Home | History | Annotate | Line # | Download | only in gt
      1 /*	$NetBSD: intel_gtt.c,v 1.9 2021/12/19 12:10:42 riastradh Exp $	*/
      2 
      3 // SPDX-License-Identifier: MIT
      4 /*
      5  * Copyright  2020 Intel Corporation
      6  */
      7 
      8 #include <sys/cdefs.h>
      9 __KERNEL_RCSID(0, "$NetBSD: intel_gtt.c,v 1.9 2021/12/19 12:10:42 riastradh Exp $");
     10 
     11 #include <linux/slab.h> /* fault-inject.h is not standalone! */
     12 
     13 #include <linux/fault-inject.h>
     14 
     15 #include "i915_trace.h"
     16 #include "intel_gt.h"
     17 #include "intel_gtt.h"
     18 
     19 #include <linux/nbsd-namespace.h>
     20 
     21 #ifndef __NetBSD__
     22 void stash_init(struct pagestash *stash)
     23 {
     24 	pagevec_init(&stash->pvec);
     25 	spin_lock_init(&stash->lock);
     26 }
     27 
     28 static struct page *stash_pop_page(struct pagestash *stash)
     29 {
     30 	struct page *page = NULL;
     31 
     32 	spin_lock(&stash->lock);
     33 	if (likely(stash->pvec.nr))
     34 		page = stash->pvec.pages[--stash->pvec.nr];
     35 	spin_unlock(&stash->lock);
     36 
     37 	return page;
     38 }
     39 
     40 static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
     41 {
     42 	unsigned int nr;
     43 
     44 	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);
     45 
     46 	nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec));
     47 	memcpy(stash->pvec.pages + stash->pvec.nr,
     48 	       pvec->pages + pvec->nr - nr,
     49 	       sizeof(pvec->pages[0]) * nr);
     50 	stash->pvec.nr += nr;
     51 
     52 	spin_unlock(&stash->lock);
     53 
     54 	pvec->nr -= nr;
     55 }
     56 
     57 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
     58 {
     59 	struct pagevec stack;
     60 	struct page *page;
     61 
     62 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
     63 		i915_gem_shrink_all(vm->i915);
     64 
     65 	page = stash_pop_page(&vm->free_pages);
     66 	if (page)
     67 		return page;
     68 
     69 	if (!vm->pt_kmap_wc)
     70 		return alloc_page(gfp);
     71 
     72 	/* Look in our global stash of WC pages... */
     73 	page = stash_pop_page(&vm->i915->mm.wc_stash);
     74 	if (page)
     75 		return page;
     76 
     77 	/*
     78 	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
     79 	 *
     80 	 * We have to be careful as page allocation may trigger the shrinker
     81 	 * (via direct reclaim) which will fill up the WC stash underneath us.
     82 	 * So we add our WB pages into a temporary pvec on the stack and merge
     83 	 * them into the WC stash after all the allocations are complete.
     84 	 */
     85 	pagevec_init(&stack);
     86 	do {
     87 		struct page *page;
     88 
     89 		page = alloc_page(gfp);
     90 		if (unlikely(!page))
     91 			break;
     92 
     93 		stack.pages[stack.nr++] = page;
     94 	} while (pagevec_space(&stack));
     95 
     96 	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
     97 		page = stack.pages[--stack.nr];
     98 
     99 		/* Merge spare WC pages to the global stash */
    100 		if (stack.nr)
    101 			stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
    102 
    103 		/* Push any surplus WC pages onto the local VM stash */
    104 		if (stack.nr)
    105 			stash_push_pagevec(&vm->free_pages, &stack);
    106 	}
    107 
    108 	/* Return unwanted leftovers */
    109 	if (unlikely(stack.nr)) {
    110 		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
    111 		__pagevec_release(&stack);
    112 	}
    113 
    114 	return page;
    115 }
    116 
    117 static void vm_free_pages_release(struct i915_address_space *vm,
    118 				  bool immediate)
    119 {
    120 	struct pagevec *pvec = &vm->free_pages.pvec;
    121 	struct pagevec stack;
    122 
    123 	lockdep_assert_held(&vm->free_pages.lock);
    124 	GEM_BUG_ON(!pagevec_count(pvec));
    125 
    126 	if (vm->pt_kmap_wc) {
    127 		/*
    128 		 * When we use WC, first fill up the global stash and then
    129 		 * only if full immediately free the overflow.
    130 		 */
    131 		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
    132 
    133 		/*
    134 		 * As we have made some room in the VM's free_pages,
    135 		 * we can wait for it to fill again. Unless we are
    136 		 * inside i915_address_space_fini() and must
    137 		 * immediately release the pages!
    138 		 */
    139 		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
    140 			return;
    141 
    142 		/*
    143 		 * We have to drop the lock to allow ourselves to sleep,
    144 		 * so take a copy of the pvec and clear the stash for
    145 		 * others to use it as we sleep.
    146 		 */
    147 		stack = *pvec;
    148 		pagevec_reinit(pvec);
    149 		spin_unlock(&vm->free_pages.lock);
    150 
    151 		pvec = &stack;
    152 		set_pages_array_wb(pvec->pages, pvec->nr);
    153 
    154 		spin_lock(&vm->free_pages.lock);
    155 	}
    156 
    157 	__pagevec_release(pvec);
    158 }
    159 
    160 static void vm_free_page(struct i915_address_space *vm, struct page *page)
    161 {
    162 	/*
    163 	 * On !llc, we need to change the pages back to WB. We only do so
    164 	 * in bulk, so we rarely need to change the page attributes here,
    165 	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
    166 	 * To make detection of the possible sleep more likely, use an
    167 	 * unconditional might_sleep() for everybody.
    168 	 */
    169 	might_sleep();
    170 	spin_lock(&vm->free_pages.lock);
    171 	while (!pagevec_space(&vm->free_pages.pvec))
    172 		vm_free_pages_release(vm, false);
    173 	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE);
    174 	pagevec_add(&vm->free_pages.pvec, page);
    175 	spin_unlock(&vm->free_pages.lock);
    176 }
    177 #endif
    178 
    179 void __i915_vm_close(struct i915_address_space *vm)
    180 {
    181 	struct i915_vma *vma, *vn;
    182 
    183 	mutex_lock(&vm->mutex);
    184 	list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
    185 		struct drm_i915_gem_object *obj = vma->obj;
    186 
    187 		/* Keep the obj (and hence the vma) alive as _we_ destroy it */
    188 		if (!kref_get_unless_zero(&obj->base.refcount))
    189 			continue;
    190 
    191 		atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
    192 		WARN_ON(__i915_vma_unbind(vma));
    193 		__i915_vma_put(vma);
    194 
    195 		i915_gem_object_put(obj);
    196 	}
    197 	GEM_BUG_ON(!list_empty(&vm->bound_list));
    198 	mutex_unlock(&vm->mutex);
    199 }
    200 
    201 void i915_address_space_fini(struct i915_address_space *vm)
    202 {
    203 #ifndef __NetBSD__
    204 	spin_lock(&vm->free_pages.lock);
    205 	if (pagevec_count(&vm->free_pages.pvec))
    206 		vm_free_pages_release(vm, true);
    207 	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
    208 	spin_unlock(&vm->free_pages.lock);
    209 #endif
    210 
    211 	drm_mm_takedown(&vm->mm);
    212 
    213 	mutex_destroy(&vm->mutex);
    214 }
    215 
    216 static void __i915_vm_release(struct work_struct *work)
    217 {
    218 	struct i915_address_space *vm =
    219 		container_of(work, struct i915_address_space, rcu.work);
    220 
    221 	vm->cleanup(vm);
    222 	i915_address_space_fini(vm);
    223 
    224 	kfree(vm);
    225 }
    226 
    227 void i915_vm_release(struct kref *kref)
    228 {
    229 	struct i915_address_space *vm =
    230 		container_of(kref, struct i915_address_space, ref);
    231 
    232 	GEM_BUG_ON(i915_is_ggtt(vm));
    233 	trace_i915_ppgtt_release(vm);
    234 
    235 	queue_rcu_work(vm->i915->wq, &vm->rcu);
    236 }
    237 
    238 void i915_address_space_init(struct i915_address_space *vm, int subclass)
    239 {
    240 	kref_init(&vm->ref);
    241 	INIT_RCU_WORK(&vm->rcu, __i915_vm_release);
    242 	atomic_set(&vm->open, 1);
    243 
    244 	/*
    245 	 * The vm->mutex must be reclaim safe (for use in the shrinker).
    246 	 * Do a dummy acquire now under fs_reclaim so that any allocation
    247 	 * attempt holding the lock is immediately reported by lockdep.
    248 	 */
    249 	mutex_init(&vm->mutex);
    250 	lockdep_set_subclass(&vm->mutex, subclass);
    251 	i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
    252 
    253 	GEM_BUG_ON(!vm->total);
    254 	drm_mm_init(&vm->mm, 0, vm->total);
    255 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
    256 
    257 #ifdef __NetBSD__
    258 	vm->dmat = vm->i915->drm.dmat;
    259 #else
    260 	stash_init(&vm->free_pages);
    261 #endif
    262 
    263 	INIT_LIST_HEAD(&vm->bound_list);
    264 }
    265 
    266 void clear_pages(struct i915_vma *vma)
    267 {
    268 	GEM_BUG_ON(!vma->pages);
    269 
    270 	if (vma->pages != vma->obj->mm.pages) {
    271 		sg_free_table(vma->pages);
    272 		kfree(vma->pages);
    273 	}
    274 	vma->pages = NULL;
    275 
    276 	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
    277 }
    278 
    279 static int __setup_page_dma(struct i915_address_space *vm,
    280 			    struct i915_page_dma *p,
    281 			    gfp_t gfp)
    282 {
    283 #ifdef __NetBSD__
    284 	int busdmaflags = 0;
    285 	int error;
    286 	int nseg = 1;
    287 
    288 	if (gfp & __GFP_WAIT)
    289 		busdmaflags |= BUS_DMA_WAITOK;
    290 	else
    291 		busdmaflags |= BUS_DMA_NOWAIT;
    292 
    293 	error = bus_dmamem_alloc(vm->dmat, PAGE_SIZE, PAGE_SIZE, 0, &p->seg,
    294 	    nseg, &nseg, busdmaflags);
    295 	if (error) {
    296 fail0:		p->map = NULL;
    297 		return -error;	/* XXX errno NetBSD->Linux */
    298 	}
    299 	KASSERT(nseg == 1);
    300 	error = bus_dmamap_create(vm->dmat, PAGE_SIZE, 1, PAGE_SIZE, 0,
    301 	    busdmaflags, &p->map);
    302 	if (error) {
    303 fail1:		bus_dmamem_free(vm->dmat, &p->seg, 1);
    304 		goto fail0;
    305 	}
    306 	error = bus_dmamap_load_raw(vm->dmat, p->map, &p->seg, 1, PAGE_SIZE,
    307 	    busdmaflags);
    308 	if (error) {
    309 fail2: __unused
    310 		bus_dmamap_destroy(vm->dmat, p->map);
    311 		goto fail1;
    312 	}
    313 
    314 	p->page = container_of(PHYS_TO_VM_PAGE(p->seg.ds_addr), struct page,
    315 	    p_vmp);
    316 
    317 	if (gfp & __GFP_ZERO) {
    318 		void *va = kmap_atomic(p->page);
    319 		memset(va, 0, PAGE_SIZE);
    320 		kunmap_atomic(va);
    321 	}
    322 #else
    323 	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
    324 	if (unlikely(!p->page))
    325 		return -ENOMEM;
    326 
    327 	p->daddr = dma_map_page_attrs(vm->dma,
    328 				      p->page, 0, PAGE_SIZE,
    329 				      PCI_DMA_BIDIRECTIONAL,
    330 				      DMA_ATTR_SKIP_CPU_SYNC |
    331 				      DMA_ATTR_NO_WARN);
    332 	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
    333 		vm_free_page(vm, p->page);
    334 		return -ENOMEM;
    335 	}
    336 #endif
    337 
    338 	return 0;
    339 }
    340 
    341 int setup_page_dma(struct i915_address_space *vm, struct i915_page_dma *p)
    342 {
    343 	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
    344 }
    345 
    346 void cleanup_page_dma(struct i915_address_space *vm, struct i915_page_dma *p)
    347 {
    348 #ifdef __NetBSD__
    349 	bus_dmamap_unload(vm->dmat, p->map);
    350 	bus_dmamap_destroy(vm->dmat, p->map);
    351 	bus_dmamem_free(vm->dmat, &p->seg, 1);
    352 #else
    353 	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
    354 	vm_free_page(vm, p->page);
    355 #endif
    356 }
    357 
    358 void
    359 fill_page_dma(const struct i915_page_dma *p, const u64 val, unsigned int count)
    360 {
    361 	kunmap_atomic(memset64(kmap_atomic(p->page), val, count));
    362 }
    363 
    364 int setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
    365 {
    366 	unsigned long size;
    367 
    368 	/*
    369 	 * In order to utilize 64K pages for an object with a size < 2M, we will
    370 	 * need to support a 64K scratch page, given that every 16th entry for a
    371 	 * page-table operating in 64K mode must point to a properly aligned 64K
    372 	 * region, including any PTEs which happen to point to scratch.
    373 	 *
    374 	 * This is only relevant for the 48b PPGTT where we support
    375 	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
    376 	 * scratch (read-only) between all vm, we create one 64k scratch page
    377 	 * for all.
    378 	 */
    379 	size = I915_GTT_PAGE_SIZE_4K;
    380 	if (i915_vm_is_4lvl(vm) &&
    381 	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
    382 		size = I915_GTT_PAGE_SIZE_64K;
    383 		gfp |= __GFP_NOWARN;
    384 	}
    385 	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
    386 
    387 	do {
    388 		unsigned int order = get_order(size);
    389 #ifdef __NetBSD__
    390 		struct vm_page *vm_page;
    391 		void *kva;
    392 		int nseg;
    393 		int ret;
    394 
    395 		/* Allocate a scratch page.  */
    396 		/* XXX errno NetBSD->Linux */
    397 		ret = -bus_dmamem_alloc(vm->dmat, size, size, 0,
    398 		    &vm->scratch[0].base.seg, 1, &nseg, BUS_DMA_NOWAIT);
    399 		if (ret)
    400 			goto skip;
    401 		KASSERT(nseg == 1);
    402 		KASSERT(vm->scratch[0].base.seg.ds_len == size);
    403 
    404 		/* Create a DMA map.  */
    405 		ret = -bus_dmamap_create(vm->dmat, size, 1, size, 0,
    406 		    BUS_DMA_NOWAIT, &vm->scratch[0].base.map);
    407 		if (ret)
    408 			goto free_dmamem;
    409 
    410 		/* Load the segment into the DMA map.  */
    411 		ret = -bus_dmamap_load_raw(vm->dmat, vm->scratch[0].base.map,
    412 		    &vm->scratch[0].base.seg, 1, size, BUS_DMA_NOWAIT);
    413 		if (ret)
    414 			goto destroy_dmamap;
    415 		KASSERT(vm->scratch[0].base.map->dm_nsegs == 1);
    416 		KASSERT(vm->scratch[0].base.map->dm_segs[0].ds_len == size);
    417 
    418 		/* Zero the page.  */
    419 		ret = -bus_dmamem_map(vm->dmat, &vm->scratch[0].base.seg, 1,
    420 		    size, &kva, BUS_DMA_NOWAIT|BUS_DMA_NOCACHE);
    421 		if (ret)
    422 			goto unload_dmamap;
    423 		memset(kva, 0, size);
    424 		bus_dmamap_sync(vm->dmat, vm->scratch[0].base.map, 0, size,
    425 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    426 		bus_dmamem_unmap(vm->dmat, kva, size);
    427 
    428 		/* XXX Is this page guaranteed to work as a huge page?  */
    429 		vm_page = PHYS_TO_VM_PAGE(vm->scratch[0].base.seg.ds_addr);
    430 		vm->scratch[0].base.page = container_of(vm_page, struct page,
    431 		    p_vmp);
    432 #else
    433 		struct page *page;
    434 		dma_addr_t addr;
    435 
    436 		page = alloc_pages(gfp, order);
    437 		if (unlikely(!page))
    438 			goto skip;
    439 
    440 		addr = dma_map_page_attrs(vm->dma,
    441 					  page, 0, size,
    442 					  PCI_DMA_BIDIRECTIONAL,
    443 					  DMA_ATTR_SKIP_CPU_SYNC |
    444 					  DMA_ATTR_NO_WARN);
    445 		if (unlikely(dma_mapping_error(vm->dma, addr)))
    446 			goto free_page;
    447 
    448 		if (unlikely(!IS_ALIGNED(addr, size)))
    449 			goto unmap_page;
    450 
    451 		vm->scratch[0].base.page = page;
    452 		vm->scratch[0].base.daddr = addr;
    453 #endif
    454 		vm->scratch_order = order;
    455 		return 0;
    456 
    457 #ifdef __NetBSD__
    458 unload_dmamap:	bus_dmamap_unload(vm->dmat, vm->scratch[0].base.map);
    459 destroy_dmamap:	bus_dmamap_destroy(vm->dmat, vm->scratch[0].base.map);
    460 		vm->scratch[0].base.map = NULL; /* paranoia */
    461 free_dmamem:	bus_dmamem_free(vm->dmat, &vm->scratch[0].base.seg, 1);
    462 #else
    463 unmap_page:
    464 		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
    465 free_page:
    466 		__free_pages(page, order);
    467 #endif
    468 skip:
    469 		if (size == I915_GTT_PAGE_SIZE_4K)
    470 			return -ENOMEM;
    471 
    472 		size = I915_GTT_PAGE_SIZE_4K;
    473 		gfp &= ~__GFP_NOWARN;
    474 	} while (1);
    475 }
    476 
    477 void cleanup_scratch_page(struct i915_address_space *vm)
    478 {
    479 	struct i915_page_dma *p = px_base(&vm->scratch[0]);
    480 #ifdef __NetBSD__
    481 	bus_dmamap_unload(vm->dmat, p->map);
    482 	bus_dmamap_destroy(vm->dmat, p->map);
    483 	vm->scratch[0].base.map = NULL; /* paranoia */
    484 	bus_dmamem_free(vm->dmat, &p->seg, 1);
    485 #else
    486 	unsigned int order = vm->scratch_order;
    487 
    488 	dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
    489 		       PCI_DMA_BIDIRECTIONAL);
    490 	__free_pages(p->page, order);
    491 #endif
    492 }
    493 
    494 void free_scratch(struct i915_address_space *vm)
    495 {
    496 	int i;
    497 
    498 	if (!px_dma(&vm->scratch[0])) /* set to 0 on clones */
    499 		return;
    500 
    501 	for (i = 1; i <= vm->top; i++) {
    502 		if (!px_dma(&vm->scratch[i]))
    503 			break;
    504 		cleanup_page_dma(vm, px_base(&vm->scratch[i]));
    505 	}
    506 
    507 	cleanup_scratch_page(vm);
    508 }
    509 
    510 void gtt_write_workarounds(struct intel_gt *gt)
    511 {
    512 	struct drm_i915_private *i915 = gt->i915;
    513 	struct intel_uncore *uncore = gt->uncore;
    514 
    515 	/*
    516 	 * This function is for gtt related workarounds. This function is
    517 	 * called on driver load and after a GPU reset, so you can place
    518 	 * workarounds here even if they get overwritten by GPU reset.
    519 	 */
    520 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
    521 	if (IS_BROADWELL(i915))
    522 		intel_uncore_write(uncore,
    523 				   GEN8_L3_LRA_1_GPGPU,
    524 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
    525 	else if (IS_CHERRYVIEW(i915))
    526 		intel_uncore_write(uncore,
    527 				   GEN8_L3_LRA_1_GPGPU,
    528 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
    529 	else if (IS_GEN9_LP(i915))
    530 		intel_uncore_write(uncore,
    531 				   GEN8_L3_LRA_1_GPGPU,
    532 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
    533 	else if (INTEL_GEN(i915) >= 9 && INTEL_GEN(i915) <= 11)
    534 		intel_uncore_write(uncore,
    535 				   GEN8_L3_LRA_1_GPGPU,
    536 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
    537 
    538 	/*
    539 	 * To support 64K PTEs we need to first enable the use of the
    540 	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
    541 	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
    542 	 * shouldn't be needed after GEN10.
    543 	 *
    544 	 * 64K pages were first introduced from BDW+, although technically they
    545 	 * only *work* from gen9+. For pre-BDW we instead have the option for
    546 	 * 32K pages, but we don't currently have any support for it in our
    547 	 * driver.
    548 	 */
    549 	if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
    550 	    INTEL_GEN(i915) <= 10)
    551 		intel_uncore_rmw(uncore,
    552 				 GEN8_GAMW_ECO_DEV_RW_IA,
    553 				 0,
    554 				 GAMW_ECO_ENABLE_64K_IPS_FIELD);
    555 
    556 	if (IS_GEN_RANGE(i915, 8, 11)) {
    557 		bool can_use_gtt_cache = true;
    558 
    559 		/*
    560 		 * According to the BSpec if we use 2M/1G pages then we also
    561 		 * need to disable the GTT cache. At least on BDW we can see
    562 		 * visual corruption when using 2M pages, and not disabling the
    563 		 * GTT cache.
    564 		 */
    565 		if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
    566 			can_use_gtt_cache = false;
    567 
    568 		/* WaGttCachingOffByDefault */
    569 		intel_uncore_write(uncore,
    570 				   HSW_GTT_CACHE_EN,
    571 				   can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
    572 		WARN_ON_ONCE(can_use_gtt_cache &&
    573 			     intel_uncore_read(uncore,
    574 					       HSW_GTT_CACHE_EN) == 0);
    575 	}
    576 }
    577 
    578 u64 gen8_pte_encode(dma_addr_t addr,
    579 		    enum i915_cache_level level,
    580 		    u32 flags)
    581 {
    582 	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;
    583 
    584 	if (unlikely(flags & PTE_READ_ONLY))
    585 		pte &= ~_PAGE_RW;
    586 
    587 	switch (level) {
    588 	case I915_CACHE_NONE:
    589 		pte |= PPAT_UNCACHED;
    590 		break;
    591 	case I915_CACHE_WT:
    592 		pte |= PPAT_DISPLAY_ELLC;
    593 		break;
    594 	default:
    595 		pte |= PPAT_CACHED;
    596 		break;
    597 	}
    598 
    599 	return pte;
    600 }
    601 
    602 static void tgl_setup_private_ppat(struct intel_uncore *uncore)
    603 {
    604 	/* TGL doesn't support LLC or AGE settings */
    605 	intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
    606 	intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
    607 	intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
    608 	intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
    609 	intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
    610 	intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
    611 	intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
    612 	intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
    613 }
    614 
    615 static void cnl_setup_private_ppat(struct intel_uncore *uncore)
    616 {
    617 	intel_uncore_write(uncore,
    618 			   GEN10_PAT_INDEX(0),
    619 			   GEN8_PPAT_WB | GEN8_PPAT_LLC);
    620 	intel_uncore_write(uncore,
    621 			   GEN10_PAT_INDEX(1),
    622 			   GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
    623 	intel_uncore_write(uncore,
    624 			   GEN10_PAT_INDEX(2),
    625 			   GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
    626 	intel_uncore_write(uncore,
    627 			   GEN10_PAT_INDEX(3),
    628 			   GEN8_PPAT_UC);
    629 	intel_uncore_write(uncore,
    630 			   GEN10_PAT_INDEX(4),
    631 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
    632 	intel_uncore_write(uncore,
    633 			   GEN10_PAT_INDEX(5),
    634 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
    635 	intel_uncore_write(uncore,
    636 			   GEN10_PAT_INDEX(6),
    637 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
    638 	intel_uncore_write(uncore,
    639 			   GEN10_PAT_INDEX(7),
    640 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
    641 }
    642 
    643 /*
    644  * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
    645  * bits. When using advanced contexts each context stores its own PAT, but
    646  * writing this data shouldn't be harmful even in those cases.
    647  */
    648 static void bdw_setup_private_ppat(struct intel_uncore *uncore)
    649 {
    650 	u64 pat;
    651 
    652 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) |	/* for normal objects, no eLLC */
    653 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) |	/* for something pointing to ptes? */
    654 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) |	/* for scanout with eLLC */
    655 	      GEN8_PPAT(3, GEN8_PPAT_UC) |			/* Uncached objects, mostly for scanout */
    656 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
    657 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
    658 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
    659 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
    660 
    661 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
    662 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
    663 }
    664 
    665 static void chv_setup_private_ppat(struct intel_uncore *uncore)
    666 {
    667 	u64 pat;
    668 
    669 	/*
    670 	 * Map WB on BDW to snooped on CHV.
    671 	 *
    672 	 * Only the snoop bit has meaning for CHV, the rest is
    673 	 * ignored.
    674 	 *
    675 	 * The hardware will never snoop for certain types of accesses:
    676 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
    677 	 * - PPGTT page tables
    678 	 * - some other special cycles
    679 	 *
    680 	 * As with BDW, we also need to consider the following for GT accesses:
    681 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
    682 	 * so RTL will always use the value corresponding to
    683 	 * pat_sel = 000".
    684 	 * Which means we must set the snoop bit in PAT entry 0
    685 	 * in order to keep the global status page working.
    686 	 */
    687 
    688 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
    689 	      GEN8_PPAT(1, 0) |
    690 	      GEN8_PPAT(2, 0) |
    691 	      GEN8_PPAT(3, 0) |
    692 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
    693 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
    694 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
    695 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
    696 
    697 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
    698 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
    699 }
    700 
    701 void setup_private_pat(struct intel_uncore *uncore)
    702 {
    703 	struct drm_i915_private *i915 = uncore->i915;
    704 
    705 	GEM_BUG_ON(INTEL_GEN(i915) < 8);
    706 
    707 	if (INTEL_GEN(i915) >= 12)
    708 		tgl_setup_private_ppat(uncore);
    709 	else if (INTEL_GEN(i915) >= 10)
    710 		cnl_setup_private_ppat(uncore);
    711 	else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915))
    712 		chv_setup_private_ppat(uncore);
    713 	else
    714 		bdw_setup_private_ppat(uncore);
    715 }
    716 
    717 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
    718 #include "selftests/mock_gtt.c"
    719 #endif
    720