1 /* $NetBSD: fpu.c,v 1.27 2020/04/16 05:44:43 skrll Exp $ */ 2 3 /* 4 * Copyright (c) 2002 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Matthew Fredette. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * FPU handling for NetBSD/hppa. 34 */ 35 36 #include <sys/cdefs.h> 37 __KERNEL_RCSID(0, "$NetBSD: fpu.c,v 1.27 2020/04/16 05:44:43 skrll Exp $"); 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/proc.h> 42 #include <sys/signalvar.h> 43 44 #include <uvm/uvm_extern.h> 45 46 #include <machine/cpufunc.h> 47 #include <machine/frame.h> 48 #include <machine/reg.h> 49 #include <machine/pcb.h> 50 #include <machine/pmap.h> 51 52 #include <hppa/hppa/machdep.h> 53 54 #include "../spmath/float.h" 55 #include "../spmath/fpudispatch.h" 56 57 /* Some macros representing opcodes. */ 58 #define OPCODE_NOP 0x08000240 59 #define OPCODE_COPR_0_0 0x30000000 60 61 /* Some macros representing fields in load/store opcodes. */ 62 #define OPCODE_CMPLT_S 0x00002000 63 #define OPCODE_CMPLT_M 0x00000020 64 #define OPCODE_CMPLT_SM (OPCODE_CMPLT_S | OPCODE_CMPLT_M) 65 #define OPCODE_CMPLT_MB OPCODE_CMPLT_M 66 #define OPCODE_CMPLT_MA (OPCODE_CMPLT_S | OPCODE_CMPLT_M) 67 #define OPCODE_CMPLT (OPCODE_CMPLT_S | OPCODE_CMPLT_M) 68 #define OPCODE_DOUBLE 0x08000000 69 #define OPCODE_STORE 0x00000200 70 #define OPCODE_INDEXED 0x00001000 71 72 /* This is nonzero iff we're using a hardware FPU. */ 73 int fpu_present; 74 75 /* If we have any FPU, this is its version. */ 76 u_int fpu_version; 77 78 /* The number of times we have had to switch the FPU context. */ 79 u_int fpu_csw; 80 81 /* In locore.S, this swaps states in and out of the FPU. */ 82 void hppa_fpu_swapout(struct pcb *); 83 void hppa_fpu_swap(struct fpreg *, struct fpreg *); 84 85 static int hppa_fpu_ls(struct trapframe *, struct lwp *); 86 87 /* 88 * Given a trapframe and a general register number, the 89 * FRAME_REG macro returns a pointer to that general 90 * register. The _frame_reg_positions array is a lookup 91 * table, since the general registers aren't in order 92 * in a trapframe. 93 * 94 * NB: this more or less assumes that all members of 95 * struct trapframe are u_ints. 96 */ 97 #define FRAME_REG(f, reg, r0) \ 98 ((reg) == 0 ? (&r0) : ((&(f)->tf_t1) + _frame_reg_positions[reg])) 99 #define _FRAME_POSITION(f) \ 100 ((&((struct trapframe *) 0)->f) - (&((struct trapframe *) 0)->tf_t1)) 101 const int _frame_reg_positions[32] = { 102 -1, /* r0 */ 103 _FRAME_POSITION(tf_r1), 104 _FRAME_POSITION(tf_rp), /* r2 */ 105 _FRAME_POSITION(tf_r3), 106 _FRAME_POSITION(tf_r4), 107 _FRAME_POSITION(tf_r5), 108 _FRAME_POSITION(tf_r6), 109 _FRAME_POSITION(tf_r7), 110 _FRAME_POSITION(tf_r8), 111 _FRAME_POSITION(tf_r9), 112 _FRAME_POSITION(tf_r10), 113 _FRAME_POSITION(tf_r11), 114 _FRAME_POSITION(tf_r12), 115 _FRAME_POSITION(tf_r13), 116 _FRAME_POSITION(tf_r14), 117 _FRAME_POSITION(tf_r15), 118 _FRAME_POSITION(tf_r16), 119 _FRAME_POSITION(tf_r17), 120 _FRAME_POSITION(tf_r18), 121 _FRAME_POSITION(tf_t4), /* r19 */ 122 _FRAME_POSITION(tf_t3), /* r20 */ 123 _FRAME_POSITION(tf_t2), /* r21 */ 124 _FRAME_POSITION(tf_t1), /* r22 */ 125 _FRAME_POSITION(tf_arg3), /* r23 */ 126 _FRAME_POSITION(tf_arg2), /* r24 */ 127 _FRAME_POSITION(tf_arg1), /* r25 */ 128 _FRAME_POSITION(tf_arg0), /* r26 */ 129 _FRAME_POSITION(tf_dp), /* r27 */ 130 _FRAME_POSITION(tf_ret0), /* r28 */ 131 _FRAME_POSITION(tf_ret1), /* r29 */ 132 _FRAME_POSITION(tf_sp), /* r30 */ 133 _FRAME_POSITION(tf_r31), 134 }; 135 136 /* 137 * Bootstraps the FPU. 138 */ 139 void 140 hppa_fpu_bootstrap(u_int ccr_enable) 141 { 142 uint32_t junk[2]; 143 uint32_t vers[2]; 144 145 /* See if we have a present and functioning hardware FPU. */ 146 fpu_present = (ccr_enable & HPPA_FPUS) == HPPA_FPUS; 147 if (!fpu_present) { 148 fpu_csw = 0; 149 curcpu()->ci_fpu_state = 0; 150 151 return; 152 } 153 154 KASSERT(fpu_present); 155 /* Initialize the FPU and get its version. */ 156 157 /* 158 * We track what process has the FPU, 159 * and how many times we have to swap 160 * in and out. 161 */ 162 163 /* 164 * The PA-RISC 1.1 Architecture manual is 165 * pretty clear that the copr,0,0 must be 166 * wrapped in double word stores of fr0, 167 * otherwise its operation is undefined. 168 */ 169 __asm volatile( 170 " ldo %0, %%r22 \n" 171 " fstds %%fr0, 0(%%r22) \n" 172 " ldo %1, %%r22 \n" 173 " copr,0,0 \n" 174 " fstds %%fr0, 0(%%r22) \n" 175 : "=m" (junk), "=m" (vers) : : "r22"); 176 177 /* 178 * Now mark that no process has the FPU, 179 * and disable it, so the first time it 180 * gets used the process' state gets 181 * swapped in. 182 */ 183 fpu_csw = 0; 184 curcpu()->ci_fpu_state = 0; 185 mtctl(ccr_enable & (CCR_MASK ^ HPPA_FPUS), CR_CCR); 186 187 fpu_version = vers[0]; 188 } 189 190 /* 191 * If the given LWP has its state in the FPU, 192 * flush that state out into the LWP's PCB. 193 */ 194 void 195 hppa_fpu_flush(struct lwp *l) 196 { 197 struct trapframe *tf = l->l_md.md_regs; 198 struct pcb *pcb = lwp_getpcb(l); 199 struct cpu_info *ci = curcpu(); 200 201 if (!fpu_present) 202 return; 203 204 /* 205 * If this process' state is currently in hardware, swap it out. 206 */ 207 208 if (ci->ci_fpu_state == 0 || 209 ci->ci_fpu_state != tf->tf_cr30) { 210 return; 211 } 212 213 hppa_fpu_swapout(pcb); 214 ci->ci_fpu_state = 0; 215 } 216 217 /* 218 * This emulates a coprocessor load/store instruction. 219 */ 220 static int 221 hppa_fpu_ls(struct trapframe *frame, struct lwp *l) 222 { 223 struct pcb *pcb = lwp_getpcb(l); 224 u_int inst, inst_b, inst_x, inst_s, inst_t; 225 int log2size; 226 u_int *base; 227 u_int offset, index, im5; 228 void *fpreg; 229 u_int r0 = 0; 230 int error; 231 232 /* 233 * Get the instruction that we're emulating, 234 * and break it down. Using HP bit notation, 235 * b is a five-bit field starting at bit 10, 236 * x is a five-bit field starting at bit 15, 237 * s is a two-bit field starting at bit 17, 238 * and t is a five-bit field starting at bit 31. 239 */ 240 inst = frame->tf_iir; 241 __asm volatile( 242 " extru %4, 10, 5, %1 \n" 243 " extru %4, 15, 5, %2 \n" 244 " extru %4, 17, 2, %3 \n" 245 " extru %4, 31, 5, %4 \n" 246 : "=r" (inst_b), "=r" (inst_x), "=r" (inst_s), "=r" (inst_t) 247 : "r" (inst)); 248 249 /* 250 * The space must be the user's space, else we 251 * segfault. 252 */ 253 if (inst_s != pcb->pcb_space) 254 return EFAULT; 255 256 /* See whether or not this is a doubleword load/store. */ 257 log2size = (inst & OPCODE_DOUBLE) ? 3 : 2; 258 259 /* Get the floating point register. */ 260 fpreg = ((char *)pcb->pcb_fpregs) + (inst_t << log2size); 261 262 /* Get the base register. */ 263 base = FRAME_REG(frame, inst_b, r0); 264 265 /* Dispatch on whether or not this is an indexed load/store. */ 266 if (inst & OPCODE_INDEXED) { 267 268 /* Get the index register value. */ 269 index = *FRAME_REG(frame, inst_x, r0); 270 271 /* Dispatch on the completer. */ 272 switch (inst & OPCODE_CMPLT) { 273 case OPCODE_CMPLT_S: 274 offset = *base + (index << log2size); 275 break; 276 case OPCODE_CMPLT_M: 277 offset = *base; 278 *base = *base + index; 279 break; 280 case OPCODE_CMPLT_SM: 281 offset = *base; 282 *base = *base + (index << log2size); 283 break; 284 default: 285 offset = *base + index; 286 break; 287 } 288 } else { 289 290 /* Do a low_sign_ext(x, 5). */ 291 im5 = inst_x >> 1; 292 if (inst_x & 1) 293 im5 |= 0xfffffff0; 294 295 /* Dispatch on the completer. */ 296 switch (inst & OPCODE_CMPLT) { 297 case OPCODE_CMPLT_MB: 298 offset = *base + im5; 299 *base = *base + im5; 300 break; 301 case OPCODE_CMPLT_MA: 302 offset = *base; 303 *base = *base + im5; 304 break; 305 default: 306 offset = *base + im5; 307 break; 308 } 309 } 310 311 /* 312 * The offset we calculated must be the same as the 313 * offset in the IOR. 314 */ 315 KASSERT(offset == frame->tf_ior); 316 317 /* Perform the load or store. */ 318 error = (inst & OPCODE_STORE) ? 319 copyout(fpreg, (void *) offset, 1 << log2size) : 320 copyin((const void *) offset, fpreg, 1 << log2size); 321 return error; 322 } 323 324 /* 325 * This is called to emulate an instruction. 326 */ 327 void 328 hppa_fpu_emulate(struct trapframe *frame, struct lwp *l, u_int inst) 329 { 330 struct pcb *pcb = lwp_getpcb(l); 331 u_int opcode, class, sub; 332 u_int *fpregs; 333 int exception; 334 ksiginfo_t ksi; 335 336 /* 337 * If the process' state is in any hardware FPU, 338 * flush it out - we need to operate on it. 339 */ 340 hppa_fpu_flush(l); 341 342 /* 343 * Get the instruction that we're emulating, 344 * and break it down. Using HP bit notation, 345 * the class is a two-bit field starting at 346 * bit 22, the opcode is a 6-bit field starting 347 * at bit 5, and sub for a class 1 instruction 348 * is a two bit field starting at bit 16, else 349 * it is a three bit field starting at bit 18. 350 */ 351 #if 0 352 __asm volatile( 353 " extru %3, 22, 2, %1 \n" 354 " extru %3, 5, 6, %0 \n" 355 " extru %3, 18, 3, %2 \n" 356 " comib,<> 1, %1, 0 \n" 357 " extru %3, 16, 2, %2 \n" 358 : "=r" (opcode), "=r" (class), "=r" (sub) 359 : "r" (inst)); 360 #else 361 opcode = (inst >> (31 - 5)) & 0x3f; 362 class = (inst >> (31 - 22)) & 0x3; 363 if (class == 1) { 364 sub = (inst >> (31 - 16)) & 3; 365 } else { 366 sub = (inst >> (31 - 18)) & 7; 367 } 368 #endif 369 370 /* Get this LWP's FPU registers. */ 371 fpregs = (u_int *)pcb->pcb_fpregs; 372 373 /* Dispatch on the opcode. */ 374 switch (opcode) { 375 case 0x09: 376 case 0x0b: 377 if (hppa_fpu_ls(frame, l) != 0) { 378 KSI_INIT_TRAP(&ksi); 379 ksi.ksi_signo = SIGSEGV; 380 ksi.ksi_code = SEGV_MAPERR; 381 ksi.ksi_trap = T_DTLBMISS; 382 ksi.ksi_addr = (void *)frame->tf_iioq_head; 383 trapsignal(l, &ksi); 384 } 385 return; 386 case 0x0c: 387 exception = decode_0c(inst, class, sub, fpregs); 388 break; 389 case 0x0e: 390 exception = decode_0e(inst, class, sub, fpregs); 391 break; 392 case 0x06: 393 exception = decode_06(inst, fpregs); 394 break; 395 case 0x26: 396 exception = decode_26(inst, fpregs); 397 break; 398 default: 399 exception = UNIMPLEMENTEDEXCEPTION; 400 break; 401 } 402 403 if (exception) { 404 KSI_INIT_TRAP(&ksi); 405 if (exception & UNIMPLEMENTEDEXCEPTION) { 406 ksi.ksi_signo = SIGILL; 407 ksi.ksi_code = ILL_COPROC; 408 } else { 409 ksi.ksi_signo = SIGFPE; 410 if (exception & INVALIDEXCEPTION) { 411 ksi.ksi_code = FPE_FLTINV; 412 } else if (exception & DIVISIONBYZEROEXCEPTION) { 413 ksi.ksi_code = FPE_FLTDIV; 414 } else if (exception & OVERFLOWEXCEPTION) { 415 ksi.ksi_code = FPE_FLTOVF; 416 } else if (exception & UNDERFLOWEXCEPTION) { 417 ksi.ksi_code = FPE_FLTUND; 418 } else if (exception & INEXACTEXCEPTION) { 419 ksi.ksi_code = FPE_FLTRES; 420 } 421 } 422 ksi.ksi_trap = T_EMULATION; 423 ksi.ksi_addr = (void *)frame->tf_iioq_head; 424 trapsignal(l, &ksi); 425 } 426 } 427