Home | History | Annotate | Line # | Download | only in fpe
      1 /*	$NetBSD: fpu_emulate.c,v 1.49 2025/01/06 07:34:24 isaki Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995 Gordon W. Ross
      5  * some portion Copyright (c) 1995 Ken Nakata
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. The name of the author may not be used to endorse or promote products
     17  *    derived from this software without specific prior written permission.
     18  * 4. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *      This product includes software developed by Gordon Ross
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * mc68881 emulator
     36  * XXX - Just a start at it for now...
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: fpu_emulate.c,v 1.49 2025/01/06 07:34:24 isaki Exp $");
     41 
     42 #include <sys/param.h>
     43 #include <sys/types.h>
     44 #include <sys/signal.h>
     45 #include <sys/systm.h>
     46 #include <machine/frame.h>
     47 
     48 #if defined(DDB) && defined(DEBUG_FPE)
     49 # include <m68k/db_machdep.h>
     50 #endif
     51 
     52 #include "fpu_emulate.h"
     53 
     54 #define	fpe_abort(tfp, ksi, signo, code)			\
     55 	do {							\
     56 		(ksi)->ksi_signo = (signo);			\
     57 		(ksi)->ksi_code = (code);			\
     58 		(ksi)->ksi_addr = (void *)(frame)->f_pc;	\
     59 		return -1;					\
     60 	} while (/* CONSTCOND */ 0)
     61 
     62 static int fpu_emul_fmovmcr(struct fpemu *, struct instruction *);
     63 static int fpu_emul_fmovm(struct fpemu *, struct instruction *);
     64 static int fpu_emul_arith(struct fpemu *, struct instruction *);
     65 static int fpu_emul_type1(struct fpemu *, struct instruction *);
     66 static int fpu_emul_brcc(struct fpemu *, struct instruction *);
     67 static int test_cc(struct fpemu *, int);
     68 
     69 #ifdef DEBUG_FPE
     70 #define DUMP_INSN(insn)							\
     71 	printf("%s: insn={adv=%d,siz=%d,op=%04x,w1=%04x}\n",		\
     72 	    __func__,							\
     73 	    (insn)->is_advance, (insn)->is_datasize,			\
     74 	    (insn)->is_opcode, (insn)->is_word1)
     75 #define DPRINTF(x)	printf x
     76 #else
     77 #define DUMP_INSN(insn)	do {} while (/* CONSTCOND */ 0)
     78 #define DPRINTF(x)	do {} while (/* CONSTCOND */ 0)
     79 #endif
     80 
     81 /*
     82  * Emulate a floating-point instruction.
     83  * Return zero for success, else signal number.
     84  * (Typically: zero, SIGFPE, SIGILL, SIGSEGV)
     85  */
     86 int
     87 fpu_emulate(struct frame *frame, struct fpframe *fpf, ksiginfo_t *ksi)
     88 {
     89 	static struct instruction insn;
     90 	static struct fpemu fe;
     91 	int optype, sig;
     92 	unsigned short sval;
     93 
     94 	/* initialize insn.is_datasize to tell it is *not* initialized */
     95 	insn.is_datasize = -1;
     96 
     97 	fe.fe_frame = frame;
     98 	fe.fe_fpframe = fpf;
     99 	fe.fe_fpsr = fpf->fpf_fpsr;
    100 	fe.fe_fpcr = fpf->fpf_fpcr;
    101 
    102 	DPRINTF(("%s: ENTERING: FPSR=%08x, FPCR=%08x\n",
    103 	    __func__, fe.fe_fpsr, fe.fe_fpcr));
    104 
    105 	/* always set this (to avoid a warning) */
    106 	insn.is_pc = frame->f_pc;
    107 	insn.is_nextpc = 0;
    108 	if (frame->f_format == 4) {
    109 		/*
    110 		 * A format 4 is generated by the 68{EC,LC}040.  The PC is
    111 		 * already set to the instruction following the faulting
    112 		 * instruction.  We need to calculate that, anyway.  The
    113 		 * fslw is the PC of the faulted instruction, which is what
    114 		 * we expect to be in f_pc.
    115 		 *
    116 		 * XXX - This is a hack; it assumes we at least know the
    117 		 * sizes of all instructions we run across.
    118 		 * XXX TODO: This may not be true, so we might want to save
    119 		 * the PC in order to restore it later.
    120 		 */
    121 #if 0
    122 		insn.is_nextpc = frame->f_pc;
    123 #endif
    124 		insn.is_pc = frame->f_fmt4.f_fslw;
    125 		frame->f_pc = insn.is_pc;
    126 	}
    127 
    128 	if (ufetch_short((void *)(insn.is_pc), &sval)) {
    129 		DPRINTF(("%s: fault reading opcode\n", __func__));
    130 		fpe_abort(frame, ksi, SIGSEGV, SEGV_ACCERR);
    131 	}
    132 
    133 	if ((sval & 0xf000) != 0xf000) {
    134 		DPRINTF(("%s: not coproc. insn.: opcode=0x%x\n",
    135 		    __func__, sval));
    136 		fpe_abort(frame, ksi, SIGILL, ILL_ILLOPC);
    137 	}
    138 
    139 	if ((sval & 0x0E00) != 0x0200) {
    140 		DPRINTF(("%s: bad coproc. id: opcode=0x%x\n", __func__, sval));
    141 		fpe_abort(frame, ksi, SIGILL, ILL_ILLOPC);
    142 	}
    143 
    144 	insn.is_opcode = sval;
    145 	optype = (sval & 0x01C0);
    146 
    147 	if (ufetch_short((void *)(insn.is_pc + 2), &sval)) {
    148 		DPRINTF(("%s: fault reading word1\n", __func__));
    149 		fpe_abort(frame, ksi, SIGSEGV, SEGV_ACCERR);
    150 	}
    151 	insn.is_word1 = sval;
    152 	/* all FPU instructions are at least 4-byte long */
    153 	insn.is_advance = 4;
    154 
    155 	DUMP_INSN(&insn);
    156 
    157 	/*
    158 	 * Which family (or type) of opcode is it?
    159 	 * Tests ordered by likelihood (hopefully).
    160 	 * Certainly, type 0 is the most common.
    161 	 */
    162 	if (optype == 0x0000) {
    163 		/* type=0: generic */
    164 		if ((sval & 0x8000)) {
    165 			if ((sval & 0x4000)) {
    166 				DPRINTF(("%s: fmovm FPr\n", __func__));
    167 				sig = fpu_emul_fmovm(&fe, &insn);
    168 			} else {
    169 				DPRINTF(("%s: fmovm FPcr\n", __func__));
    170 				sig = fpu_emul_fmovmcr(&fe, &insn);
    171 			}
    172 		} else {
    173 			if ((sval & 0xe000) == 0x6000) {
    174 				/* fstore = fmove FPn,mem */
    175 				DPRINTF(("%s: fmove to mem\n", __func__));
    176 				sig = fpu_emul_fstore(&fe, &insn);
    177 			} else if ((sval & 0xfc00) == 0x5c00) {
    178 				/* fmovecr */
    179 				DPRINTF(("%s: fmovecr\n", __func__));
    180 				sig = fpu_emul_fmovecr(&fe, &insn);
    181 			} else if ((sval & 0xa07f) == 0x26) {
    182 				/* fscale */
    183 				DPRINTF(("%s: fscale\n", __func__));
    184 				sig = fpu_emul_fscale(&fe, &insn);
    185 			} else {
    186 				DPRINTF(("%s: other type0\n", __func__));
    187 				/* all other type0 insns are arithmetic */
    188 				sig = fpu_emul_arith(&fe, &insn);
    189 			}
    190 			if (sig == 0) {
    191 				DPRINTF(("%s: type 0 returned 0\n", __func__));
    192 				sig = fpu_upd_excp(&fe);
    193 			}
    194 		}
    195 	} else if (optype == 0x0080 || optype == 0x00C0) {
    196 		/* type=2 or 3: fbcc, short or long disp. */
    197 		DPRINTF(("%s: fbcc %s\n", __func__,
    198 		    (optype & 0x40) ? "long" : "short"));
    199 		sig = fpu_emul_brcc(&fe, &insn);
    200 	} else if (optype == 0x0040) {
    201 		/* type=1: fdbcc, fscc, ftrapcc */
    202 		DPRINTF(("%s: type1\n", __func__));
    203 		sig = fpu_emul_type1(&fe, &insn);
    204 		/* real FTRAPcc raises T_TRAPVINST if the condition is met. */
    205 		if (sig == SIGFPE) {
    206 			ksi->ksi_trap = T_TRAPVINST;
    207 		}
    208 	} else {
    209 		/* type=4: fsave    (privileged) */
    210 		/* type=5: frestore (privileged) */
    211 		/* type=6: reserved */
    212 		/* type=7: reserved */
    213 		DPRINTF(("%s: bad opcode type: opcode=0x%x\n", __func__,
    214 		    insn.is_opcode));
    215 		sig = SIGILL;
    216 	}
    217 
    218 	DUMP_INSN(&insn);
    219 
    220 	/*
    221 	 * XXX it is not clear to me, if we should progress the PC always,
    222 	 * for SIGFPE || 0, or only for 0; however, without SIGFPE, we
    223 	 * don't pass the signalling regression  tests.	-is
    224 	 */
    225 	if ((sig == 0) || (sig == SIGFPE))
    226 		frame->f_pc += insn.is_advance;
    227 #if defined(DDB) && defined(DEBUG_FPE)
    228 	else {
    229 		printf("%s: sig=%d, opcode=%x, word1=%x\n", __func__,
    230 		    sig, insn.is_opcode, insn.is_word1);
    231 		kdb_trap(-1, (db_regs_t *)&frame);
    232 	}
    233 #endif
    234 #if 0 /* XXX something is wrong */
    235 	if (frame->f_format == 4) {
    236 		/* XXX Restore PC -- 68{EC,LC}040 only */
    237 		if (insn.is_nextpc)
    238 			frame->f_pc = insn.is_nextpc;
    239 	}
    240 #endif
    241 
    242 	DPRINTF(("%s: EXITING: w/FPSR=%08x, FPCR=%08x\n", __func__,
    243 	    fe.fe_fpsr, fe.fe_fpcr));
    244 
    245 	if (sig)
    246 		fpe_abort(frame, ksi, sig, 0);
    247 	return sig;
    248 }
    249 
    250 /* update accrued exception bits and see if there's an FP exception */
    251 int
    252 fpu_upd_excp(struct fpemu *fe)
    253 {
    254 	uint32_t fpsr;
    255 	uint32_t fpcr;
    256 
    257 	fpsr = fe->fe_fpsr;
    258 	fpcr = fe->fe_fpcr;
    259 	/*
    260 	 * update fpsr accrued exception bits; each insn doesn't have to
    261 	 * update this
    262 	 */
    263 	if (fpsr & (FPSR_BSUN | FPSR_SNAN | FPSR_OPERR)) {
    264 		fpsr |= FPSR_AIOP;
    265 	}
    266 	if (fpsr & FPSR_OVFL) {
    267 		fpsr |= FPSR_AOVFL;
    268 	}
    269 	if ((fpsr & FPSR_UNFL) && (fpsr & FPSR_INEX2)) {
    270 		fpsr |= FPSR_AUNFL;
    271 	}
    272 	if (fpsr & FPSR_DZ) {
    273 		fpsr |= FPSR_ADZ;
    274 	}
    275 	if (fpsr & (FPSR_INEX1 | FPSR_INEX2 | FPSR_OVFL)) {
    276 		fpsr |= FPSR_AINEX;
    277 	}
    278 
    279 	fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr = fpsr;
    280 
    281 	return (fpsr & fpcr & FPSR_EXCP) ? SIGFPE : 0;
    282 }
    283 
    284 /* update fpsr according to fp (= result of an fp op) */
    285 uint32_t
    286 fpu_upd_fpsr(struct fpemu *fe, struct fpn *fp)
    287 {
    288 	uint32_t fpsr;
    289 
    290 	DPRINTF(("%s: previous fpsr=%08x\n", __func__, fe->fe_fpsr));
    291 	/* clear all condition code */
    292 	fpsr = fe->fe_fpsr & ~FPSR_CCB;
    293 
    294 	DPRINTF(("%s: result is a ", __func__));
    295 	if (fp->fp_sign) {
    296 		DPRINTF(("negative "));
    297 		fpsr |= FPSR_NEG;
    298 	} else {
    299 		DPRINTF(("positive "));
    300 	}
    301 
    302 	switch (fp->fp_class) {
    303 	case FPC_SNAN:
    304 		DPRINTF(("signaling NAN\n"));
    305 		fpsr |= (FPSR_NAN | FPSR_SNAN);
    306 		break;
    307 	case FPC_QNAN:
    308 		DPRINTF(("quiet NAN\n"));
    309 		fpsr |= FPSR_NAN;
    310 		break;
    311 	case FPC_ZERO:
    312 		DPRINTF(("Zero\n"));
    313 		fpsr |= FPSR_ZERO;
    314 		break;
    315 	case FPC_INF:
    316 		DPRINTF(("Inf\n"));
    317 		fpsr |= FPSR_INF;
    318 		break;
    319 	default:
    320 		DPRINTF(("Number\n"));
    321 		/* anything else is treated as if it is a number */
    322 		break;
    323 	}
    324 
    325 	fe->fe_fpsr = fe->fe_fpframe->fpf_fpsr = fpsr;
    326 
    327 	DPRINTF(("%s: new fpsr=%08x\n", __func__, fe->fe_fpframe->fpf_fpsr));
    328 
    329 	return fpsr;
    330 }
    331 
    332 static int
    333 fpu_emul_fmovmcr(struct fpemu *fe, struct instruction *insn)
    334 {
    335 	struct frame *frame = fe->fe_frame;
    336 	struct fpframe *fpf = fe->fe_fpframe;
    337 	int sig;
    338 	int reglist;
    339 	int regcount;
    340 	int fpu_to_mem;
    341 	int modreg;
    342 	uint32_t tmp[3];
    343 
    344 	/* move to/from control registers */
    345 	reglist = (insn->is_word1 & 0x1c00) >> 10;
    346 	/* Bit 13 selects direction (FPU to/from Mem) */
    347 	fpu_to_mem = insn->is_word1 & 0x2000;
    348 
    349 	/* Check an illegal mod/reg. */
    350 	modreg = insn->is_opcode & 077;
    351 	if (fpu_to_mem) {
    352 		/* PCrel, #imm are illegal. */
    353 		if (modreg >= 072) {
    354 			return SIGILL;
    355 		}
    356 	} else {
    357 		/* All mod/reg can be specified. */
    358 		if (modreg >= 075) {
    359 			return SIGILL;
    360 		}
    361 	}
    362 
    363 	/*
    364 	 * If reglist is 0b000, treat it as FPIAR.  This is not specification
    365 	 * but the behavior described in the 6888x user's manual.
    366 	 */
    367 	if (reglist == 0)
    368 		reglist = 1;
    369 
    370 	if (reglist == 7) {
    371 		regcount = 3;
    372 	} else if (reglist == 3 || reglist == 5 || reglist == 6) {
    373 		regcount = 2;
    374 	} else {
    375 		regcount = 1;
    376 	}
    377 	insn->is_datasize = regcount * 4;
    378 	sig = fpu_decode_ea(frame, insn, &insn->is_ea, modreg);
    379 	if (sig)
    380 		return sig;
    381 
    382 	/*
    383 	 * For data register, only single register can be transferred.
    384 	 * For addr register, only FPIAR can be transferred.
    385 	 */
    386 	if ((insn->is_ea.ea_flags & EA_DIRECT)) {
    387 		if (insn->is_ea.ea_regnum < 8) {
    388 			if (regcount != 1) {
    389 				return SIGILL;
    390 			}
    391 		} else {
    392 			if (reglist != 1) {
    393 				return SIGILL;
    394 			}
    395 		}
    396 	}
    397 
    398 	if (fpu_to_mem) {
    399 		uint32_t *s = &tmp[0];
    400 
    401 		if ((reglist & 4)) {
    402 			*s++ = fpf->fpf_fpcr;
    403 		}
    404 		if ((reglist & 2)) {
    405 			*s++ = fpf->fpf_fpsr;
    406 		}
    407 		if ((reglist & 1)) {
    408 			*s++ = fpf->fpf_fpiar;
    409 		}
    410 
    411 		sig = fpu_store_ea(frame, insn, &insn->is_ea, (char *)tmp);
    412 	} else {
    413 		const uint32_t *d = &tmp[0];
    414 
    415 		sig = fpu_load_ea(frame, insn, &insn->is_ea, (char *)tmp);
    416 		if (sig)
    417 			return sig;
    418 
    419 		if ((reglist & 4)) {
    420 			fpf->fpf_fpcr = *d++;
    421 			fpf->fpf_fpcr &= 0x0000fff0;
    422 		}
    423 		if ((reglist & 2)) {
    424 			fpf->fpf_fpsr = *d++;
    425 			fpf->fpf_fpsr &= 0x0ffffff8;
    426 		}
    427 		if ((reglist & 1)) {
    428 			fpf->fpf_fpiar = *d++;
    429 		}
    430 	}
    431 	return sig;
    432 }
    433 
    434 /*
    435  * type 0: fmovem
    436  * Separated out of fpu_emul_type0 for efficiency.
    437  * In this function, we know:
    438  *   (opcode & 0x01C0) == 0
    439  *   (word1 & 0x8000) == 0x8000
    440  *
    441  * No conversion or rounding is done by this instruction,
    442  * and the FPSR is not affected.
    443  */
    444 static int
    445 fpu_emul_fmovm(struct fpemu *fe, struct instruction *insn)
    446 {
    447 	struct frame *frame = fe->fe_frame;
    448 	struct fpframe *fpf = fe->fe_fpframe;
    449 	int word1, sig;
    450 	int reglist, regmask, regnum;
    451 	int modreg;
    452 	int fpu_to_mem, order;
    453 	/* int w1_post_incr; */
    454 	int *fpregs;
    455 
    456 	insn->is_datasize = 12;
    457 	word1 = insn->is_word1;
    458 
    459 	/* Bit 13 selects direction (FPU to/from Mem) */
    460 	fpu_to_mem = word1 & 0x2000;
    461 
    462 	/*
    463 	 * Bits 12,11 select register list mode:
    464 	 * 0,0: Static  reg list, pre-decr.
    465 	 * 0,1: Dynamic reg list, pre-decr.
    466 	 * 1,0: Static  reg list, post-incr.
    467 	 * 1,1: Dynamic reg list, post-incr
    468 	 */
    469 	/* w1_post_incr = word1 & 0x1000; */
    470 	if (word1 & 0x0800) {
    471 		/* dynamic reg list */
    472 		reglist = frame->f_regs[(word1 & 0x70) >> 4];
    473 	} else {
    474 		reglist = word1;
    475 	}
    476 	reglist &= 0xFF;
    477 
    478 	/* Check an illegal mod/reg. */
    479 	modreg = insn->is_opcode & 077;
    480 	if (fpu_to_mem) {
    481 		/* Dn, An, (An)+, PCrel, #imm are illegal. */
    482 		if (modreg < 020 || (modreg >> 3) == 3 || modreg >= 072) {
    483 			return SIGILL;
    484 		}
    485 	} else {
    486 		/* Dn, An, -(An), #imm are illegal. */
    487 		if (modreg < 020 || (modreg >> 3) == 4 || modreg >= 074) {
    488 			return SIGILL;
    489 		}
    490 	}
    491 
    492 	/* Get effective address. */
    493 	sig = fpu_decode_ea(frame, insn, &insn->is_ea, modreg);
    494 	if (sig)
    495 		return sig;
    496 
    497 	/* Get address of soft coprocessor regs. */
    498 	fpregs = &fpf->fpf_regs[0];
    499 
    500 	if (insn->is_ea.ea_flags & EA_PREDECR) {
    501 		regnum = 7;
    502 		order = -1;
    503 	} else {
    504 		regnum = 0;
    505 		order = 1;
    506 	}
    507 
    508 	regmask = 0x80;
    509 	while ((0 <= regnum) && (regnum < 8)) {
    510 		if (regmask & reglist) {
    511 			if (fpu_to_mem) {
    512 				sig = fpu_store_ea(frame, insn, &insn->is_ea,
    513 				    (char *)&fpregs[regnum * 3]);
    514 				DPRINTF(("%s: FP%d (%08x,%08x,%08x) saved\n",
    515 				    __func__, regnum,
    516 				    fpregs[regnum * 3],
    517 				    fpregs[regnum * 3 + 1],
    518 				    fpregs[regnum * 3 + 2]));
    519 			} else {		/* mem to fpu */
    520 				sig = fpu_load_ea(frame, insn, &insn->is_ea,
    521 				    (char *)&fpregs[regnum * 3]);
    522 				DPRINTF(("%s: FP%d (%08x,%08x,%08x) loaded\n",
    523 				    __func__, regnum,
    524 				    fpregs[regnum * 3],
    525 				    fpregs[regnum * 3 + 1],
    526 				    fpregs[regnum * 3 + 2]));
    527 			}
    528 			if (sig)
    529 				break;
    530 		}
    531 		regnum += order;
    532 		regmask >>= 1;
    533 	}
    534 
    535 	return sig;
    536 }
    537 
    538 struct fpn *
    539 fpu_cmp(struct fpemu *fe)
    540 {
    541 	struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
    542 
    543 	/* take care of special cases */
    544 	if (x->fp_class < 0 || y->fp_class < 0) {
    545 		/* if either of two is a SNAN, result is SNAN */
    546 		x->fp_class =
    547 		    (y->fp_class < x->fp_class) ? y->fp_class : x->fp_class;
    548 	} else if (x->fp_class == FPC_INF) {
    549 		if (y->fp_class == FPC_INF) {
    550 			/* both infinities */
    551 			if (x->fp_sign == y->fp_sign) {
    552 				/* return a signed zero */
    553 				x->fp_class = FPC_ZERO;
    554 			} else {
    555 				/* return a faked number w/x's sign */
    556 				x->fp_class = FPC_NUM;
    557 				x->fp_exp = 16383;
    558 				x->fp_mant[0] = FP_1;
    559 			}
    560 		} else {
    561 			/* y is a number */
    562 			/* return a forged number w/x's sign */
    563 			x->fp_class = FPC_NUM;
    564 			x->fp_exp = 16383;
    565 			x->fp_mant[0] = FP_1;
    566 		}
    567 	} else if (y->fp_class == FPC_INF) {
    568 		/* x is a Num but y is an Inf */
    569 		/* return a forged number w/y's sign inverted */
    570 		x->fp_class = FPC_NUM;
    571 		x->fp_sign = !y->fp_sign;
    572 		x->fp_exp = 16383;
    573 		x->fp_mant[0] = FP_1;
    574 	} else {
    575 		/*
    576 		 * x and y are both numbers or zeros,
    577 		 * or pair of a number and a zero
    578 		 */
    579 		y->fp_sign = !y->fp_sign;
    580 		x = fpu_add(fe);	/* (x - y) */
    581 		/*
    582 		 * FCMP does not set Inf bit in CC, so return a forged number
    583 		 * (value doesn't matter) if Inf is the result of fsub.
    584 		 */
    585 		if (x->fp_class == FPC_INF) {
    586 			x->fp_class = FPC_NUM;
    587 			x->fp_exp = 16383;
    588 			x->fp_mant[0] = FP_1;
    589 		}
    590 	}
    591 	return x;
    592 }
    593 
    594 /*
    595  * arithmetic operations
    596  */
    597 static int
    598 fpu_emul_arith(struct fpemu *fe, struct instruction *insn)
    599 {
    600 	struct frame *frame = fe->fe_frame;
    601 	uint32_t *fpregs = &(fe->fe_fpframe->fpf_regs[0]);
    602 	struct fpn *res;
    603 	int word1, sig = 0;
    604 	int regnum, format;
    605 	int modreg;
    606 	int discard_result = 0;
    607 	uint32_t buf[3];
    608 #ifdef DEBUG_FPE
    609 	int flags;
    610 	char regname;
    611 #endif
    612 
    613 	fe->fe_fpsr &= ~FPSR_EXCP;
    614 
    615 	DUMP_INSN(insn);
    616 
    617 	DPRINTF(("%s: FPSR = %08x, FPCR = %08x\n", __func__,
    618 	    fe->fe_fpsr, fe->fe_fpcr));
    619 
    620 	word1 = insn->is_word1;
    621 	format = (word1 >> 10) & 7;
    622 	regnum = (word1 >> 7) & 7;
    623 
    624 	/* fetch a source operand : may not be used */
    625 	DPRINTF(("%s: dst/src FP%d=%08x,%08x,%08x\n", __func__,
    626 	    regnum, fpregs[regnum * 3], fpregs[regnum * 3 + 1],
    627 	    fpregs[regnum * 3 + 2]));
    628 
    629 	fpu_explode(fe, &fe->fe_f1, FTYPE_EXT, &fpregs[regnum * 3]);
    630 
    631 	DUMP_INSN(insn);
    632 
    633 	/* get the other operand which is always the source */
    634 	if ((word1 & 0x4000) == 0) {
    635 		DPRINTF(("%s: FP%d op FP%d => FP%d\n", __func__,
    636 		    format, regnum, regnum));
    637 		DPRINTF(("%s: src opr FP%d=%08x,%08x,%08x\n", __func__,
    638 		    format, fpregs[format * 3], fpregs[format * 3 + 1],
    639 		    fpregs[format * 3 + 2]));
    640 		fpu_explode(fe, &fe->fe_f2, FTYPE_EXT, &fpregs[format * 3]);
    641 	} else {
    642 		/* the operand is in memory */
    643 		if (format == FTYPE_DBL) {
    644 			insn->is_datasize = 8;
    645 		} else if (format == FTYPE_SNG || format == FTYPE_LNG) {
    646 			insn->is_datasize = 4;
    647 		} else if (format == FTYPE_WRD) {
    648 			insn->is_datasize = 2;
    649 		} else if (format == FTYPE_BYT) {
    650 			insn->is_datasize = 1;
    651 		} else if (format == FTYPE_EXT) {
    652 			insn->is_datasize = 12;
    653 		} else {
    654 			/* invalid or unsupported operand format */
    655 			sig = SIGFPE;
    656 			return sig;
    657 		}
    658 
    659 		/* Check an illegal mod/reg. */
    660 		modreg = insn->is_opcode & 077;
    661 		if ((modreg >> 3) == 1/*An*/ || modreg >= 075) {
    662 			return SIGILL;
    663 		}
    664 
    665 		/* Get effective address. */
    666 		sig = fpu_decode_ea(frame, insn, &insn->is_ea, modreg);
    667 		if (sig) {
    668 			DPRINTF(("%s: error in fpu_decode_ea\n", __func__));
    669 			return sig;
    670 		}
    671 
    672 		if (insn->is_ea.ea_flags == EA_DIRECT &&
    673 		    insn->is_datasize > 4) {
    674 			DPRINTF(("%s: attempted to fetch dbl/ext from reg\n",
    675 			    __func__));
    676 			return SIGILL;
    677 		}
    678 
    679 		DUMP_INSN(insn);
    680 
    681 #ifdef DEBUG_FPE
    682 		printf("%s: addr mode = ", __func__);
    683 		flags = insn->is_ea.ea_flags;
    684 		regname = (insn->is_ea.ea_regnum & 8) ? 'a' : 'd';
    685 
    686 		if (flags & EA_DIRECT) {
    687 			printf("%c%d\n", regname, insn->is_ea.ea_regnum & 7);
    688 		} else if (flags & EA_PC_REL) {
    689 			if (flags & EA_OFFSET) {
    690 				printf("pc@(%d)\n", insn->is_ea.ea_offset);
    691 			} else if (flags & EA_INDEXED) {
    692 				printf("pc@(...)\n");
    693 			}
    694 		} else if (flags & EA_PREDECR) {
    695 			printf("%c%d@-\n", regname, insn->is_ea.ea_regnum & 7);
    696 		} else if (flags & EA_POSTINCR) {
    697 			printf("%c%d@+\n", regname, insn->is_ea.ea_regnum & 7);
    698 		} else if (flags & EA_OFFSET) {
    699 			printf("%c%d@(%d)\n", regname,
    700 			    insn->is_ea.ea_regnum & 7,
    701 			    insn->is_ea.ea_offset);
    702 		} else if (flags & EA_INDEXED) {
    703 			printf("%c%d@(...)\n", regname,
    704 			    insn->is_ea.ea_regnum & 7);
    705 		} else if (flags & EA_ABS) {
    706 			printf("0x%08x\n", insn->is_ea.ea_absaddr);
    707 		} else if (flags & EA_IMMED) {
    708 			printf("#0x%08x,%08x,%08x\n",
    709 			    insn->is_ea.ea_immed[0],
    710 			    insn->is_ea.ea_immed[1],
    711 			    insn->is_ea.ea_immed[2]);
    712 		} else {
    713 			printf("%c%d@\n", regname, insn->is_ea.ea_regnum & 7);
    714 		}
    715 #endif /* DEBUG_FPE */
    716 
    717 		fpu_load_ea(frame, insn, &insn->is_ea, (char*)buf);
    718 		if (format == FTYPE_WRD) {
    719 			/* sign-extend */
    720 			buf[0] &= 0xffff;
    721 			if (buf[0] & 0x8000)
    722 				buf[0] |= 0xffff0000;
    723 			format = FTYPE_LNG;
    724 		} else if (format == FTYPE_BYT) {
    725 			/* sign-extend */
    726 			buf[0] &= 0xff;
    727 			if (buf[0] & 0x80)
    728 				buf[0] |= 0xffffff00;
    729 			format = FTYPE_LNG;
    730 		}
    731 		DPRINTF(("%s: src = %08x %08x %08x, siz = %d\n", __func__,
    732 		    buf[0], buf[1], buf[2], insn->is_datasize));
    733 		fpu_explode(fe, &fe->fe_f2, format, buf);
    734 	}
    735 
    736 	DUMP_INSN(insn);
    737 
    738 	/*
    739 	 * An arithmetic instruction emulate function has a prototype of
    740 	 * struct fpn *fpu_op(struct fpemu *);
    741 	 *
    742 	 * 1) If the instruction is monadic, then fpu_op() must use
    743 	 *    fe->fe_f2 as its operand, and return a pointer to the
    744 	 *    result.
    745 	 *
    746 	 * 2) If the instruction is diadic, then fpu_op() must use
    747 	 *    fe->fe_f1 and fe->fe_f2 as its two operands, and return a
    748 	 *    pointer to the result.
    749 	 *
    750 	 */
    751 	res = NULL;
    752 	switch (word1 & 0x7f) {
    753 	case 0x00:		/* fmove */
    754 		res = &fe->fe_f2;
    755 		break;
    756 
    757 	case 0x01:		/* fint */
    758 		res = fpu_int(fe);
    759 		break;
    760 
    761 	case 0x02:		/* fsinh */
    762 		res = fpu_sinh(fe);
    763 		break;
    764 
    765 	case 0x03:		/* fintrz */
    766 		res = fpu_intrz(fe);
    767 		break;
    768 
    769 	case 0x04:		/* fsqrt */
    770 		res = fpu_sqrt(fe);
    771 		break;
    772 
    773 	case 0x06:		/* flognp1 */
    774 		res = fpu_lognp1(fe);
    775 		break;
    776 
    777 	case 0x08:		/* fetoxm1 */
    778 		res = fpu_etoxm1(fe);
    779 		break;
    780 
    781 	case 0x09:		/* ftanh */
    782 		res = fpu_tanh(fe);
    783 		break;
    784 
    785 	case 0x0A:		/* fatan */
    786 		res = fpu_atan(fe);
    787 		break;
    788 
    789 	case 0x0C:		/* fasin */
    790 		res = fpu_asin(fe);
    791 		break;
    792 
    793 	case 0x0D:		/* fatanh */
    794 		res = fpu_atanh(fe);
    795 		break;
    796 
    797 	case 0x0E:		/* fsin */
    798 		res = fpu_sin(fe);
    799 		break;
    800 
    801 	case 0x0F:		/* ftan */
    802 		res = fpu_tan(fe);
    803 		break;
    804 
    805 	case 0x10:		/* fetox */
    806 		res = fpu_etox(fe);
    807 		break;
    808 
    809 	case 0x11:		/* ftwotox */
    810 		res = fpu_twotox(fe);
    811 		break;
    812 
    813 	case 0x12:		/* ftentox */
    814 		res = fpu_tentox(fe);
    815 		break;
    816 
    817 	case 0x14:		/* flogn */
    818 		res = fpu_logn(fe);
    819 		break;
    820 
    821 	case 0x15:		/* flog10 */
    822 		res = fpu_log10(fe);
    823 		break;
    824 
    825 	case 0x16:		/* flog2 */
    826 		res = fpu_log2(fe);
    827 		break;
    828 
    829 	case 0x18:		/* fabs */
    830 		fe->fe_f2.fp_sign = 0;
    831 		res = &fe->fe_f2;
    832 		break;
    833 
    834 	case 0x19:		/* fcosh */
    835 		res = fpu_cosh(fe);
    836 		break;
    837 
    838 	case 0x1A:		/* fneg */
    839 		fe->fe_f2.fp_sign = !fe->fe_f2.fp_sign;
    840 		res = &fe->fe_f2;
    841 		break;
    842 
    843 	case 0x1C:		/* facos */
    844 		res = fpu_acos(fe);
    845 		break;
    846 
    847 	case 0x1D:		/* fcos */
    848 		res = fpu_cos(fe);
    849 		break;
    850 
    851 	case 0x1E:		/* fgetexp */
    852 		res = fpu_getexp(fe);
    853 		break;
    854 
    855 	case 0x1F:		/* fgetman */
    856 		res = fpu_getman(fe);
    857 		break;
    858 
    859 	case 0x20:		/* fdiv */
    860 	case 0x24:		/* fsgldiv: cheating - better than nothing */
    861 		res = fpu_div(fe);
    862 		break;
    863 
    864 	case 0x21:		/* fmod */
    865 		res = fpu_mod(fe);
    866 		break;
    867 
    868 	case 0x28:		/* fsub */
    869 		fe->fe_f2.fp_sign = !fe->fe_f2.fp_sign; /* f2 = -f2 */
    870 		/* FALLTHROUGH */
    871 	case 0x22:		/* fadd */
    872 		res = fpu_add(fe);
    873 		break;
    874 
    875 	case 0x23:		/* fmul */
    876 	case 0x27:		/* fsglmul: cheating - better than nothing */
    877 		res = fpu_mul(fe);
    878 		break;
    879 
    880 	case 0x25:		/* frem */
    881 		res = fpu_rem(fe);
    882 		break;
    883 
    884 	case 0x26:
    885 		/* fscale is handled by a separate function */
    886 		break;
    887 
    888 	case 0x30:
    889 	case 0x31:
    890 	case 0x32:
    891 	case 0x33:
    892 	case 0x34:
    893 	case 0x35:
    894 	case 0x36:
    895 	case 0x37:		/* fsincos */
    896 		res = fpu_sincos(fe, word1 & 7);
    897 		break;
    898 
    899 	case 0x38:		/* fcmp */
    900 		res = fpu_cmp(fe);
    901 		discard_result = 1;
    902 		break;
    903 
    904 	case 0x3A:		/* ftst */
    905 		res = &fe->fe_f2;
    906 		discard_result = 1;
    907 		break;
    908 
    909 	default:		/* possibly 040/060 instructions */
    910 		DPRINTF(("%s: bad opcode=0x%x, word1=0x%x\n", __func__,
    911 		    insn->is_opcode, insn->is_word1));
    912 		sig = SIGILL;
    913 	}
    914 
    915 	/* for sanity */
    916 	if (res == NULL)
    917 		sig = SIGILL;
    918 
    919 	if (sig == 0) {
    920 		if (!discard_result)
    921 			fpu_implode(fe, res, FTYPE_EXT, &fpregs[regnum * 3]);
    922 
    923 		/* update fpsr according to the result of operation */
    924 		fpu_upd_fpsr(fe, res);
    925 #ifdef DEBUG_FPE
    926 		if (!discard_result) {
    927 			printf("%s: %08x,%08x,%08x stored in FP%d\n", __func__,
    928 			    fpregs[regnum * 3],
    929 			    fpregs[regnum * 3 + 1],
    930 			    fpregs[regnum * 3 + 2],
    931 			    regnum);
    932 		} else {
    933 			static const char *class_name[] =
    934 			    { "SNAN", "QNAN", "ZERO", "NUM", "INF" };
    935 			printf("%s: result(%s,%c,%d,%08x,%08x,%08x) "
    936 			    "discarded\n", __func__,
    937 			    class_name[res->fp_class + 2],
    938 			    res->fp_sign ? '-' : '+', res->fp_exp,
    939 			    res->fp_mant[0], res->fp_mant[1],
    940 			    res->fp_mant[2]);
    941 		}
    942 #endif
    943 	} else {
    944 		DPRINTF(("%s: received signal %d\n", __func__, sig));
    945 	}
    946 
    947 	DPRINTF(("%s: FPSR = %08x, FPCR = %08x\n", __func__,
    948 	    fe->fe_fpsr, fe->fe_fpcr));
    949 
    950 	DUMP_INSN(insn);
    951 
    952 	return sig;
    953 }
    954 
    955 /*
    956  * test condition code according to the predicate in the opcode.
    957  * returns -1 when the predicate evaluates to true, 0 when false.
    958  * signal numbers are returned when an error is detected.
    959  */
    960 static int
    961 test_cc(struct fpemu *fe, int pred)
    962 {
    963 	int result, sig_bsun;
    964 	int fpsr;
    965 
    966 	fpsr = fe->fe_fpsr;
    967 	DPRINTF(("%s: fpsr=0x%08x\n", __func__, fpsr));
    968 	pred &= 0x3f;		/* lowest 6 bits */
    969 
    970 	DPRINTF(("%s: ", __func__));
    971 
    972 	if (pred >= 0x20) {
    973 		DPRINTF(("Illegal condition code\n"));
    974 		return SIGILL;
    975 	} else if (pred & 0x10) {
    976 		/* IEEE nonaware tests */
    977 		sig_bsun = 1;
    978 		pred &= 0x0f;		/* lower 4 bits */
    979 	} else {
    980 		/* IEEE aware tests */
    981 		DPRINTF(("IEEE "));
    982 		sig_bsun = 0;
    983 	}
    984 
    985 	/*
    986 	 *           condition   real 68882
    987 	 * mnemonic  in manual   condition
    988 	 * --------  ----------  ----------
    989 	 * 0000 F    0           <-         = ~NAN &  0 & ~Z | 0
    990 	 * 0001 EQ   Z           <-         = ~NAN &  0 |  Z | 0
    991 	 * 0010 OGT  ~(NAN|Z|N)  <-         = ~NAN & ~N & ~Z | 0
    992 	 * 0011 OGE  Z|~(NAN|N)  <-         = ~NAN & ~N |  Z | 0
    993 	 * 0100 OLT  N&~(NAN|Z)  <-         = ~NAN &  N & ~Z | 0
    994 	 * 0101 OLE  Z|(N&~NAN)  <-         = ~NAN &  N |  Z | 0
    995 	 * 0110 OGL  ~(NAN|Z)    <-         = ~NAN &  1 & ~Z | 0
    996 	 * 0111 OR   ~NAN        Z|~NAN     = ~NAN &  1 |  Z | 0
    997 	 *
    998 	 * 1000 UN   NAN         <-         =  1   &  0 & ~Z | NAN
    999 	 * 1001 UEQ  NAN|Z       <-         =  1   &  0 |  Z | NAN
   1000 	 * 1010 UGT  NAN|~(N|Z)  <-         =  1   & ~N & ~Z | NAN
   1001 	 * 1011 UGE  NAN|(Z|~N)  <-         =  1   & ~N |  Z | NAN
   1002 	 * 1100 ULT  NAN|(N&~Z)  <-         =  1   &  N & ~Z | NAN
   1003 	 * 1101 ULE  NAN|(Z|N)   <-         =  1   &  N |  Z | NAN
   1004 	 * 1110 NE   ~Z          NAN|(~Z)   =  1   &  1 & ~Z | NAN
   1005 	 * 1111 T    1           <-         =  1   &  1 |  Z | NAN
   1006 	 */
   1007 	if ((pred & 0x08) == 0) {
   1008 		result = ((fpsr & FPSR_NAN) == 0);
   1009 	} else {
   1010 		result = 1;
   1011 	}
   1012 	switch (pred & 0x06) {
   1013 	case 0x00:	/* AND 0 */
   1014 		result &= 0;
   1015 		break;
   1016 	case 0x02:	/* AND ~N */
   1017 		result &= ((fpsr & FPSR_NEG) == 0);
   1018 		break;
   1019 	case 0x04:	/* AND N */
   1020 		result &= ((fpsr & FPSR_NEG) != 0);
   1021 		break;
   1022 	case 0x06:	/* AND 1 */
   1023 		result &= 1;
   1024 		break;
   1025 	}
   1026 	if ((pred & 0x01) == 0) {
   1027 		result &= ((fpsr & FPSR_ZERO) == 0);
   1028 	} else {
   1029 		result |= ((fpsr & FPSR_ZERO) != 0);
   1030 	}
   1031 	if ((pred & 0x08) != 0) {
   1032 		result |= ((fpsr & FPSR_NAN) != 0);
   1033 	}
   1034 
   1035 	DPRINTF(("=> %s (%d)\n", result ? "true" : "false", result));
   1036 	/* if it's an IEEE unaware test and NAN is set, BSUN is set */
   1037 	if (sig_bsun && (fpsr & FPSR_NAN)) {
   1038 		fpsr |= FPSR_BSUN;
   1039 	}
   1040 	/* if BSUN is set, IOP is set too */
   1041 	if ((fpsr & FPSR_BSUN)) {
   1042 		fpsr |= FPSR_AIOP;
   1043 	}
   1044 
   1045 	/* put fpsr back */
   1046 	fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr = fpsr;
   1047 
   1048 	return -result;
   1049 }
   1050 
   1051 /*
   1052  * type 1: fdbcc, fscc, ftrapcc
   1053  * In this function, we know:
   1054  *   (opcode & 0x01C0) == 0x0040
   1055  * return SIGILL for an illegal instruction.
   1056  * return SIGFPE if FTRAPcc's condition is met.
   1057  */
   1058 static int
   1059 fpu_emul_type1(struct fpemu *fe, struct instruction *insn)
   1060 {
   1061 	struct frame *frame = fe->fe_frame;
   1062 	int advance, sig, branch, displ;
   1063 	unsigned short sval;
   1064 
   1065 	branch = test_cc(fe, insn->is_word1);
   1066 	if (branch > 0)
   1067 		return branch;
   1068 	fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr;
   1069 
   1070 	sig = 0;
   1071 	switch (insn->is_opcode & 070) {
   1072 	case 010:			/* fdbcc */
   1073 		if (branch) {
   1074 			/* advance */
   1075 			insn->is_advance = 6;
   1076 		} else {
   1077 			/* decrement Dn and if (Dn != -1) branch */
   1078 			uint16_t count = frame->f_regs[insn->is_opcode & 7];
   1079 
   1080 			if (count-- != 0) {
   1081 				if (ufetch_short((void *)(insn->is_pc +
   1082 							   insn->is_advance),
   1083 						  &sval)) {
   1084 					DPRINTF(("%s: fault reading "
   1085 					    "displacement\n", __func__));
   1086 					return SIGSEGV;
   1087 				}
   1088 				displ = sval;
   1089 				/* sign-extend the displacement */
   1090 				displ &= 0xffff;
   1091 				if (displ & 0x8000) {
   1092 					displ |= 0xffff0000;
   1093 				}
   1094 				insn->is_advance += displ;
   1095 #if 0				/* XXX */
   1096 				insn->is_nextpc = insn->is_pc +
   1097 				    insn->is_advance;
   1098 #endif
   1099 			} else {
   1100 				insn->is_advance = 6;
   1101 			}
   1102 			/* write it back */
   1103 			frame->f_regs[insn->is_opcode & 7] &= 0xffff0000;
   1104 			frame->f_regs[insn->is_opcode & 7] |= (uint32_t)count;
   1105 		}
   1106 		break;
   1107 
   1108 	case 070:			/* ftrapcc or fscc */
   1109 		advance = 4;
   1110 		if ((insn->is_opcode & 07) >= 2) {
   1111 			switch (insn->is_opcode & 07) {
   1112 			case 3:		/* long opr */
   1113 				advance += 2;
   1114 			case 2:		/* word opr */
   1115 				advance += 2;
   1116 			case 4:		/* no opr */
   1117 				break;
   1118 			default:
   1119 				return SIGILL;
   1120 				break;
   1121 			}
   1122 			insn->is_advance = advance;
   1123 
   1124 			if (branch) {
   1125 				/* trap */
   1126 				sig = SIGFPE;
   1127 			}
   1128 			break;
   1129 		}
   1130 
   1131 		/* FALLTHROUGH */
   1132 	default:			/* fscc */
   1133 		insn->is_datasize = 1;	/* always byte */
   1134 		sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
   1135 		if (sig) {
   1136 			break;
   1137 		}
   1138 		/* set result */
   1139 		sig = fpu_store_ea(frame, insn, &insn->is_ea, (char *)&branch);
   1140 		break;
   1141 	}
   1142 	return sig;
   1143 }
   1144 
   1145 /*
   1146  * Type 2 or 3: fbcc (also fnop)
   1147  * In this function, we know:
   1148  *   (opcode & 0x0180) == 0x0080
   1149  */
   1150 static int
   1151 fpu_emul_brcc(struct fpemu *fe, struct instruction *insn)
   1152 {
   1153 	int displ, word2;
   1154 	int sig;
   1155 	unsigned short sval;
   1156 
   1157 	/*
   1158 	 * Get branch displacement.
   1159 	 */
   1160 	displ = insn->is_word1;
   1161 
   1162 	if (insn->is_opcode & 0x40) {
   1163 		if (ufetch_short((void *)(insn->is_pc + insn->is_advance),
   1164 				  &sval)) {
   1165 			DPRINTF(("%s: fault reading word2\n", __func__));
   1166 			return SIGSEGV;
   1167 		}
   1168 		word2 = sval;
   1169 		displ <<= 16;
   1170 		displ |= word2;
   1171 		insn->is_advance += 2;
   1172 	} else {
   1173 		/* displacement is word sized */
   1174 		if (displ & 0x8000)
   1175 			displ |= 0xFFFF0000;
   1176 	}
   1177 
   1178 	/* XXX: If CC, insn->is_pc += displ */
   1179 	sig = test_cc(fe, insn->is_opcode);
   1180 	fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr;
   1181 
   1182 	if (fe->fe_fpsr & fe->fe_fpcr & FPSR_EXCP) {
   1183 		return SIGFPE;		/* caught an exception */
   1184 	}
   1185 	if (sig == -1) {
   1186 		/*
   1187 		 * branch does take place; 2 is the offset to the 1st disp word
   1188 		 */
   1189 		insn->is_advance = displ + 2;
   1190 #if 0		/* XXX */
   1191 		insn->is_nextpc = insn->is_pc + insn->is_advance;
   1192 #endif
   1193 	} else if (sig)
   1194 		return SIGILL;		/* got a signal */
   1195 	DPRINTF(("%s: %s insn @ %x (%x+%x) (disp=%x)\n", __func__,
   1196 	    (sig == -1) ? "BRANCH to" : "NEXT",
   1197 	    insn->is_pc + insn->is_advance, insn->is_pc, insn->is_advance,
   1198 	    displ));
   1199 	return 0;
   1200 }
   1201