	if (kfilter->filtops != NULL) {
    842 		/* Cast away const (but we know it's safe. */
    843 		kmem_free(__UNCONST(kfilter->filtops),
    844 		    sizeof(*kfilter->filtops));
    845 		kfilter->filtops = NULL; /* mark as `not implemented' */
    846 	}
    847 	rw_exit(&kqueue_filter_lock);
    848 
    849 	return (0);
    850 }
    851 
    852 
    853 /*
    854  * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
    855  * descriptors. Calls fileops kqfilter method for given file descriptor.
    856  */
    857 static int
    858 filt_fileattach(struct knote *kn)
    859 {
    860 	file_t *fp;
    861 
    862 	fp = kn->kn_obj;
    863 
    864 	return (*fp->f_ops->fo_kqfilter)(fp, kn);
    865 }
    866 
    867 /*
    868  * Filter detach method for EVFILT_READ on kqueue descriptor.
    869  */
    870 static void
    871 filt_kqdetach(struct knote *kn)
    872 {
    873 	struct kqueue *kq;
    874 
    875 	kq = ((file_t *)kn->kn_obj)->f_kqueue;
    876 
    877 	mutex_spin_enter(&kq->kq_lock);
    878 	selremove_knote(&kq->kq_sel, kn);
    879 	mutex_spin_exit(&kq->kq_lock);
    880 }
    881 
    882 /*
    883  * Filter event method for EVFILT_READ on kqueue descriptor.
    884  */
    885 /*ARGSUSED*/
    886 static int
    887 filt_kqueue(struct knote *kn, long hint)
    888 {
    889 	struct kqueue *kq;
    890 	int rv;
    891 
    892 	kq = ((file_t *)kn->kn_obj)->f_kqueue;
    893 
    894 	if (hint != NOTE_SUBMIT)
    895 		mutex_spin_enter(&kq->kq_lock);
    896 	kn->kn_data = KQ_COUNT(kq);
    897 	rv = (kn->kn_data > 0);
    898 	if (hint != NOTE_SUBMIT)
    899 		mutex_spin_exit(&kq->kq_lock);
    900 
    901 	return rv;
    902 }
    903 
    904 /*
    905  * Filter attach method for EVFILT_PROC.
    906  */
    907 static int
    908 filt_procattach(struct knote *kn)
    909 {
    910 	struct proc *p;
    911 
    912 	mutex_enter(&proc_lock);
    913 	p = proc_find(kn->kn_id);
    914 	if (p == NULL) {
    915 		mutex_exit(&proc_lock);
    916 		return SET_ERROR(ESRCH);
    917 	}
    918 
    919 	/*
    920 	 * Fail if it's not owned by you, or the last exec gave us
    921 	 * setuid/setgid privs (unless you're root).
    922 	 */
    923 	mutex_enter(p->p_lock);
    924 	mutex_exit(&proc_lock);
    925 	if (kauth_authorize_process(curlwp->l_cred,
    926 	    KAUTH_PROCESS_KEVENT_FILTER, p, NULL, NULL, NULL) != 0) {
    927 	    	mutex_exit(p->p_lock);
    928 		return SET_ERROR(EACCES);
    929 	}
    930 
    931 	kn->kn_obj = p;
    932 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
    933 
    934 	/*
    935 	 * NOTE_CHILD is only ever generated internally; don't let it
    936 	 * leak in from user-space.  See knote_proc_fork_track().
    937 	 */
    938 	kn->kn_sfflags &= ~NOTE_CHILD;
    939 
    940 	klist_insert(&p->p_klist, kn);
    941     	mutex_exit(p->p_lock);
    942 
    943 	return 0;
    944 }
    945 
    946 /*
    947  * Filter detach method for EVFILT_PROC.
    948  *
    949  * The knote may be attached to a different process, which may exit,
    950  * leaving nothing for the knote to be attached to.  So when the process
    951  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
    952  * it will be deleted when read out.  However, as part of the knote deletion,
    953  * this routine is called, so a check is needed to avoid actually performing
    954  * a detach, because the original process might not exist any more.
    955  */
    956 static void
    957 filt_procdetach(struct knote *kn)
    958 {
    959 	struct kqueue *kq = kn->kn_kq;
    960 	struct proc *p;
    961 
    962 	/*
    963 	 * We have to synchronize with knote_proc_exit(), but we
    964 	 * are forced to acquire the locks in the wrong order here
    965 	 * because we can't be sure kn->kn_obj is valid unless
    966 	 * KN_DETACHED is not set.
    967 	 */
    968  again:
    969 	mutex_spin_enter(&kq->kq_lock);
    970 	if ((kn->kn_status & KN_DETACHED) == 0) {
    971 		p = kn->kn_obj;
    972 		if (!mutex_tryenter(p->p_lock)) {
    973 			mutex_spin_exit(&kq->kq_lock);
    974 			preempt_point();
    975 			goto again;
    976 		}
    977 		kn->kn_status |= KN_DETACHED;
    978 		klist_remove(&p->p_klist, kn);
    979 		mutex_exit(p->p_lock);
    980 	}
    981 	mutex_spin_exit(&kq->kq_lock);
    982 }
    983 
    984 /*
    985  * Filter event method for EVFILT_PROC.
    986  *
    987  * Due to some of the complexities of process locking, we have special
    988  * entry points for delivering knote submissions.  filt_proc() is used
    989  * only to check for activation from kqueue_register() and kqueue_scan().
    990  */
    991 static int
    992 filt_proc(struct knote *kn, long hint)
    993 {
    994 	struct kqueue *kq = kn->kn_kq;
    995 	uint32_t fflags;
    996 
    997 	/*
    998 	 * Because we share the same klist with signal knotes, just
    999 	 * ensure that we're not being invoked for the proc-related
   1000 	 * submissions.
   1001 	 */
   1002 	KASSERT((hint & (NOTE_EXEC | NOTE_EXIT | NOTE_FORK)) == 0);
   1003 
   1004 	mutex_spin_enter(&kq->kq_lock);
   1005 	fflags = kn->kn_fflags;
   1006 	mutex_spin_exit(&kq->kq_lock);
   1007 
   1008 	return fflags != 0;
   1009 }
   1010 
   1011 void
   1012 knote_proc_exec(struct proc *p)
   1013 {
   1014 	struct knote *kn, *tmpkn;
   1015 	struct kqueue *kq;
   1016 	uint32_t fflags;
   1017 
   1018 	mutex_enter(p->p_lock);
   1019 
   1020 	SLIST_FOREACH_SAFE(kn, &p->p_klist, kn_selnext, tmpkn) {
   1021 		/* N.B. EVFILT_SIGNAL knotes are on this same list. */
   1022 		if (kn->kn_fop == &sig_filtops) {
   1023 			continue;
   1024 		}
   1025 		KASSERT(kn->kn_fop == &proc_filtops);
   1026 
   1027 		kq = kn->kn_kq;
   1028 		mutex_spin_enter(&kq->kq_lock);
   1029 		fflags = (kn->kn_fflags |= (kn->kn_sfflags & NOTE_EXEC));
   1030 		if (fflags) {
   1031 			knote_activate_locked(kn);
   1032 		}
   1033 		mutex_spin_exit(&kq->kq_lock);
   1034 	}
   1035 
   1036 	mutex_exit(p->p_lock);
   1037 }
   1038 
   1039 static int __noinline
   1040 knote_proc_fork_track(struct proc *p1, struct proc *p2, struct knote *okn)
   1041 {
   1042 	struct kqueue *kq = okn->kn_kq;
   1043 
   1044 	KASSERT(mutex_owned(&kq->kq_lock));
   1045 	KASSERT(mutex_owned(p1->p_lock));
   1046 
   1047 	/*
   1048 	 * We're going to put this knote into flux while we drop
   1049 	 * the locks and create and attach a new knote to track the
   1050 	 * child.  If we are not able to enter flux, then this knote
   1051 	 * is about to go away, so skip the notification.
   1052 	 */
   1053 	if (!kn_enter_flux(okn)) {
   1054 		return 0;
   1055 	}
   1056 
   1057 	mutex_spin_exit(&kq->kq_lock);
   1058 	mutex_exit(p1->p_lock);
   1059 
   1060 	/*
   1061 	 * We actually have to register *two* new knotes:
   1062 	 *
   1063 	 * ==> One for the NOTE_CHILD notification.  This is a forced
   1064 	 *     ONESHOT note.
   1065 	 *
   1066 	 * ==> One to actually track the child process as it subsequently
   1067 	 *     forks, execs, and, ultimately, exits.
   1068 	 *
   1069 	 * If we only register a single knote, then it's possible for
   1070 	 * for the NOTE_CHILD and NOTE_EXIT to be collapsed into a single
   1071 	 * notification if the child exits before the tracking process
   1072 	 * has received the NOTE_CHILD notification, which applications
   1073 	 * aren't expecting (the event's 'data' field would be clobbered,
   1074 	 * for example).
   1075 	 *
   1076 	 * To do this, what we have here is an **extremely** stripped-down
   1077 	 * version of kqueue_register() that has the following properties:
   1078 	 *
   1079 	 * ==> Does not block to allocate memory.  If we are unable
   1080 	 *     to allocate memory, we return ENOMEM.
   1081 	 *
   1082 	 * ==> Does not search for existing knotes; we know there
   1083 	 *     are not any because this is a new process that isn't
   1084 	 *     even visible to other processes yet.
   1085 	 *
   1086 	 * ==> Assumes that the knhash for our kq's descriptor table
   1087 	 *     already exists (after all, we're already tracking
   1088 	 *     processes with knotes if we got here).
   1089 	 *
   1090 	 * ==> Directly attaches the new tracking knote to the child
   1091 	 *     process.
   1092 	 *
   1093 	 * The whole point is to do the minimum amount of work while the
   1094 	 * knote is held in-flux, and to avoid doing extra work in general
   1095 	 * (we already have the new child process; why bother looking it
   1096 	 * up again?).
   1097 	 */
   1098 	filedesc_t *fdp = kq->kq_fdp;
   1099 	struct knote *knchild, *kntrack;
   1100 	int error = 0;
   1101 
   1102 	knchild = knote_alloc(false);
   1103 	kntrack = knote_alloc(false);
   1104 	if (__predict_false(knchild == NULL || kntrack == NULL)) {
   1105 		error = SET_ERROR(ENOMEM);
   1106 		goto out;
   1107 	}
   1108 
   1109 	kntrack->kn_obj = p2;
   1110 	kntrack->kn_id = p2->p_pid;
   1111 	kntrack->kn_kq = kq;
   1112 	kntrack->kn_fop = okn->kn_fop;
   1113 	kntrack->kn_kfilter = okn->kn_kfilter;
   1114 	kntrack->kn_sfflags = okn->kn_sfflags;
   1115 	kntrack->kn_sdata = p1->p_pid;
   1116 
   1117 	kntrack->kn_kevent.ident = p2->p_pid;
   1118 	kntrack->kn_kevent.filter = okn->kn_filter;
   1119 	kntrack->kn_kevent.flags =
   1120 	    okn->kn_flags | EV_ADD | EV_ENABLE | EV_CLEAR;
   1121 	kntrack->kn_kevent.fflags = 0;
   1122 	kntrack->kn_kevent.data = 0;
   1123 	kntrack->kn_kevent.udata = okn->kn_kevent.udata; /* preserve udata */
   1124 
   1125 	/*
   1126 	 * The child note does not need to be attached to the
   1127 	 * new proc's klist at all.
   1128 	 */
   1129 	*knchild = *kntrack;
   1130 	knchild->kn_status = KN_DETACHED;
   1131 	knchild->kn_sfflags = 0;
   1132 	knchild->kn_kevent.flags |= EV_ONESHOT;
   1133 	knchild->kn_kevent.fflags = NOTE_CHILD;
   1134 	knchild->kn_kevent.data = p1->p_pid;		 /* parent */
   1135 
   1136 	mutex_enter(&fdp->fd_lock);
   1137 
   1138 	/*
   1139 	 * We need to check to see if the kq is closing, and skip
   1140 	 * attaching the knote if so.  Normally, this isn't necessary
   1141 	 * when coming in the front door because the file descriptor
   1142 	 * layer will synchronize this.
   1143 	 *
   1144 	 * It's safe to test KQ_CLOSING without taking the kq_lock
   1145 	 * here because that flag is only ever set when the fd_lock
   1146 	 * is also held.
   1147 	 */
   1148 	if (__predict_false(kq->kq_count & KQ_CLOSING)) {
   1149 		mutex_exit(&fdp->fd_lock);
   1150 		goto out;
   1151 	}
   1152 
   1153 	/*
   1154 	 * We do the "insert into FD table" and "attach to klist" steps
   1155 	 * in the opposite order of kqueue_register() here to avoid
   1156 	 * having to take p2->p_lock twice.  But this is OK because we
   1157 	 * hold fd_lock across the entire operation.
   1158 	 */
   1159 
   1160 	mutex_enter(p2->p_lock);
   1161 	error = kauth_authorize_process(curlwp->l_cred,
   1162 	    KAUTH_PROCESS_KEVENT_FILTER, p2, NULL, NULL, NULL);
   1163 	if (__predict_false(error != 0)) {
   1164 		mutex_exit(p2->p_lock);
   1165 		mutex_exit(&fdp->fd_lock);
   1166 		error = SET_ERROR(EACCES);
   1167 		goto out;
   1168 	}
   1169 	klist_insert(&p2->p_klist, kntrack);
   1170 	mutex_exit(p2->p_lock);
   1171 
   1172 	KASSERT(fdp->fd_knhashmask != 0);
   1173 	KASSERT(fdp->fd_knhash != NULL);
   1174 	struct klist *list = &fdp->fd_knhash[KN_HASH(kntrack->kn_id,
   1175 	    fdp->fd_knhashmask)];
   1176 	SLIST_INSERT_HEAD(list, kntrack, kn_link);
   1177 	SLIST_INSERT_HEAD(list, knchild, kn_link);
   1178 
   1179 	/* This adds references for knchild *and* kntrack. */
   1180 	atomic_add_int(&kntrack->kn_kfilter->refcnt, 2);
   1181 
   1182 	knote_activate(knchild);
   1183 
   1184 	kntrack = NULL;
   1185 	knchild = NULL;
   1186 
   1187 	mutex_exit(&fdp->fd_lock);
   1188 
   1189  out:
   1190 	if (__predict_false(knchild != NULL)) {
   1191 		knote_free(knchild);
   1192 	}
   1193 	if (__predict_false(kntrack != NULL)) {
   1194 		knote_free(kntrack);
   1195 	}
   1196 	mutex_enter(p1->p_lock);
   1197 	mutex_spin_enter(&kq->kq_lock);
   1198 
   1199 	if (kn_leave_flux(okn)) {
   1200 		KQ_FLUX_WAKEUP(kq);
   1201 	}
   1202 
   1203 	return error;
   1204 }
   1205 
   1206 void
   1207 knote_proc_fork(struct proc *p1, struct proc *p2)
   1208 {
   1209 	struct knote *kn;
   1210 	struct kqueue *kq;
   1211 	uint32_t fflags;
   1212 
   1213 	mutex_enter(p1->p_lock);
   1214 
   1215 	/*
   1216 	 * N.B. We DO NOT use SLIST_FOREACH_SAFE() here because we
   1217 	 * don't want to pre-fetch the next knote; in the event we
   1218 	 * have to drop p_lock, we will have put the knote in-flux,
   1219 	 * meaning that no one will be able to detach it until we
   1220 	 * have taken the knote out of flux.  However, that does
   1221 	 * NOT stop someone else from detaching the next note in the
   1222 	 * list while we have it unlocked.  Thus, we want to fetch
   1223 	 * the next note in the list only after we have re-acquired
   1224 	 * the lock, and using SLIST_FOREACH() will satisfy that.
   1225 	 */
   1226 	SLIST_FOREACH(kn, &p1->p_klist, kn_selnext) {
   1227 		/* N.B. EVFILT_SIGNAL knotes are on this same list. */
   1228 		if (kn->kn_fop == &sig_filtops) {
   1229 			continue;
   1230 		}
   1231 		KASSERT(kn->kn_fop == &proc_filtops);
   1232 
   1233 		kq = kn->kn_kq;
   1234 		mutex_spin_enter(&kq->kq_lock);
   1235 		kn->kn_fflags |= (kn->kn_sfflags & NOTE_FORK);
   1236 		if (__predict_false(kn->kn_sfflags & NOTE_TRACK)) {
   1237 			/*
   1238 			 * This will drop kq_lock and p_lock and
   1239 			 * re-acquire them before it returns.
   1240 			 */
   1241 			if (knote_proc_fork_track(p1, p2, kn)) {
   1242 				kn->kn_fflags |= NOTE_TRACKERR;
   1243 			}
   1244 			KASSERT(mutex_owned(p1->p_lock));
   1245 			KASSERT(mutex_owned(&kq->kq_lock));
   1246 		}
   1247 		fflags = kn->kn_fflags;
   1248 		if (fflags) {
   1249 			knote_activate_locked(kn);
   1250 		}
   1251 		mutex_spin_exit(&kq->kq_lock);
   1252 	}
   1253 
   1254 	mutex_exit(p1->p_lock);
   1255 }
   1256 
   1257 void
   1258 knote_proc_exit(struct proc *p)
   1259 {
   1260 	struct knote *kn;
   1261 	struct kqueue *kq;
   1262 
   1263 	KASSERT(mutex_owned(p->p_lock));
   1264 
   1265 	while (!SLIST_EMPTY(&p->p_klist)) {
   1266 		kn = SLIST_FIRST(&p->p_klist);
   1267 		kq = kn->kn_kq;
   1268 
   1269 		KASSERT(kn->kn_obj == p);
   1270 
   1271 		mutex_spin_enter(&kq->kq_lock);
   1272 		kn->kn_data = P_WAITSTATUS(p);
   1273 		/*
   1274 		 * Mark as ONESHOT, so that the knote is g/c'ed
   1275 		 * when read.
   1276 		 */
   1277 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
   1278 		kn->kn_fflags |= kn->kn_sfflags & NOTE_EXIT;
   1279 
   1280 		/*
   1281 		 * Detach the knote from the process and mark it as such.
   1282 		 * N.B. EVFILT_SIGNAL are also on p_klist, but by the
   1283 		 * time we get here, all open file descriptors for this
   1284 		 * process have been released, meaning that signal knotes
   1285 		 * will have already been detached.
   1286 		 *
   1287 		 * We need to synchronize this with filt_procdetach().
   1288 		 */
   1289 		KASSERT(kn->kn_fop == &proc_filtops);
   1290 		if ((kn->kn_status & KN_DETACHED) == 0) {
   1291 			kn->kn_status |= KN_DETACHED;
   1292 			SLIST_REMOVE_HEAD(&p->p_klist, kn_selnext);
   1293 		}
   1294 
   1295 		/*
   1296 		 * Always activate the knote for NOTE_EXIT regardless
   1297 		 * of whether or not the listener cares about it.
   1298 		 * This matches historical behavior.
   1299 		 */
   1300 		knote_activate_locked(kn);
   1301 		mutex_spin_exit(&kq->kq_lock);
   1302 	}
   1303 }
   1304 
   1305 #define	FILT_TIMER_NOSCHED	((uintptr_t)-1)
   1306 
   1307 static int
   1308 filt_timercompute(struct kevent *kev, uintptr_t *tticksp)
   1309 {
   1310 	struct timespec ts;
   1311 	uintptr_t tticks;
   1312 
   1313 	if (kev->fflags & ~(NOTE_TIMER_UNITMASK | NOTE_ABSTIME)) {
   1314 		return SET_ERROR(EINVAL);
   1315 	}
   1316 
   1317 	/*
   1318 	 * Convert the event 'data' to a timespec, then convert the
   1319 	 * timespec to callout ticks.
   1320 	 */
   1321 	switch (kev->fflags & NOTE_TIMER_UNITMASK) {
   1322 	case NOTE_SECONDS:
   1323 		ts.tv_sec = kev->data;
   1324 		ts.tv_nsec = 0;
   1325 		break;
   1326 
   1327 	case NOTE_MSECONDS:		/* == historical value 0 */
   1328 		ts.tv_sec = kev->data / 1000;
   1329 		ts.tv_nsec = (kev->data % 1000) * 1000000;
   1330 		break;
   1331 
   1332 	case NOTE_USECONDS:
   1333 		ts.tv_sec = kev->data / 1000000;
   1334 		ts.tv_nsec = (kev->data % 1000000) * 1000;
   1335 		break;
   1336 
   1337 	case NOTE_NSECONDS:
   1338 		ts.tv_sec = kev->data / 1000000000;
   1339 		ts.tv_nsec = kev->data % 1000000000;
   1340 		break;
   1341 
   1342 	default:
   1343 		return SET_ERROR(EINVAL);
   1344 	}
   1345 
   1346 	if (kev->fflags & NOTE_ABSTIME) {
   1347 		struct timespec deadline = ts;
   1348 
   1349 		/*
   1350 		 * Get current time.
   1351 		 *
   1352 		 * XXX This is CLOCK_REALTIME.  There is no way to
   1353 		 * XXX specify CLOCK_MONOTONIC.
   1354 		 */
   1355 		nanotime(&ts);
   1356 
   1357 		/* Absolute timers do not repeat. */
   1358 		kev->data = FILT_TIMER_NOSCHED;
   1359 
   1360 		/* If we're past the deadline, then the event will fire. */
   1361 		if (timespeccmp(&deadline, &ts, <=)) {
   1362 			tticks = FILT_TIMER_NOSCHED;
   1363 			goto out;
   1364 		}
   1365 
   1366 		/* Calculate how much time is left. */
   1367 		timespecsub(&deadline, &ts, &ts);
   1368 	} else {
   1369 		/* EV_CLEAR automatically set for relative timers. */
   1370 		kev->flags |= EV_CLEAR;
   1371 	}
   1372 
   1373 	tticks = tstohz(&ts);
   1374 
   1375 	/* if the supplied value is under our resolution, use 1 tick */
   1376 	if (tticks == 0) {
   1377 		if (kev->data == 0)
   1378 			return SET_ERROR(EINVAL);
   1379 		tticks = 1;
   1380 	} else if (tticks > INT_MAX) {
   1381 		return SET_ERROR(EINVAL);
   1382 	}
   1383 
   1384 	if ((kev->flags & EV_ONESHOT) != 0) {
   1385 		/* Timer does not repeat. */
   1386 		kev->data = FILT_TIMER_NOSCHED;
   1387 	} else {
   1388 		KASSERT((uintptr_t)tticks != FILT_TIMER_NOSCHED);
   1389 		kev->data = tticks;
   1390 	}
   1391 
   1392  out:
   1393 	*tticksp = tticks;
   1394 
   1395 	return 0;
   1396 }
   1397 
   1398 static void
   1399 filt_timerexpire(void *knx)
   1400 {
   1401 	struct knote *kn = knx;
   1402 	struct kqueue *kq = kn->kn_kq;
   1403 
   1404 	mutex_spin_enter(&kq->kq_lock);
   1405 	kn->kn_data++;
   1406 	knote_activate_locked(kn);
   1407 	if (kn->kn_sdata != FILT_TIMER_NOSCHED) {
   1408 		KASSERT(kn->kn_sdata > 0);
   1409 		KASSERT(kn->kn_sdata <= INT_MAX);
   1410 		callout_schedule((callout_t *)kn->kn_hook,
   1411 		    (int)kn->kn_sdata);
   1412 	}
   1413 	mutex_spin_exit(&kq->kq_lock);
   1414 }
   1415 
   1416 static inline void
   1417 filt_timerstart(struct knote *kn, uintptr_t tticks)
   1418 {
   1419 	callout_t *calloutp = kn->kn_hook;
   1420 
   1421 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
   1422 	KASSERT(!callout_pending(calloutp));
   1423 
   1424 	if (__predict_false(tticks == FILT_TIMER_NOSCHED)) {
   1425 		kn->kn_data = 1;
   1426 	} else {
   1427 		KASSERT(tticks <= INT_MAX);
   1428 		callout_reset(calloutp, (int)tticks, filt_timerexpire, kn);
   1429 	}
   1430 }
   1431 
   1432 static int
   1433 filt_timerattach(struct knote *kn)
   1434 {
   1435 	callout_t *calloutp;
   1436 	struct kqueue *kq;
   1437 	uintptr_t tticks;
   1438 	int error;
   1439 
   1440 	struct kevent kev = {
   1441 		.flags = kn->kn_flags,
   1442 		.fflags = kn->kn_sfflags,
   1443 		.data = kn->kn_sdata,
   1444 	};
   1445 
   1446 	error = filt_timercompute(&kev, &tticks);
   1447 	if (error) {
   1448 		return error;
   1449 	}
   1450 
   1451 	if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
   1452 	    (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
   1453 		atomic_dec_uint(&kq_ncallouts);
   1454 		return SET_ERROR(ENOMEM);
   1455 	}
   1456 	callout_init(calloutp, CALLOUT_MPSAFE);
   1457 
   1458 	kq = kn->kn_kq;
   1459 	mutex_spin_enter(&kq->kq_lock);
   1460 
   1461 	kn->kn_sdata = kev.data;
   1462 	kn->kn_flags = kev.flags;
   1463 	KASSERT(kn->kn_sfflags == kev.fflags);
   1464 	kn->kn_hook = calloutp;
   1465 
   1466 	filt_timerstart(kn, tticks);
   1467 
   1468 	mutex_spin_exit(&kq->kq_lock);
   1469 
   1470 	return (0);
   1471 }
   1472 
   1473 static void
   1474 filt_timerdetach(struct knote *kn)
   1475 {
   1476 	callout_t *calloutp;
   1477 	struct kqueue *kq = kn->kn_kq;
   1478 
   1479 	/* prevent rescheduling when we expire */
   1480 	mutex_spin_enter(&kq->kq_lock);
   1481 	kn->kn_sdata = FILT_TIMER_NOSCHED;
   1482 	mutex_spin_exit(&kq->kq_lock);
   1483 
   1484 	calloutp = (callout_t *)kn->kn_hook;
   1485 
   1486 	/*
   1487 	 * Attempt to stop the callout.  This will block if it's
   1488 	 * already running.
   1489 	 */
   1490 	callout_halt(calloutp, NULL);
   1491 
   1492 	callout_destroy(calloutp);
   1493 	kmem_free(calloutp, sizeof(*calloutp));
   1494 	atomic_dec_uint(&kq_ncallouts);
   1495 }
   1496 
   1497 static int
   1498 filt_timertouch(struct knote *kn, struct kevent *kev, long type)
   1499 {
   1500 	struct kqueue *kq = kn->kn_kq;
   1501 	callout_t *calloutp;
   1502 	uintptr_t tticks;
   1503 	int error;
   1504 
   1505 	KASSERT(mutex_owned(&kq->kq_lock));
   1506 
   1507 	switch (type) {
   1508 	case EVENT_REGISTER:
   1509 		/* Only relevant for EV_ADD. */
   1510 		if ((kev->flags & EV_ADD) == 0) {
   1511 			return 0;
   1512 		}
   1513 
   1514 		/*
   1515 		 * Stop the timer, under the assumption that if
   1516 		 * an application is re-configuring the timer,
   1517 		 * they no longer care about the old one.  We
   1518 		 * can safely drop the kq_lock while we wait
   1519 		 * because fdp->fd_lock will be held throughout,
   1520 		 * ensuring that no one can sneak in with an
   1521 		 * EV_DELETE or close the kq.
   1522 		 */
   1523 		KASSERT(mutex_owned(&kq->kq_fdp->fd_lock));
   1524 
   1525 		calloutp = kn->kn_hook;
   1526 		callout_halt(calloutp, &kq->kq_lock);
   1527 		KASSERT(mutex_owned(&kq->kq_lock));
   1528 		knote_deactivate_locked(kn);
   1529 		kn->kn_data = 0;
   1530 
   1531 		error = filt_timercompute(kev, &tticks);
   1532 		if (error) {
   1533 			return error;
   1534 		}
   1535 		kn->kn_sdata = kev->data;
   1536 		kn->kn_flags = kev->flags;
   1537 		kn->kn_sfflags = kev->fflags;
   1538 		filt_timerstart(kn, tticks);
   1539 		break;
   1540 
   1541 	case EVENT_PROCESS:
   1542 		*kev = kn->kn_kevent;
   1543 		break;
   1544 
   1545 	default:
   1546 		panic("%s: invalid type (%ld)", __func__, type);
   1547 	}
   1548 
   1549 	return 0;
   1550 }
   1551 
   1552 static int
   1553 filt_timer(struct knote *kn, long hint)
   1554 {
   1555 	struct kqueue *kq = kn->kn_kq;
   1556 	int rv;
   1557 
   1558 	mutex_spin_enter(&kq->kq_lock);
   1559 	rv = (kn->kn_data != 0);
   1560 	mutex_spin_exit(&kq->kq_lock);
   1561 
   1562 	return rv;
   1563 }
   1564 
   1565 static int
   1566 filt_userattach(struct knote *kn)
   1567 {
   1568 	struct kqueue *kq = kn->kn_kq;
   1569 
   1570 	/*
   1571 	 * EVFILT_USER knotes are not attached to anything in the kernel.
   1572 	 */
   1573 	mutex_spin_enter(&kq->kq_lock);
   1574 	kn->kn_hook = NULL;
   1575 	if (kn->kn_fflags & NOTE_TRIGGER)
   1576 		kn->kn_hookid = 1;
   1577 	else
   1578 		kn->kn_hookid = 0;
   1579 	mutex_spin_exit(&kq->kq_lock);
   1580 	return (0);
   1581 }
   1582 
   1583 static void
   1584 filt_userdetach(struct knote *kn)
   1585 {
   1586 
   1587 	/*
   1588 	 * EVFILT_USER knotes are not attached to anything in the kernel.
   1589 	 */
   1590 }
   1591 
   1592 static int
   1593 filt_user(struct knote *kn, long hint)
   1594 {
   1595 	struct kqueue *kq = kn->kn_kq;
   1596 	int hookid;
   1597 
   1598 	mutex_spin_enter(&kq->kq_lock);
   1599 	hookid = kn->kn_hookid;
   1600 	mutex_spin_exit(&kq->kq_lock);
   1601 
   1602 	return hookid;
   1603 }
   1604 
   1605 static int
   1606 filt_usertouch(struct knote *kn, struct kevent *kev, long type)
   1607 {
   1608 	int ffctrl;
   1609 
   1610 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
   1611 
   1612 	switch (type) {
   1613 	case EVENT_REGISTER:
   1614 		if (kev->fflags & NOTE_TRIGGER)
   1615 			kn->kn_hookid = 1;
   1616 
   1617 		ffctrl = kev->fflags & NOTE_FFCTRLMASK;
   1618 		kev->fflags &= NOTE_FFLAGSMASK;
   1619 		switch (ffctrl) {
   1620 		case NOTE_FFNOP:
   1621 			break;
   1622 
   1623 		case NOTE_FFAND:
   1624 			kn->kn_sfflags &= kev->fflags;
   1625 			break;
   1626 
   1627 		case NOTE_FFOR:
   1628 			kn->kn_sfflags |= kev->fflags;
   1629 			break;
   1630 
   1631 		case NOTE_FFCOPY:
   1632 			kn->kn_sfflags = kev->fflags;
   1633 			break;
   1634 
   1635 		default:
   1636 			/* XXX Return error? */
   1637 			break;
   1638 		}
   1639 		kn->kn_sdata = kev->data;
   1640 		if (kev->flags & EV_CLEAR) {
   1641 			kn->kn_hookid = 0;
   1642 			kn->kn_data = 0;
   1643 			kn->kn_fflags = 0;
   1644 		}
   1645 		break;
   1646 
   1647 	case EVENT_PROCESS:
   1648 		*kev = kn->kn_kevent;
   1649 		kev->fflags = kn->kn_sfflags;
   1650 		kev->data = kn->kn_sdata;
   1651 		if (kn->kn_flags & EV_CLEAR) {
   1652 			kn->kn_hookid = 0;
   1653 			kn->kn_data = 0;
   1654 			kn->kn_fflags = 0;
   1655 		}
   1656 		break;
   1657 
   1658 	default:
   1659 		panic("filt_usertouch() - invalid type (%ld)", type);
   1660 		break;
   1661 	}
   1662 
   1663 	return 0;
   1664 }
   1665 
   1666 /*
   1667  * filt_seltrue:
   1668  *
   1669  *	This filter "event" routine simulates seltrue().
   1670  */
   1671 int
   1672 filt_seltrue(struct knote *kn, long hint)
   1673 {
   1674 
   1675 	/*
   1676 	 * We don't know how much data can be read/written,
   1677 	 * but we know that it *can* be.  This is about as
   1678 	 * good as select/poll does as well.
   1679 	 */
   1680 	kn->kn_data = 0;
   1681 	return (1);
   1682 }
   1683 
   1684 /*
   1685  * This provides full kqfilter entry for device switch tables, which
   1686  * has same effect as filter using filt_seltrue() as filter method.
   1687  */
   1688 static void
   1689 filt_seltruedetach(struct knote *kn)
   1690 {
   1691 	/* Nothing to do */
   1692 }
   1693 
   1694 const struct filterops seltrue_filtops = {
   1695 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
   1696 	.f_attach = NULL,
   1697 	.f_detach = filt_seltruedetach,
   1698 	.f_event = filt_seltrue,
   1699 };
   1700 
   1701 int
   1702 seltrue_kqfilter(dev_t dev, struct knote *kn)
   1703 {
   1704 	switch (kn->kn_filter) {
   1705 	case EVFILT_READ:
   1706 	case EVFILT_WRITE:
   1707 		kn->kn_fop = &seltrue_filtops;
   1708 		break;
   1709 	default:
   1710 		return SET_ERROR(EINVAL);
   1711 	}
   1712 
   1713 	/* Nothing more to do */
   1714 	return (0);
   1715 }
   1716 
   1717 /*
   1718  * kqueue(2) system call.
   1719  */
   1720 static int
   1721 kqueue1(struct lwp *l, int flags, register_t *retval)
   1722 {
   1723 	struct kqueue *kq;
   1724 	file_t *fp;
   1725 	int fd, error;
   1726 
   1727 	if ((error = fd_allocfile(&fp, &fd)) != 0)
   1728 		return error;
   1729 	fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
   1730 	fp->f_type = DTYPE_KQUEUE;
   1731 	fp->f_ops = &kqueueops;
   1732 	kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
   1733 	mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
   1734 	cv_init(&kq->kq_cv, "kqueue");
   1735 	selinit(&kq->kq_sel);
   1736 	TAILQ_INIT(&kq->kq_head);
   1737 	fp->f_kqueue = kq;
   1738 	*retval = fd;
   1739 	kq->kq_fdp = curlwp->l_fd;
   1740 	fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
   1741 	fd_affix(curproc, fp, fd);
   1742 	return error;
   1743 }
   1744 
   1745 /*
   1746  * kqueue(2) system call.
   1747  */
   1748 int
   1749 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
   1750 {
   1751 	return kqueue1(l, 0, retval);
   1752 }
   1753 
   1754 int
   1755 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
   1756     register_t *retval)
   1757 {
   1758 	/* {
   1759 		syscallarg(int) flags;
   1760 	} */
   1761 	return kqueue1(l, SCARG(uap, flags), retval);
   1762 }
   1763 
   1764 /*
   1765  * kevent(2) system call.
   1766  */
   1767 int
   1768 kevent_fetch_changes(void *ctx, const struct kevent *changelist,
   1769     struct kevent *changes, size_t index, int n)
   1770 {
   1771 
   1772 	return copyin(changelist + index, changes, n * sizeof(*changes));
   1773 }
   1774 
   1775 int
   1776 kevent_put_events(void *ctx, struct kevent *events,
   1777     struct kevent *eventlist, size_t index, int n)
   1778 {
   1779 
   1780 	return copyout(events, eventlist + index, n * sizeof(*events));
   1781 }
   1782 
   1783 static const struct kevent_ops kevent_native_ops = {
   1784 	.keo_private = NULL,
   1785 	.keo_fetch_timeout = copyin,
   1786 	.keo_fetch_changes = kevent_fetch_changes,
   1787 	.keo_put_events = kevent_put_events,
   1788 };
   1789 
   1790 int
   1791 sys___kevent100(struct lwp *l, const struct sys___kevent100_args *uap,
   1792     register_t *retval)
   1793 {
   1794 	/* {
   1795 		syscallarg(int) fd;
   1796 		syscallarg(const struct kevent *) changelist;
   1797 		syscallarg(size_t) nchanges;
   1798 		syscallarg(struct kevent *) eventlist;
   1799 		syscallarg(size_t) nevents;
   1800 		syscallarg(const struct timespec *) timeout;
   1801 	} */
   1802 
   1803 	return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
   1804 	    SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
   1805 	    SCARG(uap, timeout), &kevent_native_ops);
   1806 }
   1807 
   1808 int
   1809 kevent1(register_t *retval, int fd,
   1810 	const struct kevent *changelist, size_t nchanges,
   1811 	struct kevent *eventlist, size_t nevents,
   1812 	const struct timespec *timeout,
   1813 	const struct kevent_ops *keops)
   1814 {
   1815 	struct kevent *kevp;
   1816 	struct kqueue *kq;
   1817 	struct timespec	ts;
   1818 	size_t i, n, ichange;
   1819 	int nerrors, error;
   1820 	struct kevent kevbuf[KQ_NEVENTS];	/* approx 300 bytes on 64-bit */
   1821 	file_t *fp;
   1822 
   1823 	/* check that we're dealing with a kq */
   1824 	fp = fd_getfile(fd);
   1825 	if (fp == NULL)
   1826 		return SET_ERROR(EBADF);
   1827 
   1828 	if (fp->f_type != DTYPE_KQUEUE) {
   1829 		fd_putfile(fd);
   1830 		return SET_ERROR(EBADF);
   1831 	}
   1832 
   1833 	if (timeout != NULL) {
   1834 		error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
   1835 		if (error)
   1836 			goto done;
   1837 		timeout = &ts;
   1838 	}
   1839 
   1840 	kq = fp->f_kqueue;
   1841 	nerrors = 0;
   1842 	ichange = 0;
   1843 
   1844 	/* traverse list of events to register */
   1845 	while (nchanges > 0) {
   1846 		n = MIN(nchanges, __arraycount(kevbuf));
   1847 		error = (*keops->keo_fetch_changes)(keops->keo_private,
   1848 		    changelist, kevbuf, ichange, n);
   1849 		if (error)
   1850 			goto done;
   1851 		for (i = 0; i < n; i++) {
   1852 			kevp = &kevbuf[i];
   1853 			kevp->flags &= ~EV_SYSFLAGS;
   1854 			/* register each knote */
   1855 			error = kqueue_register(kq, kevp);
   1856 			if (!error && !(kevp->flags & EV_RECEIPT))
   1857 				continue;
   1858 			if (nevents == 0)
   1859 				goto done;
   1860 			kevp->flags = EV_ERROR;
   1861 			kevp->data = error;
   1862 			error = (*keops->keo_put_events)
   1863 				(keops->keo_private, kevp,
   1864 				 eventlist, nerrors, 1);
   1865 			if (error)
   1866 				goto done;
   1867 			nevents--;
   1868 			nerrors++;
   1869 		}
   1870 		nchanges -= n;	/* update the results */
   1871 		ichange += n;
   1872 	}
   1873 	if (nerrors) {
   1874 		*retval = nerrors;
   1875 		error = 0;
   1876 		goto done;
   1877 	}
   1878 
   1879 	/* actually scan through the events */
   1880 	error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
   1881 	    kevbuf, __arraycount(kevbuf));
   1882  done:
   1883 	fd_putfile(fd);
   1884 	return (error);
   1885 }
   1886 
   1887 /*
   1888  * Register a given kevent kev onto the kqueue
   1889  */
   1890 static int
   1891 kqueue_register(struct kqueue *kq, struct kevent *kev)
   1892 {
   1893 	struct kfilter *kfilter;
   1894 	filedesc_t *fdp;
   1895 	file_t *fp;
   1896 	fdfile_t *ff;
   1897 	struct knote *kn, *newkn;
   1898 	struct klist *list;
   1899 	int error, fd, rv;
   1900 
   1901 	fdp = kq->kq_fdp;
   1902 	fp = NULL;
   1903 	kn = NULL;
   1904 	error = 0;
   1905 	fd = 0;
   1906 
   1907 	newkn = knote_alloc(true);
   1908 
   1909 	rw_enter(&kqueue_filter_lock, RW_READER);
   1910 	kfilter = kfilter_byfilter(kev->filter);
   1911 	if (kfilter == NULL || kfilter->filtops == NULL) {
   1912 		/* filter not found nor implemented */
   1913 		rw_exit(&kqueue_filter_lock);
   1914 		knote_free(newkn);
   1915 		return SET_ERROR(EINVAL);
   1916 	}
   1917 
   1918 	/* search if knote already exists */
   1919 	if (kfilter->filtops->f_flags & FILTEROP_ISFD) {
   1920 		/* monitoring a file descriptor */
   1921 		/* validate descriptor */
   1922 		if (kev->ident > INT_MAX
   1923 		    || (fp = fd_getfile(fd = kev->ident)) == NULL) {
   1924 			rw_exit(&kqueue_filter_lock);
   1925 			knote_free(newkn);
   1926 			return SET_ERROR(EBADF);
   1927 		}
   1928 		mutex_enter(&fdp->fd_lock);
   1929 		ff = fdp->fd_dt->dt_ff[fd];
   1930 		if (ff->ff_refcnt & FR_CLOSING) {
   1931 			error = SET_ERROR(EBADF);
   1932 			goto doneunlock;
   1933 		}
   1934 		if (fd <= fdp->fd_lastkqfile) {
   1935 			SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
   1936 				if (kq == kn->kn_kq &&
   1937 				    kev->filter == kn->kn_filter)
   1938 					break;
   1939 			}
   1940 		}
   1941 	} else {
   1942 		/*
   1943 		 * not monitoring a file descriptor, so
   1944 		 * lookup knotes in internal hash table
   1945 		 */
   1946 		mutex_enter(&fdp->fd_lock);
   1947 		if (fdp->fd_knhashmask != 0) {
   1948 			list = &fdp->fd_knhash[
   1949 			    KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
   1950 			SLIST_FOREACH(kn, list, kn_link) {
   1951 				if (kev->ident == kn->kn_id &&
   1952 				    kq == kn->kn_kq &&
   1953 				    kev->filter == kn->kn_filter)
   1954 					break;
   1955 			}
   1956 		}
   1957 	}
   1958 
   1959 	/* It's safe to test KQ_CLOSING while holding only the fd_lock. */
   1960 	KASSERT(mutex_owned(&fdp->fd_lock));
   1961 	KASSERT((kq->kq_count & KQ_CLOSING) == 0);
   1962 
   1963 	/*
   1964 	 * kn now contains the matching knote, or NULL if no match
   1965 	 */
   1966 	if (kn == NULL) {
   1967 		if (kev->flags & EV_ADD) {
   1968 			/* create new knote */
   1969 			kn = newkn;
   1970 			newkn = NULL;
   1971 			kn->kn_obj = fp;
   1972 			kn->kn_id = kev->ident;
   1973 			kn->kn_kq = kq;
   1974 			kn->kn_fop = kfilter->filtops;
   1975 			kn->kn_kfilter = kfilter;
   1976 			kn->kn_sfflags = kev->fflags;
   1977 			kn->kn_sdata = kev->data;
   1978 			kev->fflags = 0;
   1979 			kev->data = 0;
   1980 			kn->kn_kevent = *kev;
   1981 
   1982 			KASSERT(kn->kn_fop != NULL);
   1983 			/*
   1984 			 * XXX Allow only known-safe users of f_touch.
   1985 			 * XXX See filter_touch() for details.
   1986 			 */
   1987 			if (kn->kn_fop->f_touch != NULL &&
   1988 			    kn->kn_fop != &timer_filtops &&
   1989 			    kn->kn_fop != &user_filtops) {
   1990 				error = SET_ERROR(ENOTSUP);
   1991 				goto fail_ev_add;
   1992 			}
   1993 
   1994 			/*
   1995 			 * apply reference count to knote structure, and
   1996 			 * do not release it at the end of this routine.
   1997 			 */
   1998 			fp = NULL;
   1999 
   2000 			if (!(kn->kn_fop->f_flags & FILTEROP_ISFD)) {
   2001 				/*
   2002 				 * If knote is not on an fd, store on
   2003 				 * internal hash table.
   2004 				 */
   2005 				if (fdp->fd_knhashmask == 0) {
   2006 					/* XXXAD can block with fd_lock held */
   2007 					fdp->fd_knhash = hashinit(KN_HASHSIZE,
   2008 					    HASH_LIST, true,
   2009 					    &fdp->fd_knhashmask);
   2010 				}
   2011 				list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
   2012 				    fdp->fd_knhashmask)];
   2013 			} else {
   2014 				/* Otherwise, knote is on an fd. */
   2015 				list = (struct klist *)
   2016 				    &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
   2017 				if ((int)kn->kn_id > fdp->fd_lastkqfile)
   2018 					fdp->fd_lastkqfile = kn->kn_id;
   2019 			}
   2020 			SLIST_INSERT_HEAD(list, kn, kn_link);
   2021 
   2022 			/*
   2023 			 * N.B. kn->kn_fop may change as the result
   2024 			 * of filter_attach()!
   2025 			 */
   2026 			knote_foplock_enter(kn);
   2027 			error = filter_attach(kn);
   2028 			if (error != 0) {
   2029 #ifdef DEBUG
   2030 				struct proc *p = curlwp->l_proc;
   2031 				const file_t *ft = kn->kn_obj;
   2032 				printf("%s: %s[%d]: event type %d not "
   2033 				    "supported for file type %d/%s "
   2034 				    "(error %d)\n", __func__,
   2035 				    p->p_comm, p->p_pid,
   2036 				    kn->kn_filter, ft ? ft->f_type : -1,
   2037 				    ft ? ft->f_ops->fo_name : "?", error);
   2038 #endif
   2039 
   2040  fail_ev_add:
   2041 				/*
   2042 				 * N.B. no need to check for this note to
   2043 				 * be in-flux, since it was never visible
   2044 				 * to the monitored object.
   2045 				 *
   2046 				 * knote_detach() drops fdp->fd_lock
   2047 				 */
   2048 				knote_foplock_exit(kn);
   2049 				mutex_enter(&kq->kq_lock);
   2050 				KNOTE_WILLDETACH(kn);
   2051 				KASSERT(kn_in_flux(kn) == false);
   2052 				mutex_exit(&kq->kq_lock);
   2053 				knote_detach(kn, fdp, false);
   2054 				goto done;
   2055 			}
   2056 			atomic_inc_uint(&kfilter->refcnt);
   2057 			goto done_ev_add;
   2058 		} else {
   2059 			/* No matching knote and the EV_ADD flag is not set. */
   2060 			error = SET_ERROR(ENOENT);
   2061 			goto doneunlock;
   2062 		}
   2063 	}
   2064 
   2065 	if (kev->flags & EV_DELETE) {
   2066 		/*
   2067 		 * Let the world know that this knote is about to go
   2068 		 * away, and wait for it to settle if it's currently
   2069 		 * in-flux.
   2070 		 */
   2071 		mutex_spin_enter(&kq->kq_lock);
   2072 		if (kn->kn_status & KN_WILLDETACH) {
   2073 			/*
   2074 			 * This knote is already on its way out,
   2075 			 * so just be done.
   2076 			 */
   2077 			mutex_spin_exit(&kq->kq_lock);
   2078 			goto doneunlock;
   2079 		}
   2080 		KNOTE_WILLDETACH(kn);
   2081 		if (kn_in_flux(kn)) {
   2082 			mutex_exit(&fdp->fd_lock);
   2083 			/*
   2084 			 * It's safe for us to conclusively wait for
   2085 			 * this knote to settle because we know we'll
   2086 			 * be completing the detach.
   2087 			 */
   2088 			kn_wait_flux(kn, true);
   2089 			KASSERT(kn_in_flux(kn) == false);
   2090 			mutex_spin_exit(&kq->kq_lock);
   2091 			mutex_enter(&fdp->fd_lock);
   2092 		} else {
   2093 			mutex_spin_exit(&kq->kq_lock);
   2094 		}
   2095 
   2096 		/* knote_detach() drops fdp->fd_lock */
   2097 		knote_detach(kn, fdp, true);
   2098 		goto done;
   2099 	}
   2100 
   2101 	/*
   2102 	 * The user may change some filter values after the
   2103 	 * initial EV_ADD, but doing so will not reset any
   2104 	 * filter which have already been triggered.
   2105 	 */
   2106 	knote_foplock_enter(kn);
   2107 	kn->kn_kevent.udata = kev->udata;
   2108 	KASSERT(kn->kn_fop != NULL);
   2109 	if (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
   2110 	    kn->kn_fop->f_touch != NULL) {
   2111 		mutex_spin_enter(&kq->kq_lock);
   2112 		error = filter_touch(kn, kev, EVENT_REGISTER);
   2113 		mutex_spin_exit(&kq->kq_lock);
   2114 		if (__predict_false(error != 0)) {
   2115 			/* Never a new knote (which would consume newkn). */
   2116 			KASSERT(newkn != NULL);
   2117 			knote_foplock_exit(kn);
   2118 			goto doneunlock;
   2119 		}
   2120 	} else {
   2121 		kn->kn_sfflags = kev->fflags;
   2122 		kn->kn_sdata = kev->data;
   2123 	}
   2124 
   2125 	/*
   2126 	 * We can get here if we are trying to attach
   2127 	 * an event to a file descriptor that does not
   2128 	 * support events, and the attach routine is
   2129 	 * broken and does not return an error.
   2130 	 */
   2131  done_ev_add:
   2132 	rv = filter_event(kn, 0, false);
   2133 	if (rv)
   2134 		knote_activate(kn);
   2135 
   2136 	knote_foplock_exit(kn);
   2137 
   2138 	/* disable knote */
   2139 	if ((kev->flags & EV_DISABLE)) {
   2140 		mutex_spin_enter(&kq->kq_lock);
   2141 		if ((kn->kn_status & KN_DISABLED) == 0)
   2142 			kn->kn_status |= KN_DISABLED;
   2143 		mutex_spin_exit(&kq->kq_lock);
   2144 	}
   2145 
   2146 	/* enable knote */
   2147 	if ((kev->flags & EV_ENABLE)) {
   2148 		knote_enqueue(kn);
   2149 	}
   2150  doneunlock:
   2151 	mutex_exit(&fdp->fd_lock);
   2152  done:
   2153 	rw_exit(&kqueue_filter_lock);
   2154 	if (newkn != NULL)
   2155 		knote_free(newkn);
   2156 	if (fp != NULL)
   2157 		fd_putfile(fd);
   2158 	return (error);
   2159 }
   2160 
   2161 #define KN_FMT(buf, kn) \
   2162     (snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf)
   2163 
   2164 #if defined(DDB)
   2165 void
   2166 kqueue_printit(struct kqueue *kq, bool full, void (*pr)(const char *, ...))
   2167 {
   2168 	const struct knote *kn;
   2169 	u_int count;
   2170 	int nmarker;
   2171 	char buf[128];
   2172 
   2173 	count = 0;
   2174 	nmarker = 0;
   2175 
   2176 	(*pr)("kqueue %p (restart=%d count=%u):\n", kq,
   2177 	    !!(kq->kq_count & KQ_RESTART), KQ_COUNT(kq));
   2178 	(*pr)("  Queued knotes:\n");
   2179 	TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
   2180 		if (kn->kn_status & KN_MARKER) {
   2181 			nmarker++;
   2182 		} else {
   2183 			count++;
   2184 		}
   2185 		(*pr)("    knote %p: kq=%p status=%s\n",
   2186 		    kn, kn->kn_kq, KN_FMT(buf, kn));
   2187 		(*pr)("      id=0x%lx (%lu) filter=%d\n",
   2188 		    (u_long)kn->kn_id, (u_long)kn->kn_id, kn->kn_filter);
   2189 		if (kn->kn_kq != kq) {
   2190 			(*pr)("      !!! kn->kn_kq != kq\n");
   2191 		}
   2192 	}
   2193 	if (count != KQ_COUNT(kq)) {
   2194 		(*pr)("  !!! count(%u) != KQ_COUNT(%u)\n",
   2195 		    count, KQ_COUNT(kq));
   2196 	}
   2197 }
   2198 #endif /* DDB */
   2199 
   2200 #if defined(DEBUG)
   2201 static void
   2202 kqueue_check(const char *func, size_t line, const struct kqueue *kq)
   2203 {
   2204 	const struct knote *kn;
   2205 	u_int count;
   2206 	int nmarker;
   2207 	char buf[128];
   2208 
   2209 	KASSERT(mutex_owned(&kq->kq_lock));
   2210 
   2211 	count = 0;
   2212 	nmarker = 0;
   2213 	TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
   2214 		if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
   2215 			panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s",
   2216 			    func, line, kq, kn, KN_FMT(buf, kn));
   2217 		}
   2218 		if ((kn->kn_status & KN_MARKER) == 0) {
   2219 			if (kn->kn_kq != kq) {
   2220 				panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s",
   2221 				    func, line, kq, kn, kn->kn_kq,
   2222 				    KN_FMT(buf, kn));
   2223 			}
   2224 			if ((kn->kn_status & KN_ACTIVE) == 0) {
   2225 				panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s",
   2226 				    func, line, kq, kn, KN_FMT(buf, kn));
   2227 			}
   2228 			count++;
   2229 			if (count > KQ_COUNT(kq)) {
   2230 				panic("%s,%zu: kq=%p kq->kq_count(%u) != "
   2231 				    "count(%d), nmarker=%d",
   2232 		    		    func, line, kq, KQ_COUNT(kq), count,
   2233 				    nmarker);
   2234 			}
   2235 		} else {
   2236 			nmarker++;
   2237 		}
   2238 	}
   2239 }
   2240 #define kq_check(a) kqueue_check(__func__, __LINE__, (a))
   2241 #else /* defined(DEBUG) */
   2242 #define	kq_check(a)	/* nothing */
   2243 #endif /* defined(DEBUG) */
   2244 
   2245 static void
   2246 kqueue_restart(file_t *fp)
   2247 {
   2248 	struct kqueue *kq = fp->f_kqueue;
   2249 	KASSERT(kq != NULL);
   2250 
   2251 	mutex_spin_enter(&kq->kq_lock);
   2252 	kq->kq_count |= KQ_RESTART;
   2253 	cv_broadcast(&kq->kq_cv);
   2254 	mutex_spin_exit(&kq->kq_lock);
   2255 }
   2256 
   2257 static int
   2258 kqueue_fpathconf(struct file *fp, int name, register_t *retval)
   2259 {
   2260 
   2261 	return SET_ERROR(EINVAL);
   2262 }
   2263 
   2264 /*
   2265  * Scan through the list of events on fp (for a maximum of maxevents),
   2266  * returning the results in to ulistp. Timeout is determined by tsp; if
   2267  * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
   2268  * as appropriate.
   2269  */
   2270 static int
   2271 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
   2272 	    const struct timespec *tsp, register_t *retval,
   2273 	    const struct kevent_ops *keops, struct kevent *kevbuf,
   2274 	    size_t kevcnt)
   2275 {
   2276 	struct kqueue	*kq;
   2277 	struct kevent	*kevp;
   2278 	struct timespec	ats, sleepts;
   2279 	struct knote	*kn, *marker;
   2280 	struct knote_impl morker;
   2281 	size_t		count, nkev, nevents;
   2282 	int		timeout, error, touch, rv, influx;
   2283 	filedesc_t	*fdp;
   2284 
   2285 	fdp = curlwp->l_fd;
   2286 	kq = fp->f_kqueue;
   2287 	count = maxevents;
   2288 	nkev = nevents = error = 0;
   2289 	if (count == 0) {
   2290 		*retval = 0;
   2291 		return 0;
   2292 	}
   2293 
   2294 	if (tsp) {				/* timeout supplied */
   2295 		ats = *tsp;
   2296 		if (inittimeleft(&ats, &sleepts) == -1) {
   2297 			*retval = maxevents;
   2298 			return SET_ERROR(EINVAL);
   2299 		}
   2300 		timeout = tstohz(&ats);
   2301 		if (timeout <= 0)
   2302 			timeout = -1;           /* do poll */
   2303 	} else {
   2304 		/* no timeout, wait forever */
   2305 		timeout = 0;
   2306 	}
   2307 
   2308 	memset(&morker, 0, sizeof(morker));
   2309 	marker = &morker.ki_knote;
   2310 	marker->kn_kq = kq;
   2311 	marker->kn_status = KN_MARKER;
   2312 	mutex_spin_enter(&kq->kq_lock);
   2313  retry:
   2314 	kevp = kevbuf;
   2315 	if (KQ_COUNT(kq) == 0) {
   2316 		if (timeout >= 0) {
   2317 			error = cv_timedwait_sig(&kq->kq_cv,
   2318 			    &kq->kq_lock, timeout);
   2319 			if (error == 0) {
   2320 				if (KQ_COUNT(kq) == 0 &&
   2321 				    (kq->kq_count & KQ_RESTART)) {
   2322 					/* return to clear file reference */
   2323 					error = SET_ERROR(ERESTART);
   2324 				} else if (tsp == NULL || (timeout =
   2325 				    gettimeleft(&ats, &sleepts)) > 0) {
   2326 					goto retry;
   2327 				}
   2328 			} else {
   2329 				/* don't restart after signals... */
   2330 				if (error == ERESTART)
   2331 					error = SET_ERROR(EINTR);
   2332 				if (error == EWOULDBLOCK)
   2333 					error = 0;
   2334 			}
   2335 		}
   2336 		mutex_spin_exit(&kq->kq_lock);
   2337 		goto done;
   2338 	}
   2339 
   2340 	/* mark end of knote list */
   2341 	TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
   2342 	influx = 0;
   2343 
   2344 	/*
   2345 	 * Acquire the fdp->fd_lock interlock to avoid races with
   2346 	 * file creation/destruction from other threads.
   2347 	 */
   2348 	mutex_spin_exit(&kq->kq_lock);
   2349 relock:
   2350 	mutex_enter(&fdp->fd_lock);
   2351 	mutex_spin_enter(&kq->kq_lock);
   2352 
   2353 	while (count != 0) {
   2354 		/*
   2355 		 * Get next knote.  We are guaranteed this will never
   2356 		 * be NULL because of the marker we inserted above.
   2357 		 */
   2358 		kn = TAILQ_FIRST(&kq->kq_head);
   2359 
   2360 		bool kn_is_other_marker =
   2361 		    (kn->kn_status & KN_MARKER) != 0 && kn != marker;
   2362 		bool kn_is_detaching = (kn->kn_status & KN_WILLDETACH) != 0;
   2363 		bool kn_is_in_flux = kn_in_flux(kn);
   2364 
   2365 		/*
   2366 		 * If we found a marker that's not ours, or this knote
   2367 		 * is in a state of flux, then wait for everything to
   2368 		 * settle down and go around again.
   2369 		 */
   2370 		if (kn_is_other_marker || kn_is_detaching || kn_is_in_flux) {
   2371 			if (influx) {
   2372 				influx = 0;
   2373 				KQ_FLUX_WAKEUP(kq);
   2374 			}
   2375 			mutex_exit(&fdp->fd_lock);
   2376 			if (kn_is_other_marker || kn_is_in_flux) {
   2377 				KQ_FLUX_WAIT(kq);
   2378 				mutex_spin_exit(&kq->kq_lock);
   2379 			} else {
   2380 				/*
   2381 				 * Detaching but not in-flux?  Someone is
   2382 				 * actively trying to finish the job; just
   2383 				 * go around and try again.
   2384 				 */
   2385 				KASSERT(kn_is_detaching);
   2386 				mutex_spin_exit(&kq->kq_lock);
   2387 				preempt_point();
   2388 			}
   2389 			goto relock;
   2390 		}
   2391 
   2392 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   2393 		if (kn == marker) {
   2394 			/* it's our marker, stop */
   2395 			KQ_FLUX_WAKEUP(kq);
   2396 			if (count == maxevents) {
   2397 				mutex_exit(&fdp->fd_lock);
   2398 				goto retry;
   2399 			}
   2400 			break;
   2401 		}
   2402 		KASSERT((kn->kn_status & KN_BUSY) == 0);
   2403 
   2404 		kq_check(kq);
   2405 		kn->kn_status &= ~KN_QUEUED;
   2406 		kn->kn_status |= KN_BUSY;
   2407 		kq_check(kq);
   2408 		if (kn->kn_status & KN_DISABLED) {
   2409 			kn->kn_status &= ~KN_BUSY;
   2410 			kq->kq_count--;
   2411 			/* don't want disabled events */
   2412 			continue;
   2413 		}
   2414 		if ((kn->kn_flags & EV_ONESHOT) == 0) {
   2415 			mutex_spin_exit(&kq->kq_lock);
   2416 			KASSERT(mutex_owned(&fdp->fd_lock));
   2417 			knote_foplock_enter(kn);
   2418 			rv = filter_event(kn, 0, false);
   2419 			knote_foplock_exit(kn);
   2420 			mutex_spin_enter(&kq->kq_lock);
   2421 			/* Re-poll if note was re-enqueued. */
   2422 			if ((kn->kn_status & KN_QUEUED) != 0) {
   2423 				kn->kn_status &= ~KN_BUSY;
   2424 				/* Re-enqueue raised kq_count, lower it again */
   2425 				kq->kq_count--;
   2426 				influx = 1;
   2427 				continue;
   2428 			}
   2429 			if (rv == 0) {
   2430 				/*
   2431 				 * non-ONESHOT event that hasn't triggered
   2432 				 * again, so it will remain de-queued.
   2433 				 */
   2434 				kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
   2435 				kq->kq_count--;
   2436 				influx = 1;
   2437 				continue;
   2438 			}
   2439 		} else {
   2440 			/*
   2441 			 * Must NOT drop kq_lock until we can do
   2442 			 * the KNOTE_WILLDETACH() below.
   2443 			 */
   2444 		}
   2445 		KASSERT(kn->kn_fop != NULL);
   2446 		touch = (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
   2447 				kn->kn_fop->f_touch != NULL);
   2448 		/* XXXAD should be got from f_event if !oneshot. */
   2449 		KASSERT((kn->kn_status & KN_WILLDETACH) == 0);
   2450 		if (touch) {
   2451 			(void)filter_touch(kn, kevp, EVENT_PROCESS);
   2452 		} else {
   2453 			*kevp = kn->kn_kevent;
   2454 		}
   2455 		kevp++;
   2456 		nkev++;
   2457 		influx = 1;
   2458 		if (kn->kn_flags & EV_ONESHOT) {
   2459 			/* delete ONESHOT events after retrieval */
   2460 			KNOTE_WILLDETACH(kn);
   2461 			kn->kn_status &= ~KN_BUSY;
   2462 			kq->kq_count--;
   2463 			KASSERT(kn_in_flux(kn) == false);
   2464 			KASSERT((kn->kn_status & KN_WILLDETACH) != 0);
   2465 			KASSERT(kn->kn_kevent.udata == curlwp);
   2466 			mutex_spin_exit(&kq->kq_lock);
   2467 			knote_detach(kn, fdp, true);
   2468 			mutex_enter(&fdp->fd_lock);
   2469 			mutex_spin_enter(&kq->kq_lock);
   2470 		} else if (kn->kn_flags & EV_CLEAR) {
   2471 			/* clear state after retrieval */
   2472 			kn->kn_data = 0;
   2473 			kn->kn_fflags = 0;
   2474 			/*
   2475 			 * Manually clear knotes who weren't
   2476 			 * 'touch'ed.
   2477 			 */
   2478 			if (touch == 0) {
   2479 				kn->kn_data = 0;
   2480 				kn->kn_fflags = 0;
   2481 			}
   2482 			kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
   2483 			kq->kq_count--;
   2484 		} else if (kn->kn_flags & EV_DISPATCH) {
   2485 			kn->kn_status |= KN_DISABLED;
   2486 			kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
   2487 			kq->kq_count--;
   2488 		} else {
   2489 			/* add event back on list */
   2490 			kq_check(kq);
   2491 			kn->kn_status |= KN_QUEUED;
   2492 			kn->kn_status &= ~KN_BUSY;
   2493 			TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   2494 			kq_check(kq);
   2495 		}
   2496 
   2497 		if (nkev == kevcnt) {
   2498 			/* do copyouts in kevcnt chunks */
   2499 			influx = 0;
   2500 			KQ_FLUX_WAKEUP(kq);
   2501 			mutex_spin_exit(&kq->kq_lock);
   2502 			mutex_exit(&fdp->fd_lock);
   2503 			error = (*keops->keo_put_events)
   2504 			    (keops->keo_private,
   2505 			    kevbuf, ulistp, nevents, nkev);
   2506 			mutex_enter(&fdp->fd_lock);
   2507 			mutex_spin_enter(&kq->kq_lock);
   2508 			nevents += nkev;
   2509 			nkev = 0;
   2510 			kevp = kevbuf;
   2511 		}
   2512 		count--;
   2513 		if (error != 0 || count == 0) {
   2514 			/* remove marker */
   2515 			TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
   2516 			break;
   2517 		}
   2518 	}
   2519 	KQ_FLUX_WAKEUP(kq);
   2520 	mutex_spin_exit(&kq->kq_lock);
   2521 	mutex_exit(&fdp->fd_lock);
   2522 
   2523 done:
   2524 	if (nkev != 0) {
   2525 		/* copyout remaining events */
   2526 		error = (*keops->keo_put_events)(keops->keo_private,
   2527 		    kevbuf, ulistp, nevents, nkev);
   2528 	}
   2529 	*retval = maxevents - count;
   2530 
   2531 	return error;
   2532 }
   2533 
   2534 /*
   2535  * fileops ioctl method for a kqueue descriptor.
   2536  *
   2537  * Two ioctls are currently supported. They both use struct kfilter_mapping:
   2538  *	KFILTER_BYNAME		find name for filter, and return result in
   2539  *				name, which is of size len.
   2540  *	KFILTER_BYFILTER	find filter for name. len is ignored.
   2541  */
   2542 /*ARGSUSED*/
   2543 static int
   2544 kqueue_ioctl(file_t *fp, u_long com, void *data)
   2545 {
   2546 	struct kfilter_mapping	*km;
   2547 	const struct kfilter	*kfilter;
   2548 	char			*name;
   2549 	int			error;
   2550 
   2551 	km = data;
   2552 	error = 0;
   2553 	name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
   2554 
   2555 	switch (com) {
   2556 	case KFILTER_BYFILTER:	/* convert filter -> name */
   2557 		rw_enter(&kqueue_filter_lock, RW_READER);
   2558 		kfilter = kfilter_byfilter(km->filter);
   2559 		if (kfilter != NULL) {
   2560 			strlcpy(name, kfilter->name, KFILTER_MAXNAME);
   2561 			rw_exit(&kqueue_filter_lock);
   2562 			error = copyoutstr(name, km->name, km->len, NULL);
   2563 		} else {
   2564 			rw_exit(&kqueue_filter_lock);
   2565 			error = SET_ERROR(ENOENT);
   2566 		}
   2567 		break;
   2568 
   2569 	case KFILTER_BYNAME:	/* convert name -> filter */
   2570 		error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
   2571 		if (error) {
   2572 			break;
   2573 		}
   2574 		rw_enter(&kqueue_filter_lock, RW_READER);
   2575 		kfilter = kfilter_byname(name);
   2576 		if (kfilter != NULL)
   2577 			km->filter = kfilter->filter;
   2578 		else
   2579 			error = SET_ERROR(ENOENT);
   2580 		rw_exit(&kqueue_filter_lock);
   2581 		break;
   2582 
   2583 	default:
   2584 		error = SET_ERROR(ENOTTY);
   2585 		break;
   2586 
   2587 	}
   2588 	kmem_free(name, KFILTER_MAXNAME);
   2589 	return (error);
   2590 }
   2591 
   2592 /*
   2593  * fileops fcntl method for a kqueue descriptor.
   2594  */
   2595 static int
   2596 kqueue_fcntl(file_t *fp, u_int com, void *data)
   2597 {
   2598 
   2599 	return SET_ERROR(ENOTTY);
   2600 }
   2601 
   2602 /*
   2603  * fileops poll method for a kqueue descriptor.
   2604  * Determine if kqueue has events pending.
   2605  */
   2606 static int
   2607 kqueue_poll(file_t *fp, int events)
   2608 {
   2609 	struct kqueue	*kq;
   2610 	int		revents;
   2611 
   2612 	kq = fp->f_kqueue;
   2613 
   2614 	revents = 0;
   2615 	if (events & (POLLIN | POLLRDNORM)) {
   2616 		mutex_spin_enter(&kq->kq_lock);
   2617 		if (KQ_COUNT(kq) != 0) {
   2618 			revents |= events & (POLLIN | POLLRDNORM);
   2619 		} else {
   2620 			selrecord(curlwp, &kq->kq_sel);
   2621 		}
   2622 		kq_check(kq);
   2623 		mutex_spin_exit(&kq->kq_lock);
   2624 	}
   2625 
   2626 	return revents;
   2627 }
   2628 
   2629 /*
   2630  * fileops stat method for a kqueue descriptor.
   2631  * Returns dummy info, with st_size being number of events pending.
   2632  */
   2633 static int
   2634 kqueue_stat(file_t *fp, struct stat *st)
   2635 {
   2636 	struct kqueue *kq;
   2637 
   2638 	kq = fp->f_kqueue;
   2639 
   2640 	memset(st, 0, sizeof(*st));
   2641 	st->st_size = KQ_COUNT(kq);
   2642 	st->st_blksize = sizeof(struct kevent);
   2643 	st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
   2644 	st->st_blocks = 1;
   2645 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
   2646 	st->st_gid = kauth_cred_getegid(fp->f_cred);
   2647 
   2648 	return 0;
   2649 }
   2650 
   2651 static void
   2652 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
   2653 {
   2654 	struct knote *kn;
   2655 	filedesc_t *fdp;
   2656 
   2657 	fdp = kq->kq_fdp;
   2658 
   2659 	KASSERT(mutex_owned(&fdp->fd_lock));
   2660 
   2661  again:
   2662 	for (kn = SLIST_FIRST(list); kn != NULL;) {
   2663 		if (kq != kn->kn_kq) {
   2664 			kn = SLIST_NEXT(kn, kn_link);
   2665 			continue;
   2666 		}
   2667 		if (knote_detach_quiesce(kn)) {
   2668 			mutex_enter(&fdp->fd_lock);
   2669 			goto again;
   2670 		}
   2671 		knote_detach(kn, fdp, true);
   2672 		mutex_enter(&fdp->fd_lock);
   2673 		kn = SLIST_FIRST(list);
   2674 	}
   2675 }
   2676 
   2677 /*
   2678  * fileops close method for a kqueue descriptor.
   2679  */
   2680 static int
   2681 kqueue_close(file_t *fp)
   2682 {
   2683 	struct kqueue *kq;
   2684 	filedesc_t *fdp;
   2685 	fdfile_t *ff;
   2686 	int i;
   2687 
   2688 	kq = fp->f_kqueue;
   2689 	fp->f_kqueue = NULL;
   2690 	fp->f_type = 0;
   2691 	fdp = curlwp->l_fd;
   2692 
   2693 	KASSERT(kq->kq_fdp == fdp);
   2694 
   2695 	mutex_enter(&fdp->fd_lock);
   2696 
   2697 	/*
   2698 	 * We're doing to drop the fd_lock multiple times while
   2699 	 * we detach knotes.  During this time, attempts to register
   2700 	 * knotes via the back door (e.g. knote_proc_fork_track())
   2701 	 * need to fail, lest they sneak in to attach a knote after
   2702 	 * we've already drained the list it's destined for.
   2703 	 *
   2704 	 * We must acquire kq_lock here to set KQ_CLOSING (to serialize
   2705 	 * with other code paths that modify kq_count without holding
   2706 	 * the fd_lock), but once this bit is set, it's only safe to
   2707 	 * test it while holding the fd_lock, and holding kq_lock while
   2708 	 * doing so is not necessary.
   2709 	 */
   2710 	mutex_enter(&kq->kq_lock);
   2711 	kq->kq_count |= KQ_CLOSING;
   2712 	mutex_exit(&kq->kq_lock);
   2713 
   2714 	for (i = 0; i <= fdp->fd_lastkqfile; i++) {
   2715 		if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
   2716 			continue;
   2717 		kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
   2718 	}
   2719 	if (fdp->fd_knhashmask != 0) {
   2720 		for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
   2721 			kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
   2722 		}
   2723 	}
   2724 
   2725 	mutex_exit(&fdp->fd_lock);
   2726 
   2727 #if defined(DEBUG)
   2728 	mutex_enter(&kq->kq_lock);
   2729 	kq_check(kq);
   2730 	mutex_exit(&kq->kq_lock);
   2731 #endif /* DEBUG */
   2732 	KASSERT(TAILQ_EMPTY(&kq->kq_head));
   2733 	KASSERT(KQ_COUNT(kq) == 0);
   2734 	mutex_destroy(&kq->kq_lock);
   2735 	cv_destroy(&kq->kq_cv);
   2736 	seldestroy(&kq->kq_sel);
   2737 	kmem_free(kq, sizeof(*kq));
   2738 
   2739 	return (0);
   2740 }
   2741 
   2742 /*
   2743  * struct fileops kqfilter method for a kqueue descriptor.
   2744  * Event triggered when monitored kqueue changes.
   2745  */
   2746 static int
   2747 kqueue_kqfilter(file_t *fp, struct knote *kn)
   2748 {
   2749 	struct kqueue *kq;
   2750 
   2751 	kq = ((file_t *)kn->kn_obj)->f_kqueue;
   2752 
   2753 	KASSERT(fp == kn->kn_obj);
   2754 
   2755 	if (kn->kn_filter != EVFILT_READ)
   2756 		return SET_ERROR(EINVAL);
   2757 
   2758 	kn->kn_fop = &kqread_filtops;
   2759 	mutex_enter(&kq->kq_lock);
   2760 	selrecord_knote(&kq->kq_sel, kn);
   2761 	mutex_exit(&kq->kq_lock);
   2762 
   2763 	return 0;
   2764 }
   2765 
   2766 
   2767 /*
   2768  * Walk down a list of knotes, activating them if their event has
   2769  * triggered.  The caller's object lock (e.g. device driver lock)
   2770  * must be held.
   2771  */
   2772 void
   2773 knote(struct klist *list, long hint)
   2774 {
   2775 	struct knote *kn, *tmpkn;
   2776 
   2777 	SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
   2778 		/*
   2779 		 * We assume here that the backing object's lock is
   2780 		 * already held if we're traversing the klist, and
   2781 		 * so acquiring the knote foplock would create a
   2782 		 * deadlock scenario.  But we also know that the klist
   2783 		 * won't disappear on us while we're here, so not
   2784 		 * acquiring it is safe.
   2785 		 */
   2786 		if (filter_event(kn, hint, true)) {
   2787 			knote_activate(kn);
   2788 		}
   2789 	}
   2790 }
   2791 
   2792 /*
   2793  * Remove all knotes referencing a specified fd
   2794  */
   2795 void
   2796 knote_fdclose(int fd)
   2797 {
   2798 	struct klist *list;
   2799 	struct knote *kn;
   2800 	filedesc_t *fdp;
   2801 
   2802  again:
   2803 	fdp = curlwp->l_fd;
   2804 	mutex_enter(&fdp->fd_lock);
   2805 	list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
   2806 	while ((kn = SLIST_FIRST(list)) != NULL) {
   2807 		if (knote_detach_quiesce(kn)) {
   2808 			goto again;
   2809 		}
   2810 		knote_detach(kn, fdp, true);
   2811 		mutex_enter(&fdp->fd_lock);
   2812 	}
   2813 	mutex_exit(&fdp->fd_lock);
   2814 }
   2815 
   2816 /*
   2817  * Drop knote.  Called with fdp->fd_lock held, and will drop before
   2818  * returning.
   2819  */
   2820 static void
   2821 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
   2822 {
   2823 	struct klist *list;
   2824 	struct kqueue *kq;
   2825 
   2826 	kq = kn->kn_kq;
   2827 
   2828 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   2829 	KASSERT((kn->kn_status & KN_WILLDETACH) != 0);
   2830 	KASSERT(kn->kn_fop != NULL);
   2831 	KASSERT(mutex_owned(&fdp->fd_lock));
   2832 
   2833 	/* Remove from monitored object. */
   2834 	if (dofop) {
   2835 		knote_foplock_enter(kn);
   2836 		filter_detach(kn);
   2837 		knote_foplock_exit(kn);
   2838 	}
   2839 
   2840 	/* Remove from descriptor table. */
   2841 	if (kn->kn_fop->f_flags & FILTEROP_ISFD)
   2842 		list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
   2843 	else
   2844 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
   2845 
   2846 	SLIST_REMOVE(list, kn, knote, kn_link);
   2847 
   2848 	/* Remove from kqueue. */
   2849 again:
   2850 	mutex_spin_enter(&kq->kq_lock);
   2851 	KASSERT(kn_in_flux(kn) == false);
   2852 	if ((kn->kn_status & KN_QUEUED) != 0) {
   2853 		kq_check(kq);
   2854 		KASSERT(KQ_COUNT(kq) != 0);
   2855 		kq->kq_count--;
   2856 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   2857 		kn->kn_status &= ~KN_QUEUED;
   2858 		kq_check(kq);
   2859 	} else if (kn->kn_status & KN_BUSY) {
   2860 		mutex_spin_exit(&kq->kq_lock);
   2861 		goto again;
   2862 	}
   2863 	mutex_spin_exit(&kq->kq_lock);
   2864 
   2865 	mutex_exit(&fdp->fd_lock);
   2866 	if (kn->kn_fop->f_flags & FILTEROP_ISFD)
   2867 		fd_putfile(kn->kn_id);
   2868 	atomic_dec_uint(&kn->kn_kfilter->refcnt);
   2869 	knote_free(kn);
   2870 }
   2871 
   2872 /*
   2873  * Queue new event for knote.
   2874  */
   2875 static void
   2876 knote_enqueue(struct knote *kn)
   2877 {
   2878 	struct kqueue *kq;
   2879 
   2880 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   2881 
   2882 	kq = kn->kn_kq;
   2883 
   2884 	mutex_spin_enter(&kq->kq_lock);
   2885 	if (__predict_false(kn->kn_status & KN_WILLDETACH)) {
   2886 		/* Don't bother enqueueing a dying knote. */
   2887 		goto out;
   2888 	}
   2889 	if ((kn->kn_status & KN_DISABLED) != 0) {
   2890 		kn->kn_status &= ~KN_DISABLED;
   2891 	}
   2892 	if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
   2893 		kq_check(kq);
   2894 		kn->kn_status |= KN_QUEUED;
   2895 		TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   2896 		KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT);
   2897 		kq->kq_count++;
   2898 		kq_check(kq);
   2899 		cv_broadcast(&kq->kq_cv);
   2900 		selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
   2901 	}
   2902  out:
   2903 	mutex_spin_exit(&kq->kq_lock);
   2904 }
   2905 /*
   2906  * Queue new event for knote.
   2907  */
   2908 static void
   2909 knote_activate_locked(struct knote *kn)
   2910 {
   2911 	struct kqueue *kq;
   2912 
   2913 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   2914 
   2915 	kq = kn->kn_kq;
   2916 
   2917 	if (__predict_false(kn->kn_status & KN_WILLDETACH)) {
   2918 		/* Don't bother enqueueing a dying knote. */
   2919 		return;
   2920 	}
   2921 	kn->kn_status |= KN_ACTIVE;
   2922 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
   2923 		kq_check(kq);
   2924 		kn->kn_status |= KN_QUEUED;
   2925 		TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   2926 		KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT);
   2927 		kq->kq_count++;
   2928 		kq_check(kq);
   2929 		cv_broadcast(&kq->kq_cv);
   2930 		selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
   2931 	}
   2932 }
   2933 
   2934 static void
   2935 knote_activate(struct knote *kn)
   2936 {
   2937 	struct kqueue *kq = kn->kn_kq;
   2938 
   2939 	mutex_spin_enter(&kq->kq_lock);
   2940 	knote_activate_locked(kn);
   2941 	mutex_spin_exit(&kq->kq_lock);
   2942 }
   2943 
   2944 static void
   2945 knote_deactivate_locked(struct knote *kn)
   2946 {
   2947 	struct kqueue *kq = kn->kn_kq;
   2948 
   2949 	if (kn->kn_status & KN_QUEUED) {
   2950 		kq_check(kq);
   2951 		kn->kn_status &= ~KN_QUEUED;
   2952 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   2953 		KASSERT(KQ_COUNT(kq) > 0);
   2954 		kq->kq_count--;
   2955 		kq_check(kq);
   2956 	}
   2957 	kn->kn_status &= ~KN_ACTIVE;
   2958 }
   2959 
   2960 /*
   2961  * Set EV_EOF on the specified knote.  Also allows additional
   2962  * EV_* flags to be set (e.g. EV_ONESHOT).
   2963  */
   2964 void
   2965 knote_set_eof(struct knote *kn, uint32_t flags)
   2966 {
   2967 	struct kqueue *kq = kn->kn_kq;
   2968 
   2969 	mutex_spin_enter(&kq->kq_lock);
   2970 	kn->kn_flags |= EV_EOF | flags;
   2971 	mutex_spin_exit(&kq->kq_lock);
   2972 }
   2973 
   2974 /*
   2975  * Clear EV_EOF on the specified knote.
   2976  */
   2977 void
   2978 knote_clear_eof(struct knote *kn)
   2979 {
   2980 	struct kqueue *kq = kn->kn_kq;
   2981 
   2982 	mutex_spin_enter(&kq->kq_lock);
   2983 	kn->kn_flags &= ~EV_EOF;
   2984 	mutex_spin_exit(&kq->kq_lock);
   2985 }
   2986 
   2987 /*
   2988  * Initialize a klist.
   2989  */
   2990 void
   2991 klist_init(struct klist *list)
   2992 {
   2993 	SLIST_INIT(list);
   2994 }
   2995 
   2996 /*
   2997  * Finalize a klist.
   2998  */
   2999 void
   3000 klist_fini(struct klist *list)
   3001 {
   3002 	struct knote *kn;
   3003 
   3004 	/*
   3005 	 * Neuter all existing knotes on the klist because the list is
   3006 	 * being destroyed.  The caller has guaranteed that no additional
   3007 	 * knotes will be added to the list, that the backing object's
   3008 	 * locks are not held (otherwise there is a locking order issue
   3009 	 * with acquiring the knote foplock ), and that we can traverse
   3010 	 * the list safely in this state.
   3011 	 */
   3012 	SLIST_FOREACH(kn, list, kn_selnext) {
   3013 		knote_foplock_enter(kn);
   3014 		KASSERT(kn->kn_fop != NULL);
   3015 		if (kn->kn_fop->f_flags & FILTEROP_ISFD) {
   3016 			kn->kn_fop = &nop_fd_filtops;
   3017 		} else {
   3018 			kn->kn_fop = &nop_filtops;
   3019 		}
   3020 		knote_foplock_exit(kn);
   3021 	}
   3022 }
   3023 
   3024 /*
   3025  * Insert a knote into a klist.
   3026  */
   3027 void
   3028 klist_insert(struct klist *list, struct knote *kn)
   3029 {
   3030 	SLIST_INSERT_HEAD(list, kn, kn_selnext);
   3031 }
   3032 
   3033 /*
   3034  * Remove a knote from a klist.  Returns true if the last
   3035  * knote was removed and the list is now empty.
   3036  */
   3037 bool
   3038 klist_remove(struct klist *list, struct knote *kn)
   3039 {
   3040 	SLIST_REMOVE(list, kn, knote, kn_selnext);
   3041 	return SLIST_EMPTY(list);
   3042 }
   3043