Home | History | Annotate | Line # | Download | only in i915
      1 /*	$NetBSD: i915_active.h,v 1.3 2021/12/19 11:59:04 riastradh Exp $	*/
      2 
      3 /*
      4  * SPDX-License-Identifier: MIT
      5  *
      6  * Copyright  2019 Intel Corporation
      7  */
      8 
      9 #ifndef _I915_ACTIVE_H_
     10 #define _I915_ACTIVE_H_
     11 
     12 #include <linux/lockdep.h>
     13 
     14 #include "i915_active_types.h"
     15 #include "i915_request.h"
     16 
     17 struct i915_request;
     18 struct intel_engine_cs;
     19 struct intel_timeline;
     20 
     21 /*
     22  * We treat requests as fences. This is not be to confused with our
     23  * "fence registers" but pipeline synchronisation objects ala GL_ARB_sync.
     24  * We use the fences to synchronize access from the CPU with activity on the
     25  * GPU, for example, we should not rewrite an object's PTE whilst the GPU
     26  * is reading them. We also track fences at a higher level to provide
     27  * implicit synchronisation around GEM objects, e.g. set-domain will wait
     28  * for outstanding GPU rendering before marking the object ready for CPU
     29  * access, or a pageflip will wait until the GPU is complete before showing
     30  * the frame on the scanout.
     31  *
     32  * In order to use a fence, the object must track the fence it needs to
     33  * serialise with. For example, GEM objects want to track both read and
     34  * write access so that we can perform concurrent read operations between
     35  * the CPU and GPU engines, as well as waiting for all rendering to
     36  * complete, or waiting for the last GPU user of a "fence register". The
     37  * object then embeds a #i915_active_fence to track the most recent (in
     38  * retirement order) request relevant for the desired mode of access.
     39  * The #i915_active_fence is updated with i915_active_fence_set() to
     40  * track the most recent fence request, typically this is done as part of
     41  * i915_vma_move_to_active().
     42  *
     43  * When the #i915_active_fence completes (is retired), it will
     44  * signal its completion to the owner through a callback as well as mark
     45  * itself as idle (i915_active_fence.request == NULL). The owner
     46  * can then perform any action, such as delayed freeing of an active
     47  * resource including itself.
     48  */
     49 
     50 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb);
     51 
     52 /**
     53  * __i915_active_fence_init - prepares the activity tracker for use
     54  * @active - the active tracker
     55  * @fence - initial fence to track, can be NULL
     56  * @func - a callback when then the tracker is retired (becomes idle),
     57  *         can be NULL
     58  *
     59  * i915_active_fence_init() prepares the embedded @active struct for use as
     60  * an activity tracker, that is for tracking the last known active fence
     61  * associated with it. When the last fence becomes idle, when it is retired
     62  * after completion, the optional callback @func is invoked.
     63  */
     64 static inline void
     65 __i915_active_fence_init(struct i915_active_fence *active,
     66 			 void *fence,
     67 			 dma_fence_func_t fn)
     68 {
     69 	RCU_INIT_POINTER(active->fence, fence);
     70 	active->cb.func = fn ?: i915_active_noop;
     71 }
     72 
     73 #define INIT_ACTIVE_FENCE(A) \
     74 	__i915_active_fence_init((A), NULL, NULL)
     75 
     76 struct dma_fence *
     77 __i915_active_fence_set(struct i915_active_fence *active,
     78 			struct dma_fence *fence);
     79 
     80 /**
     81  * i915_active_fence_set - updates the tracker to watch the current fence
     82  * @active - the active tracker
     83  * @rq - the request to watch
     84  *
     85  * i915_active_fence_set() watches the given @rq for completion. While
     86  * that @rq is busy, the @active reports busy. When that @rq is signaled
     87  * (or else retired) the @active tracker is updated to report idle.
     88  */
     89 int __must_check
     90 i915_active_fence_set(struct i915_active_fence *active,
     91 		      struct i915_request *rq);
     92 /**
     93  * i915_active_fence_get - return a reference to the active fence
     94  * @active - the active tracker
     95  *
     96  * i915_active_fence_get() returns a reference to the active fence,
     97  * or NULL if the active tracker is idle. The reference is obtained under RCU,
     98  * so no locking is required by the caller.
     99  *
    100  * The reference should be freed with dma_fence_put().
    101  */
    102 static inline struct dma_fence *
    103 i915_active_fence_get(struct i915_active_fence *active)
    104 {
    105 	struct dma_fence *fence;
    106 
    107 	rcu_read_lock();
    108 	fence = dma_fence_get_rcu_safe(&active->fence);
    109 	rcu_read_unlock();
    110 
    111 	return fence;
    112 }
    113 
    114 /**
    115  * i915_active_fence_isset - report whether the active tracker is assigned
    116  * @active - the active tracker
    117  *
    118  * i915_active_fence_isset() returns true if the active tracker is currently
    119  * assigned to a fence. Due to the lazy retiring, that fence may be idle
    120  * and this may report stale information.
    121  */
    122 static inline bool
    123 i915_active_fence_isset(const struct i915_active_fence *active)
    124 {
    125 	return rcu_access_pointer(active->fence);
    126 }
    127 
    128 /*
    129  * GPU activity tracking
    130  *
    131  * Each set of commands submitted to the GPU compromises a single request that
    132  * signals a fence upon completion. struct i915_request combines the
    133  * command submission, scheduling and fence signaling roles. If we want to see
    134  * if a particular task is complete, we need to grab the fence (struct
    135  * i915_request) for that task and check or wait for it to be signaled. More
    136  * often though we want to track the status of a bunch of tasks, for example
    137  * to wait for the GPU to finish accessing some memory across a variety of
    138  * different command pipelines from different clients. We could choose to
    139  * track every single request associated with the task, but knowing that
    140  * each request belongs to an ordered timeline (later requests within a
    141  * timeline must wait for earlier requests), we need only track the
    142  * latest request in each timeline to determine the overall status of the
    143  * task.
    144  *
    145  * struct i915_active provides this tracking across timelines. It builds a
    146  * composite shared-fence, and is updated as new work is submitted to the task,
    147  * forming a snapshot of the current status. It should be embedded into the
    148  * different resources that need to track their associated GPU activity to
    149  * provide a callback when that GPU activity has ceased, or otherwise to
    150  * provide a serialisation point either for request submission or for CPU
    151  * synchronisation.
    152  */
    153 
    154 void __i915_active_init(struct i915_active *ref,
    155 			int (*active)(struct i915_active *ref),
    156 			void (*retire)(struct i915_active *ref),
    157 			struct lock_class_key *mkey,
    158 			struct lock_class_key *wkey);
    159 
    160 /* Specialise each class of i915_active to avoid impossible lockdep cycles. */
    161 #define i915_active_init(ref, active, retire) do {		\
    162 	static struct lock_class_key __mkey;				\
    163 	static struct lock_class_key __wkey;				\
    164 									\
    165 	__i915_active_init(ref, active, retire, &__mkey, &__wkey);	\
    166 } while (0)
    167 
    168 int i915_active_ref(struct i915_active *ref,
    169 		    struct intel_timeline *tl,
    170 		    struct dma_fence *fence);
    171 
    172 static inline int
    173 i915_active_add_request(struct i915_active *ref, struct i915_request *rq)
    174 {
    175 	return i915_active_ref(ref, i915_request_timeline(rq), &rq->fence);
    176 }
    177 
    178 void i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f);
    179 
    180 static inline bool i915_active_has_exclusive(struct i915_active *ref)
    181 {
    182 	return rcu_access_pointer(ref->excl.fence);
    183 }
    184 
    185 int i915_active_wait(struct i915_active *ref);
    186 
    187 int i915_request_await_active(struct i915_request *rq, struct i915_active *ref);
    188 
    189 int i915_active_acquire(struct i915_active *ref);
    190 bool i915_active_acquire_if_busy(struct i915_active *ref);
    191 void i915_active_release(struct i915_active *ref);
    192 
    193 static inline void __i915_active_acquire(struct i915_active *ref)
    194 {
    195 	GEM_BUG_ON(!atomic_read(&ref->count));
    196 	atomic_inc(&ref->count);
    197 }
    198 
    199 static inline bool
    200 i915_active_is_idle(const struct i915_active *ref)
    201 {
    202 	return !atomic_read(&ref->count);
    203 }
    204 
    205 void i915_active_fini(struct i915_active *ref);
    206 
    207 int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
    208 					    struct intel_engine_cs *engine);
    209 void i915_active_acquire_barrier(struct i915_active *ref);
    210 void i915_request_add_active_barriers(struct i915_request *rq);
    211 
    212 void i915_active_print(struct i915_active *ref, struct drm_printer *m);
    213 void i915_active_unlock_wait(struct i915_active *ref);
    214 
    215 #endif /* _I915_ACTIVE_H_ */
    216