1 /* $NetBSD: i82596.c,v 1.48 2024/07/05 04:31:51 rin Exp $ */ 2 3 /* 4 * Copyright (c) 2003 Jochen Kunz. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The name of Jochen Kunz may not be used to endorse or promote 16 * products derived from this software without specific prior 17 * written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY JOCHEN KUNZ 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JOCHEN KUNZ 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Driver for the Intel i82596CA and i82596DX/SX 10MBit/s Ethernet chips. 34 * 35 * It operates the i82596 in 32-Bit Linear Mode, opposed to the old i82586 36 * ie(4) driver (src/sys/dev/ic/i82586.c), that degrades the i82596 to 37 * i82586 compatibility mode. 38 * 39 * Documentation about these chips can be found at 40 * 41 * http://developer.intel.com/design/network/datashts/290218.htm 42 * http://developer.intel.com/design/network/datashts/290219.htm 43 */ 44 45 #include <sys/cdefs.h> 46 __KERNEL_RCSID(0, "$NetBSD: i82596.c,v 1.48 2024/07/05 04:31:51 rin Exp $"); 47 48 /* autoconfig and device stuff */ 49 #include <sys/param.h> 50 #include <sys/device.h> 51 #include <sys/conf.h> 52 #include "locators.h" 53 #include "ioconf.h" 54 55 /* bus_space / bus_dma etc. */ 56 #include <sys/bus.h> 57 #include <sys/intr.h> 58 59 /* general system data and functions */ 60 #include <sys/systm.h> 61 #include <sys/ioctl.h> 62 63 /* tsleep / sleep / wakeup */ 64 #include <sys/proc.h> 65 /* hz for above */ 66 #include <sys/kernel.h> 67 68 /* network stuff */ 69 #include <net/if.h> 70 #include <net/if_dl.h> 71 #include <net/if_media.h> 72 #include <net/if_ether.h> 73 #include <net/bpf.h> 74 #include <sys/socket.h> 75 #include <sys/mbuf.h> 76 77 #include <dev/ic/i82596reg.h> 78 #include <dev/ic/i82596var.h> 79 80 /* Supported chip variants */ 81 const char *i82596_typenames[] = { "unknown", "DX/SX", "CA" }; 82 83 /* media change and status callback */ 84 static int iee_mediachange(struct ifnet *); 85 static void iee_mediastatus(struct ifnet *, struct ifmediareq *); 86 87 /* interface routines to upper protocols */ 88 static void iee_start(struct ifnet *); /* initiate output */ 89 static int iee_ioctl(struct ifnet *, u_long, void *); /* ioctl routine */ 90 static int iee_init(struct ifnet *); /* init routine */ 91 static void iee_stop(struct ifnet *, int); /* stop routine */ 92 static void iee_watchdog(struct ifnet *); /* timer routine */ 93 94 /* internal helper functions */ 95 static void iee_cb_setup(struct iee_softc *, uint32_t); 96 97 /* 98 * Things a MD frontend has to provide: 99 * 100 * The functions via function pointers in the softc: 101 * int (*sc_iee_cmd)(struct iee_softc *sc, uint32_t cmd); 102 * int (*sc_iee_reset)(struct iee_softc *sc); 103 * void (*sc_mediastatus)(struct ifnet *, struct ifmediareq *); 104 * int (*sc_mediachange)(struct ifnet *); 105 * 106 * sc_iee_cmd(): send a command to the i82596 by writing the cmd parameter 107 * to the SCP cmd word and issuing a Channel Attention. 108 * sc_iee_reset(): initiate a reset, supply the address of the SCP to the 109 * chip, wait for the chip to initialize and ACK interrupts that 110 * this may have caused by calling (sc->sc_iee_cmd)(sc, IEE_SCB_ACK); 111 * This functions must carefully bus_dmamap_sync() all data they have touched! 112 * 113 * sc_mediastatus() and sc_mediachange() are just MD hooks to the according 114 * MI functions. The MD frontend may set this pointers to NULL when they 115 * are not needed. 116 * 117 * sc->sc_type has to be set to I82596_UNKNOWN or I82596_DX or I82596_CA. 118 * This is for printing out the correct chip type at attach time only. The 119 * MI backend doesn't distinguish different chip types when programming 120 * the chip. 121 * 122 * IEE_NEED_SWAP in sc->sc_flags has to be cleared on little endian hardware 123 * and set on big endian hardware, when endianness conversion is not done 124 * by the bus attachment but done by i82596 chip itself. 125 * Usually you need to set IEE_NEED_SWAP on big endian machines 126 * where the hardware (the LE/~BE pin) is configured as BE mode. 127 * 128 * If the chip is configured as BE mode, all 8 bit (byte) and 16 bit (word) 129 * entities can be written in big endian. But Rev A chip doesn't support 130 * 32 bit (dword) entities with big endian byte ordering, so we have to 131 * treat all 32 bit (dword) entities as two 16 bit big endian entities. 132 * Rev B and C chips support big endian byte ordering for 32 bit entities, 133 * and this new feature is enabled by IEE_SYSBUS_BE in the sysbus byte. 134 * 135 * With the IEE_SYSBUS_BE feature, all 32 bit address pointers are 136 * treated as true 32 bit entities but the SCB absolute address and 137 * statistical counters are still treated as two 16 bit big endian entities, 138 * so we have to always swap high and low words for these entities. 139 * IEE_SWAP32() should be used for the SCB address and statistical counters, 140 * and IEE_SWAPA32() should be used for other 32 bit pointers in the shmem. 141 * 142 * IEE_REV_A flag must be set in sc->sc_flags if the IEE_SYSBUS_BE feature 143 * is disabled even on big endian machines for the old Rev A chip in backend. 144 * 145 * sc->sc_cl_align must be set to 1 or to the cache line size. When set to 146 * 1 no special alignment of DMA descriptors is done. If sc->sc_cl_align != 1 147 * it forces alignment of the data structures in the shared memory to a multiple 148 * of sc->sc_cl_align. This is needed on some hppa machines that have non DMA 149 * I/O coherent caches and are unable to map the shared memory uncachable. 150 * (At least pre PA7100LC CPUs are unable to map memory uncachable.) 151 * 152 * The MD frontend also has to set sc->sc_cl_align and sc->sc_sysbus 153 * to allocate and setup shared DMA memory in MI iee_attach(). 154 * All communication with the chip is done via this shared memory. 155 * This memory is mapped with BUS_DMA_COHERENT so it will be uncached 156 * if possible for archs with non DMA I/O coherent caches. 157 * The base of the memory needs to be aligned to an even address 158 * if sc->sc_cl_align == 1 and aligned to a cache line if sc->sc_cl_align != 1. 159 * Each descriptor offsets are calculated in iee_attach() to handle this. 160 * 161 * An interrupt with iee_intr() as handler must be established. 162 * 163 * Call void iee_attach(struct iee_softc *sc, uint8_t *ether_address, 164 * int *media, int nmedia, int defmedia); when everything is set up. First 165 * parameter is a pointer to the MI softc, ether_address is an array that 166 * contains the ethernet address. media is an array of the media types 167 * provided by the hardware. The members of this array are supplied to 168 * ifmedia_add() in sequence. nmedia is the count of elements in media. 169 * defmedia is the default media that is set via ifmedia_set(). 170 * nmedia and defmedia are ignored when media == NULL. 171 * 172 * The MD backend may call iee_detach() to detach the device. 173 * 174 * See sys/arch/hppa/gsc/if_iee_gsc.c for an example. 175 */ 176 177 178 /* 179 * How frame reception is done: 180 * Each Receive Frame Descriptor has one associated Receive Buffer Descriptor. 181 * Each RBD points to the data area of an mbuf cluster. The RFDs are linked 182 * together in a circular list. sc->sc_rx_done is the count of RFDs in the 183 * list already processed / the number of the RFD that has to be checked for 184 * a new frame first at the next RX interrupt. Upon successful reception of 185 * a frame the mbuf cluster is handled to upper protocol layers, a new mbuf 186 * cluster is allocated and the RFD / RBD are reinitialized accordingly. 187 * 188 * When a RFD list overrun occurred the whole RFD and RBD lists are 189 * reinitialized and frame reception is started again. 190 */ 191 int 192 iee_intr(void *intarg) 193 { 194 struct iee_softc *sc = intarg; 195 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 196 struct iee_rfd *rfd; 197 struct iee_rbd *rbd; 198 bus_dmamap_t rx_map; 199 struct mbuf *rx_mbuf; 200 struct mbuf *new_mbuf; 201 int scb_status; 202 int scb_cmd; 203 int n, col; 204 uint16_t status, count, cmd; 205 206 if ((ifp->if_flags & IFF_RUNNING) == 0) { 207 (sc->sc_iee_cmd)(sc, IEE_SCB_ACK); 208 return 1; 209 } 210 IEE_SCBSYNC(sc, BUS_DMASYNC_POSTREAD); 211 scb_status = SC_SCB(sc)->scb_status; 212 scb_cmd = SC_SCB(sc)->scb_cmd; 213 for (;;) { 214 rfd = SC_RFD(sc, sc->sc_rx_done); 215 IEE_RFDSYNC(sc, sc->sc_rx_done, 216 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 217 status = rfd->rfd_status; 218 if ((status & IEE_RFD_C) == 0) { 219 IEE_RFDSYNC(sc, sc->sc_rx_done, BUS_DMASYNC_PREREAD); 220 break; 221 } 222 rfd->rfd_status = 0; 223 IEE_RFDSYNC(sc, sc->sc_rx_done, 224 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 225 226 /* At least one packet was received. */ 227 rx_map = sc->sc_rx_map[sc->sc_rx_done]; 228 rx_mbuf = sc->sc_rx_mbuf[sc->sc_rx_done]; 229 IEE_RBDSYNC(sc, (sc->sc_rx_done + IEE_NRFD - 1) % IEE_NRFD, 230 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 231 SC_RBD(sc, (sc->sc_rx_done + IEE_NRFD - 1) % IEE_NRFD)->rbd_size 232 &= ~IEE_RBD_EL; 233 IEE_RBDSYNC(sc, (sc->sc_rx_done + IEE_NRFD - 1) % IEE_NRFD, 234 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 235 rbd = SC_RBD(sc, sc->sc_rx_done); 236 IEE_RBDSYNC(sc, sc->sc_rx_done, 237 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 238 count = rbd->rbd_count; 239 if ((status & IEE_RFD_OK) == 0 240 || (count & IEE_RBD_EOF) == 0 241 || (count & IEE_RBD_F) == 0){ 242 /* Receive error, skip frame and reuse buffer. */ 243 rbd->rbd_count = 0; 244 rbd->rbd_size = IEE_RBD_EL | rx_map->dm_segs[0].ds_len; 245 IEE_RBDSYNC(sc, sc->sc_rx_done, 246 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 247 printf("%s: iee_intr: receive error %d, rfd_status=" 248 "0x%.4x, rfd_count=0x%.4x\n", 249 device_xname(sc->sc_dev), 250 ++sc->sc_rx_err, status, count); 251 sc->sc_rx_done = (sc->sc_rx_done + 1) % IEE_NRFD; 252 continue; 253 } 254 bus_dmamap_sync(sc->sc_dmat, rx_map, 0, rx_map->dm_mapsize, 255 BUS_DMASYNC_POSTREAD); 256 rx_mbuf->m_pkthdr.len = rx_mbuf->m_len = 257 count & IEE_RBD_COUNT; 258 m_set_rcvif(rx_mbuf, ifp); 259 MGETHDR(new_mbuf, M_DONTWAIT, MT_DATA); 260 if (new_mbuf == NULL) { 261 printf("%s: iee_intr: can't allocate mbuf\n", 262 device_xname(sc->sc_dev)); 263 break; 264 } 265 MCLAIM(new_mbuf, &sc->sc_ethercom.ec_rx_mowner); 266 MCLGET(new_mbuf, M_DONTWAIT); 267 if ((new_mbuf->m_flags & M_EXT) == 0) { 268 printf("%s: iee_intr: can't alloc mbuf cluster\n", 269 device_xname(sc->sc_dev)); 270 m_freem(new_mbuf); 271 break; 272 } 273 bus_dmamap_unload(sc->sc_dmat, rx_map); 274 new_mbuf->m_len = new_mbuf->m_pkthdr.len = MCLBYTES - 2; 275 new_mbuf->m_data += 2; 276 if (bus_dmamap_load_mbuf(sc->sc_dmat, rx_map, 277 new_mbuf, BUS_DMA_READ | BUS_DMA_NOWAIT) != 0) 278 panic("%s: iee_intr: can't load RX DMA map\n", 279 device_xname(sc->sc_dev)); 280 bus_dmamap_sync(sc->sc_dmat, rx_map, 0, 281 rx_map->dm_mapsize, BUS_DMASYNC_PREREAD); 282 if_percpuq_enqueue(ifp->if_percpuq, rx_mbuf); 283 sc->sc_rx_mbuf[sc->sc_rx_done] = new_mbuf; 284 rbd->rbd_count = 0; 285 rbd->rbd_size = IEE_RBD_EL | rx_map->dm_segs[0].ds_len; 286 rbd->rbd_rb_addr = IEE_SWAPA32(rx_map->dm_segs[0].ds_addr); 287 IEE_RBDSYNC(sc, sc->sc_rx_done, 288 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 289 sc->sc_rx_done = (sc->sc_rx_done + 1) % IEE_NRFD; 290 } 291 if ((scb_status & IEE_SCB_RUS) == IEE_SCB_RUS_NR1 292 || (scb_status & IEE_SCB_RUS) == IEE_SCB_RUS_NR2 293 || (scb_status & IEE_SCB_RUS) == IEE_SCB_RUS_NR3) { 294 /* Receive Overrun, reinit receive ring buffer. */ 295 for (n = 0 ; n < IEE_NRFD ; n++) { 296 rfd = SC_RFD(sc, n); 297 rbd = SC_RBD(sc, n); 298 rfd->rfd_cmd = IEE_RFD_SF; 299 rfd->rfd_link_addr = 300 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off 301 + sc->sc_rfd_sz * ((n + 1) % IEE_NRFD))); 302 rbd->rbd_next_rbd = 303 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off 304 + sc->sc_rbd_sz * ((n + 1) % IEE_NRFD))); 305 rbd->rbd_size = IEE_RBD_EL | 306 sc->sc_rx_map[n]->dm_segs[0].ds_len; 307 rbd->rbd_rb_addr = 308 IEE_SWAPA32(sc->sc_rx_map[n]->dm_segs[0].ds_addr); 309 } 310 SC_RFD(sc, 0)->rfd_rbd_addr = 311 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off)); 312 sc->sc_rx_done = 0; 313 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, sc->sc_rfd_off, 314 sc->sc_rfd_sz * IEE_NRFD + sc->sc_rbd_sz * IEE_NRFD, 315 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 316 (sc->sc_iee_cmd)(sc, IEE_SCB_RUC_ST); 317 printf("%s: iee_intr: receive ring buffer overrun\n", 318 device_xname(sc->sc_dev)); 319 } 320 321 if (sc->sc_next_cb != 0) { 322 IEE_CBSYNC(sc, sc->sc_next_cb - 1, 323 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 324 status = SC_CB(sc, sc->sc_next_cb - 1)->cb_status; 325 IEE_CBSYNC(sc, sc->sc_next_cb - 1, 326 BUS_DMASYNC_PREREAD); 327 if ((status & IEE_CB_C) != 0) { 328 /* CMD list finished */ 329 ifp->if_timer = 0; 330 if (sc->sc_next_tbd != 0) { 331 /* A TX CMD list finished, cleanup */ 332 for (n = 0 ; n < sc->sc_next_cb ; n++) { 333 bus_dmamap_unload(sc->sc_dmat, 334 sc->sc_tx_map[n]); 335 m_freem(sc->sc_tx_mbuf[n]); 336 sc->sc_tx_mbuf[n] = NULL; 337 IEE_CBSYNC(sc, n, 338 BUS_DMASYNC_POSTREAD | 339 BUS_DMASYNC_POSTWRITE); 340 status = SC_CB(sc, n)->cb_status; 341 IEE_CBSYNC(sc, n, 342 BUS_DMASYNC_PREREAD); 343 if ((status & IEE_CB_COL) != 0 && 344 (status & IEE_CB_MAXCOL) == 0) 345 col = 16; 346 else 347 col = status 348 & IEE_CB_MAXCOL; 349 sc->sc_tx_col += col; 350 if ((status & IEE_CB_OK) != 0) { 351 if_statadd2(ifp, 352 if_opackets, 1, 353 if_collisions, col); 354 } 355 } 356 sc->sc_next_tbd = 0; 357 ifp->if_flags &= ~IFF_OACTIVE; 358 } 359 for (n = 0 ; n < sc->sc_next_cb; n++) { 360 /* 361 * Check if a CMD failed, but ignore TX errors. 362 */ 363 IEE_CBSYNC(sc, n, BUS_DMASYNC_POSTREAD | 364 BUS_DMASYNC_POSTWRITE); 365 cmd = SC_CB(sc, n)->cb_cmd; 366 status = SC_CB(sc, n)->cb_status; 367 IEE_CBSYNC(sc, n, BUS_DMASYNC_PREREAD); 368 if ((cmd & IEE_CB_CMD) != IEE_CB_CMD_TR && 369 (status & IEE_CB_OK) == 0) 370 printf("%s: iee_intr: scb_status=0x%x " 371 "scb_cmd=0x%x failed command %d: " 372 "cb_status[%d]=0x%.4x " 373 "cb_cmd[%d]=0x%.4x\n", 374 device_xname(sc->sc_dev), 375 scb_status, scb_cmd, 376 ++sc->sc_cmd_err, 377 n, status, n, cmd); 378 } 379 sc->sc_next_cb = 0; 380 if ((sc->sc_flags & IEE_WANT_MCAST) != 0) { 381 iee_cb_setup(sc, IEE_CB_CMD_MCS | 382 IEE_CB_S | IEE_CB_EL | IEE_CB_I); 383 (sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE); 384 } else 385 /* Try to get deferred packets going. */ 386 if_schedule_deferred_start(ifp); 387 } 388 } 389 if (IEE_SWAP32(SC_SCB(sc)->scb_crc_err) != sc->sc_crc_err) { 390 sc->sc_crc_err = IEE_SWAP32(SC_SCB(sc)->scb_crc_err); 391 printf("%s: iee_intr: crc_err=%d\n", device_xname(sc->sc_dev), 392 sc->sc_crc_err); 393 } 394 if (IEE_SWAP32(SC_SCB(sc)->scb_align_err) != sc->sc_align_err) { 395 sc->sc_align_err = IEE_SWAP32(SC_SCB(sc)->scb_align_err); 396 printf("%s: iee_intr: align_err=%d\n", 397 device_xname(sc->sc_dev), sc->sc_align_err); 398 } 399 if (IEE_SWAP32(SC_SCB(sc)->scb_resource_err) != sc->sc_resource_err) { 400 sc->sc_resource_err = IEE_SWAP32(SC_SCB(sc)->scb_resource_err); 401 printf("%s: iee_intr: resource_err=%d\n", 402 device_xname(sc->sc_dev), sc->sc_resource_err); 403 } 404 if (IEE_SWAP32(SC_SCB(sc)->scb_overrun_err) != sc->sc_overrun_err) { 405 sc->sc_overrun_err = IEE_SWAP32(SC_SCB(sc)->scb_overrun_err); 406 printf("%s: iee_intr: overrun_err=%d\n", 407 device_xname(sc->sc_dev), sc->sc_overrun_err); 408 } 409 if (IEE_SWAP32(SC_SCB(sc)->scb_rcvcdt_err) != sc->sc_rcvcdt_err) { 410 sc->sc_rcvcdt_err = IEE_SWAP32(SC_SCB(sc)->scb_rcvcdt_err); 411 printf("%s: iee_intr: rcvcdt_err=%d\n", 412 device_xname(sc->sc_dev), sc->sc_rcvcdt_err); 413 } 414 if (IEE_SWAP32(SC_SCB(sc)->scb_short_fr_err) != sc->sc_short_fr_err) { 415 sc->sc_short_fr_err = IEE_SWAP32(SC_SCB(sc)->scb_short_fr_err); 416 printf("%s: iee_intr: short_fr_err=%d\n", 417 device_xname(sc->sc_dev), sc->sc_short_fr_err); 418 } 419 IEE_SCBSYNC(sc, BUS_DMASYNC_PREREAD); 420 (sc->sc_iee_cmd)(sc, IEE_SCB_ACK); 421 return 1; 422 } 423 424 425 426 /* 427 * How Command Block List Processing is done. 428 * 429 * A running CBL is never manipulated. If there is a CBL already running, 430 * further CMDs are deferred until the current list is done. A new list is 431 * setup when the old one has finished. 432 * This eases programming. To manipulate a running CBL it is necessary to 433 * suspend the Command Unit to avoid race conditions. After a suspend 434 * is sent we have to wait for an interrupt that ACKs the suspend. Then 435 * we can manipulate the CBL and resume operation. I am not sure that this 436 * is more effective than the current, much simpler approach. => KISS 437 * See i82596CA data sheet page 26. 438 * 439 * A CBL is running or on the way to be set up when (sc->sc_next_cb != 0). 440 * 441 * A CBL may consist of TX CMDs, and _only_ TX CMDs. 442 * A TX CBL is running or on the way to be set up when 443 * ((sc->sc_next_cb != 0) && (sc->sc_next_tbd != 0)). 444 * 445 * A CBL may consist of other non-TX CMDs like IAS or CONF, and _only_ 446 * non-TX CMDs. 447 * 448 * This comes mostly through the way how an Ethernet driver works and 449 * because running CBLs are not manipulated when they are on the way. If 450 * if_start() is called there will be TX CMDs enqueued so we have a running 451 * CBL and other CMDs from e.g. if_ioctl() will be deferred and vice versa. 452 * 453 * The Multicast Setup Command is special. A MCS needs more space than 454 * a single CB has. Actual space requirement depends on the length of the 455 * multicast list. So we always defer MCS until other CBLs are finished, 456 * then we setup a CONF CMD in the first CB. The CONF CMD is needed to 457 * turn ALLMULTI on the hardware on or off. The MCS is the 2nd CB and may 458 * use all the remaining space in the CBL and the Transmit Buffer Descriptor 459 * List. (Therefore CBL and TBDL must be continuous in physical and virtual 460 * memory. This is guaranteed through the definitions of the list offsets 461 * in i82596reg.h and because it is only a single DMA segment used for all 462 * lists.) When ALLMULTI is enabled via the CONF CMD, the MCS is run with 463 * a multicast list length of 0, thus disabling the multicast filter. 464 * A deferred MCS is signaled via ((sc->sc_flags & IEE_WANT_MCAST) != 0) 465 */ 466 void 467 iee_cb_setup(struct iee_softc *sc, uint32_t cmd) 468 { 469 struct iee_cb *cb = SC_CB(sc, sc->sc_next_cb); 470 struct ethercom *ec = &sc->sc_ethercom; 471 struct ifnet *ifp = &ec->ec_if; 472 struct ether_multistep step; 473 struct ether_multi *enm; 474 475 memset(cb, 0, sc->sc_cb_sz); 476 cb->cb_cmd = cmd; 477 switch (cmd & IEE_CB_CMD) { 478 case IEE_CB_CMD_NOP: /* NOP CMD */ 479 break; 480 case IEE_CB_CMD_IAS: /* Individual Address Setup */ 481 memcpy(__UNVOLATILE(cb->cb_ind_addr), CLLADDR(ifp->if_sadl), 482 ETHER_ADDR_LEN); 483 break; 484 case IEE_CB_CMD_CONF: /* Configure */ 485 memcpy(__UNVOLATILE(cb->cb_cf), sc->sc_cf, sc->sc_cf[0] 486 & IEE_CF_0_CNT_M); 487 break; 488 case IEE_CB_CMD_MCS: /* Multicast Setup */ 489 if (sc->sc_next_cb != 0) { 490 sc->sc_flags |= IEE_WANT_MCAST; 491 return; 492 } 493 sc->sc_flags &= ~IEE_WANT_MCAST; 494 if ((sc->sc_cf[8] & IEE_CF_8_PRM) != 0) { 495 /* Need no multicast filter in promisc mode. */ 496 iee_cb_setup(sc, IEE_CB_CMD_CONF | IEE_CB_S | IEE_CB_EL 497 | IEE_CB_I); 498 return; 499 } 500 /* Leave room for a CONF CMD to en/dis-able ALLMULTI mode */ 501 cb = SC_CB(sc, sc->sc_next_cb + 1); 502 cb->cb_cmd = cmd; 503 cb->cb_mcast.mc_size = 0; 504 ETHER_LOCK(ec); 505 ETHER_FIRST_MULTI(step, ec, enm); 506 while (enm != NULL) { 507 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 508 ETHER_ADDR_LEN) != 0 || cb->cb_mcast.mc_size 509 * ETHER_ADDR_LEN + 2 * sc->sc_cb_sz > 510 sc->sc_cb_sz * IEE_NCB + 511 sc->sc_tbd_sz * IEE_NTBD * IEE_NCB) { 512 cb->cb_mcast.mc_size = 0; 513 break; 514 } 515 memcpy(__UNVOLATILE(&cb->cb_mcast.mc_addrs[ 516 cb->cb_mcast.mc_size]), 517 enm->enm_addrlo, ETHER_ADDR_LEN); 518 ETHER_NEXT_MULTI(step, enm); 519 cb->cb_mcast.mc_size += ETHER_ADDR_LEN; 520 } 521 ETHER_UNLOCK(ec); 522 if (cb->cb_mcast.mc_size == 0) { 523 /* Can't do exact mcast filtering, do ALLMULTI mode. */ 524 ifp->if_flags |= IFF_ALLMULTI; 525 sc->sc_cf[11] &= ~IEE_CF_11_MCALL; 526 } else { 527 /* disable ALLMULTI and load mcast list */ 528 ifp->if_flags &= ~IFF_ALLMULTI; 529 sc->sc_cf[11] |= IEE_CF_11_MCALL; 530 /* Mcast setup may need more than sc->sc_cb_sz bytes. */ 531 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, 532 sc->sc_cb_off, 533 sc->sc_cb_sz * IEE_NCB + 534 sc->sc_tbd_sz * IEE_NTBD * IEE_NCB, 535 BUS_DMASYNC_PREWRITE); 536 } 537 iee_cb_setup(sc, IEE_CB_CMD_CONF); 538 break; 539 case IEE_CB_CMD_TR: /* Transmit */ 540 cb->cb_transmit.tx_tbd_addr = 541 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_tbd_off 542 + sc->sc_tbd_sz * sc->sc_next_tbd)); 543 cb->cb_cmd |= IEE_CB_SF; /* Always use Flexible Mode. */ 544 break; 545 case IEE_CB_CMD_TDR: /* Time Domain Reflectometry */ 546 break; 547 case IEE_CB_CMD_DUMP: /* Dump */ 548 break; 549 case IEE_CB_CMD_DIAG: /* Diagnose */ 550 break; 551 default: 552 /* can't happen */ 553 break; 554 } 555 cb->cb_link_addr = IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_cb_off + 556 sc->sc_cb_sz * (sc->sc_next_cb + 1))); 557 IEE_CBSYNC(sc, sc->sc_next_cb, 558 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 559 sc->sc_next_cb++; 560 ifp->if_timer = 5; 561 } 562 563 564 565 void 566 iee_attach(struct iee_softc *sc, uint8_t *eth_addr, int *media, int nmedia, 567 int defmedia) 568 { 569 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 570 int n; 571 572 KASSERT(sc->sc_cl_align > 0 && powerof2(sc->sc_cl_align)); 573 574 /* 575 * Calculate DMA descriptor offsets and sizes in shmem 576 * which should be cache line aligned. 577 */ 578 sc->sc_scp_off = 0; 579 sc->sc_scp_sz = roundup2(sizeof(struct iee_scp), sc->sc_cl_align); 580 sc->sc_iscp_off = sc->sc_scp_sz; 581 sc->sc_iscp_sz = roundup2(sizeof(struct iee_iscp), sc->sc_cl_align); 582 sc->sc_scb_off = sc->sc_iscp_off + sc->sc_iscp_sz; 583 sc->sc_scb_sz = roundup2(sizeof(struct iee_scb), sc->sc_cl_align); 584 sc->sc_rfd_off = sc->sc_scb_off + sc->sc_scb_sz; 585 sc->sc_rfd_sz = roundup2(sizeof(struct iee_rfd), sc->sc_cl_align); 586 sc->sc_rbd_off = sc->sc_rfd_off + sc->sc_rfd_sz * IEE_NRFD; 587 sc->sc_rbd_sz = roundup2(sizeof(struct iee_rbd), sc->sc_cl_align); 588 sc->sc_cb_off = sc->sc_rbd_off + sc->sc_rbd_sz * IEE_NRFD; 589 sc->sc_cb_sz = roundup2(sizeof(struct iee_cb), sc->sc_cl_align); 590 sc->sc_tbd_off = sc->sc_cb_off + sc->sc_cb_sz * IEE_NCB; 591 sc->sc_tbd_sz = roundup2(sizeof(struct iee_tbd), sc->sc_cl_align); 592 sc->sc_shmem_sz = sc->sc_tbd_off + sc->sc_tbd_sz * IEE_NTBD * IEE_NCB; 593 594 /* allocate memory for shared DMA descriptors */ 595 if (bus_dmamem_alloc(sc->sc_dmat, sc->sc_shmem_sz, PAGE_SIZE, 0, 596 &sc->sc_dma_segs, 1, &sc->sc_dma_rsegs, BUS_DMA_NOWAIT) != 0) { 597 aprint_error(": can't allocate %d bytes of DMA memory\n", 598 sc->sc_shmem_sz); 599 return; 600 } 601 if (bus_dmamem_map(sc->sc_dmat, &sc->sc_dma_segs, sc->sc_dma_rsegs, 602 sc->sc_shmem_sz, (void **)&sc->sc_shmem_addr, 603 BUS_DMA_COHERENT | BUS_DMA_NOWAIT) != 0) { 604 aprint_error(": can't map DMA memory\n"); 605 bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs, 606 sc->sc_dma_rsegs); 607 return; 608 } 609 if (bus_dmamap_create(sc->sc_dmat, sc->sc_shmem_sz, sc->sc_dma_rsegs, 610 sc->sc_shmem_sz, 0, BUS_DMA_NOWAIT, &sc->sc_shmem_map) != 0) { 611 aprint_error(": can't create DMA map\n"); 612 bus_dmamem_unmap(sc->sc_dmat, sc->sc_shmem_addr, 613 sc->sc_shmem_sz); 614 bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs, 615 sc->sc_dma_rsegs); 616 return; 617 } 618 if (bus_dmamap_load(sc->sc_dmat, sc->sc_shmem_map, sc->sc_shmem_addr, 619 sc->sc_shmem_sz, NULL, BUS_DMA_NOWAIT) != 0) { 620 aprint_error(": can't load DMA map\n"); 621 bus_dmamap_destroy(sc->sc_dmat, sc->sc_shmem_map); 622 bus_dmamem_unmap(sc->sc_dmat, sc->sc_shmem_addr, 623 sc->sc_shmem_sz); 624 bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs, 625 sc->sc_dma_rsegs); 626 return; 627 } 628 memset(sc->sc_shmem_addr, 0, sc->sc_shmem_sz); 629 630 /* 631 * Set pointer to Intermediate System Configuration Pointer. 632 * Phys. addr. in big endian order. (Big endian as defined by Intel.) 633 */ 634 SC_SCP(sc)->scp_iscp_addr = IEE_SWAP32(IEE_PHYS_SHMEM(sc->sc_iscp_off)); 635 SC_SCP(sc)->scp_sysbus = sc->sc_sysbus; 636 /* 637 * Set pointer to System Control Block. 638 * Phys. addr. in big endian order. (Big endian as defined by Intel.) 639 */ 640 SC_ISCP(sc)->iscp_scb_addr = IEE_SWAP32(IEE_PHYS_SHMEM(sc->sc_scb_off)); 641 /* Set pointer to Receive Frame Area. (physical address) */ 642 SC_SCB(sc)->scb_rfa_addr = IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off)); 643 /* Set pointer to Command Block. (physical address) */ 644 SC_SCB(sc)->scb_cmd_blk_addr = 645 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_cb_off)); 646 647 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, 0, sc->sc_shmem_sz, 648 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 649 650 /* Initialize ifmedia structures. */ 651 sc->sc_ethercom.ec_ifmedia = &sc->sc_ifmedia; 652 ifmedia_init(&sc->sc_ifmedia, 0, iee_mediachange, iee_mediastatus); 653 if (media != NULL) { 654 for (n = 0 ; n < nmedia ; n++) 655 ifmedia_add(&sc->sc_ifmedia, media[n], 0, NULL); 656 ifmedia_set(&sc->sc_ifmedia, defmedia); 657 } else { 658 ifmedia_add(&sc->sc_ifmedia, IFM_ETHER | IFM_NONE, 0, NULL); 659 ifmedia_set(&sc->sc_ifmedia, IFM_ETHER | IFM_NONE); 660 } 661 662 ifp->if_softc = sc; 663 strcpy(ifp->if_xname, device_xname(sc->sc_dev)); 664 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 665 ifp->if_start = iee_start; /* initiate output routine */ 666 ifp->if_ioctl = iee_ioctl; /* ioctl routine */ 667 ifp->if_init = iee_init; /* init routine */ 668 ifp->if_stop = iee_stop; /* stop routine */ 669 ifp->if_watchdog = iee_watchdog; /* timer routine */ 670 IFQ_SET_READY(&ifp->if_snd); 671 /* iee supports IEEE 802.1Q Virtual LANs, see vlan(4). */ 672 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; 673 674 if_attach(ifp); 675 if_deferred_start_init(ifp, NULL); 676 ether_ifattach(ifp, eth_addr); 677 678 aprint_normal(": Intel 82596%s address %s\n", 679 i82596_typenames[sc->sc_type], ether_sprintf(eth_addr)); 680 681 for (n = 0 ; n < IEE_NCB ; n++) 682 sc->sc_tx_map[n] = NULL; 683 for (n = 0 ; n < IEE_NRFD ; n++) { 684 sc->sc_rx_mbuf[n] = NULL; 685 sc->sc_rx_map[n] = NULL; 686 } 687 sc->sc_tx_timeout = 0; 688 sc->sc_setup_timeout = 0; 689 (sc->sc_iee_reset)(sc); 690 } 691 692 693 void 694 iee_detach(struct iee_softc *sc, int flags) 695 { 696 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 697 698 if ((ifp->if_flags & IFF_RUNNING) != 0) 699 iee_stop(ifp, 1); 700 ether_ifdetach(ifp); 701 if_detach(ifp); 702 ifmedia_fini(&sc->sc_ifmedia); 703 bus_dmamap_unload(sc->sc_dmat, sc->sc_shmem_map); 704 bus_dmamap_destroy(sc->sc_dmat, sc->sc_shmem_map); 705 bus_dmamem_unmap(sc->sc_dmat, sc->sc_shmem_addr, sc->sc_shmem_sz); 706 bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs, sc->sc_dma_rsegs); 707 } 708 709 710 /* Media change and status callback */ 711 int 712 iee_mediachange(struct ifnet *ifp) 713 { 714 struct iee_softc *sc = ifp->if_softc; 715 716 if (sc->sc_mediachange != NULL) 717 return (sc->sc_mediachange)(ifp); 718 return 0; 719 } 720 721 722 void 723 iee_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmreq) 724 { 725 struct iee_softc *sc = ifp->if_softc; 726 727 if (sc->sc_mediastatus != NULL) 728 (sc->sc_mediastatus)(ifp, ifmreq); 729 } 730 731 732 /* Initiate output routine */ 733 void 734 iee_start(struct ifnet *ifp) 735 { 736 struct iee_softc *sc = ifp->if_softc; 737 struct mbuf *m = NULL; 738 struct iee_tbd *tbd; 739 int t; 740 int n; 741 742 if (sc->sc_next_cb != 0) 743 /* There is already a CMD running. Defer packet enqueuing. */ 744 return; 745 for (t = 0 ; t < IEE_NCB ; t++) { 746 IFQ_DEQUEUE(&ifp->if_snd, sc->sc_tx_mbuf[t]); 747 if (sc->sc_tx_mbuf[t] == NULL) 748 break; 749 if (bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_tx_map[t], 750 sc->sc_tx_mbuf[t], BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) { 751 /* 752 * The packet needs more TBD than we support. 753 * Copy the packet into a mbuf cluster to get it out. 754 */ 755 printf("%s: iee_start: failed to load DMA map\n", 756 device_xname(sc->sc_dev)); 757 MGETHDR(m, M_DONTWAIT, MT_DATA); 758 if (m == NULL) { 759 printf("%s: iee_start: can't allocate mbuf\n", 760 device_xname(sc->sc_dev)); 761 m_freem(sc->sc_tx_mbuf[t]); 762 sc->sc_tx_mbuf[t] = NULL; 763 t--; 764 continue; 765 } 766 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner); 767 MCLGET(m, M_DONTWAIT); 768 if ((m->m_flags & M_EXT) == 0) { 769 printf("%s: iee_start: can't allocate mbuf " 770 "cluster\n", device_xname(sc->sc_dev)); 771 m_freem(sc->sc_tx_mbuf[t]); 772 sc->sc_tx_mbuf[t] = NULL; 773 m_freem(m); 774 t--; 775 continue; 776 } 777 m_copydata(sc->sc_tx_mbuf[t], 0, 778 sc->sc_tx_mbuf[t]->m_pkthdr.len, mtod(m, void *)); 779 m->m_pkthdr.len = sc->sc_tx_mbuf[t]->m_pkthdr.len; 780 m->m_len = sc->sc_tx_mbuf[t]->m_pkthdr.len; 781 m_freem(sc->sc_tx_mbuf[t]); 782 sc->sc_tx_mbuf[t] = m; 783 if (bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_tx_map[t], 784 m, BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) { 785 printf("%s: iee_start: can't load TX DMA map\n", 786 device_xname(sc->sc_dev)); 787 m_freem(sc->sc_tx_mbuf[t]); 788 sc->sc_tx_mbuf[t] = NULL; 789 t--; 790 continue; 791 } 792 } 793 for (n = 0 ; n < sc->sc_tx_map[t]->dm_nsegs ; n++) { 794 tbd = SC_TBD(sc, sc->sc_next_tbd + n); 795 tbd->tbd_tb_addr = 796 IEE_SWAPA32(sc->sc_tx_map[t]->dm_segs[n].ds_addr); 797 tbd->tbd_size = 798 sc->sc_tx_map[t]->dm_segs[n].ds_len; 799 tbd->tbd_link_addr = 800 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_tbd_off + 801 sc->sc_tbd_sz * (sc->sc_next_tbd + n + 1))); 802 } 803 SC_TBD(sc, sc->sc_next_tbd + n - 1)->tbd_size |= IEE_CB_EL; 804 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, 805 sc->sc_tbd_off + sc->sc_next_tbd * sc->sc_tbd_sz, 806 sc->sc_tbd_sz * sc->sc_tx_map[t]->dm_nsegs, 807 BUS_DMASYNC_PREWRITE); 808 bus_dmamap_sync(sc->sc_dmat, sc->sc_tx_map[t], 0, 809 sc->sc_tx_map[t]->dm_mapsize, BUS_DMASYNC_PREWRITE); 810 IFQ_POLL(&ifp->if_snd, m); 811 if (m == NULL) 812 iee_cb_setup(sc, IEE_CB_CMD_TR | IEE_CB_S | IEE_CB_EL 813 | IEE_CB_I); 814 else 815 iee_cb_setup(sc, IEE_CB_CMD_TR); 816 sc->sc_next_tbd += n; 817 /* Pass packet to bpf if someone listens. */ 818 bpf_mtap(ifp, sc->sc_tx_mbuf[t], BPF_D_OUT); 819 } 820 if (t == 0) 821 /* No packets got set up for TX. */ 822 return; 823 if (t == IEE_NCB) 824 ifp->if_flags |= IFF_OACTIVE; 825 (sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE); 826 } 827 828 829 830 /* ioctl routine */ 831 int 832 iee_ioctl(struct ifnet *ifp, u_long cmd, void *data) 833 { 834 struct iee_softc *sc = ifp->if_softc; 835 int s; 836 int err; 837 838 s = splnet(); 839 switch (cmd) { 840 default: 841 err = ether_ioctl(ifp, cmd, data); 842 if (err == ENETRESET) { 843 /* 844 * Multicast list as changed; set the hardware filter 845 * accordingly. 846 */ 847 if (ifp->if_flags & IFF_RUNNING) { 848 iee_cb_setup(sc, IEE_CB_CMD_MCS | IEE_CB_S | 849 IEE_CB_EL | IEE_CB_I); 850 if ((sc->sc_flags & IEE_WANT_MCAST) == 0) 851 (*sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE); 852 } 853 err = 0; 854 } 855 break; 856 } 857 splx(s); 858 return err; 859 } 860 861 862 863 /* init routine */ 864 int 865 iee_init(struct ifnet *ifp) 866 { 867 struct iee_softc *sc = ifp->if_softc; 868 int r; 869 int t; 870 int n; 871 int err; 872 873 sc->sc_next_cb = 0; 874 sc->sc_next_tbd = 0; 875 sc->sc_flags &= ~IEE_WANT_MCAST; 876 sc->sc_rx_done = 0; 877 SC_SCB(sc)->scb_crc_err = 0; 878 SC_SCB(sc)->scb_align_err = 0; 879 SC_SCB(sc)->scb_resource_err = 0; 880 SC_SCB(sc)->scb_overrun_err = 0; 881 SC_SCB(sc)->scb_rcvcdt_err = 0; 882 SC_SCB(sc)->scb_short_fr_err = 0; 883 sc->sc_crc_err = 0; 884 sc->sc_align_err = 0; 885 sc->sc_resource_err = 0; 886 sc->sc_overrun_err = 0; 887 sc->sc_rcvcdt_err = 0; 888 sc->sc_short_fr_err = 0; 889 sc->sc_tx_col = 0; 890 sc->sc_rx_err = 0; 891 sc->sc_cmd_err = 0; 892 /* Create Transmit DMA maps. */ 893 for (t = 0 ; t < IEE_NCB ; t++) { 894 if (sc->sc_tx_map[t] == NULL && bus_dmamap_create(sc->sc_dmat, 895 MCLBYTES, IEE_NTBD, MCLBYTES, 0, BUS_DMA_NOWAIT, 896 &sc->sc_tx_map[t]) != 0) { 897 printf("%s: iee_init: can't create TX DMA map\n", 898 device_xname(sc->sc_dev)); 899 for (n = 0 ; n < t ; n++) 900 bus_dmamap_destroy(sc->sc_dmat, 901 sc->sc_tx_map[n]); 902 return ENOBUFS; 903 } 904 } 905 /* Initialize Receive Frame and Receive Buffer Descriptors */ 906 err = 0; 907 memset(SC_RFD(sc, 0), 0, sc->sc_rfd_sz * IEE_NRFD); 908 memset(SC_RBD(sc, 0), 0, sc->sc_rbd_sz * IEE_NRFD); 909 for (r = 0 ; r < IEE_NRFD ; r++) { 910 SC_RFD(sc, r)->rfd_cmd = IEE_RFD_SF; 911 SC_RFD(sc, r)->rfd_link_addr = 912 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off 913 + sc->sc_rfd_sz * ((r + 1) % IEE_NRFD))); 914 915 SC_RBD(sc, r)->rbd_next_rbd = 916 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off 917 + sc->sc_rbd_sz * ((r + 1) % IEE_NRFD))); 918 if (sc->sc_rx_mbuf[r] == NULL) { 919 MGETHDR(sc->sc_rx_mbuf[r], M_DONTWAIT, MT_DATA); 920 if (sc->sc_rx_mbuf[r] == NULL) { 921 printf("%s: iee_init: can't allocate mbuf\n", 922 device_xname(sc->sc_dev)); 923 err = 1; 924 break; 925 } 926 MCLAIM(sc->sc_rx_mbuf[r], 927 &sc->sc_ethercom.ec_rx_mowner); 928 MCLGET(sc->sc_rx_mbuf[r], M_DONTWAIT); 929 if ((sc->sc_rx_mbuf[r]->m_flags & M_EXT) == 0) { 930 printf("%s: iee_init: can't allocate mbuf" 931 " cluster\n", device_xname(sc->sc_dev)); 932 m_freem(sc->sc_rx_mbuf[r]); 933 sc->sc_rx_mbuf[r] = NULL; 934 err = 1; 935 break; 936 } 937 sc->sc_rx_mbuf[r]->m_len = 938 sc->sc_rx_mbuf[r]->m_pkthdr.len = MCLBYTES - 2; 939 sc->sc_rx_mbuf[r]->m_data += 2; 940 } 941 if (sc->sc_rx_map[r] == NULL && bus_dmamap_create(sc->sc_dmat, 942 MCLBYTES, 1, MCLBYTES , 0, BUS_DMA_NOWAIT, 943 &sc->sc_rx_map[r]) != 0) { 944 printf("%s: iee_init: can't create RX DMA map\n", 945 device_xname(sc->sc_dev)); 946 m_freem(sc->sc_rx_mbuf[r]); 947 sc->sc_rx_mbuf[r] = NULL; 948 err = 1; 949 break; 950 } 951 if (bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_rx_map[r], 952 sc->sc_rx_mbuf[r], BUS_DMA_READ | BUS_DMA_NOWAIT) != 0) { 953 printf("%s: iee_init: can't load RX DMA map\n", 954 device_xname(sc->sc_dev)); 955 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_map[r]); 956 m_freem(sc->sc_rx_mbuf[r]); 957 sc->sc_rx_mbuf[r] = NULL; 958 err = 1; 959 break; 960 } 961 bus_dmamap_sync(sc->sc_dmat, sc->sc_rx_map[r], 0, 962 sc->sc_rx_map[r]->dm_mapsize, BUS_DMASYNC_PREREAD); 963 SC_RBD(sc, r)->rbd_size = sc->sc_rx_map[r]->dm_segs[0].ds_len; 964 SC_RBD(sc, r)->rbd_rb_addr = 965 IEE_SWAPA32(sc->sc_rx_map[r]->dm_segs[0].ds_addr); 966 } 967 SC_RFD(sc, 0)->rfd_rbd_addr = 968 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off)); 969 if (err != 0) { 970 for (n = 0 ; n < r; n++) { 971 bus_dmamap_unload(sc->sc_dmat, sc->sc_rx_map[n]); 972 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_map[n]); 973 sc->sc_rx_map[n] = NULL; 974 m_freem(sc->sc_rx_mbuf[n]); 975 sc->sc_rx_mbuf[n] = NULL; 976 } 977 for (n = 0 ; n < t ; n++) { 978 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_map[n]); 979 sc->sc_tx_map[n] = NULL; 980 } 981 return ENOBUFS; 982 } 983 984 (sc->sc_iee_reset)(sc); 985 iee_cb_setup(sc, IEE_CB_CMD_IAS); 986 sc->sc_cf[0] = IEE_CF_0_DEF | IEE_CF_0_PREF; 987 sc->sc_cf[1] = IEE_CF_1_DEF; 988 sc->sc_cf[2] = IEE_CF_2_DEF; 989 sc->sc_cf[3] = IEE_CF_3_ADDRLEN_DEF | IEE_CF_3_NSAI 990 | IEE_CF_3_PREAMLEN_DEF; 991 sc->sc_cf[4] = IEE_CF_4_DEF; 992 sc->sc_cf[5] = IEE_CF_5_DEF; 993 sc->sc_cf[6] = IEE_CF_6_DEF; 994 sc->sc_cf[7] = IEE_CF_7_DEF; 995 sc->sc_cf[8] = IEE_CF_8_DEF; 996 sc->sc_cf[9] = IEE_CF_9_DEF; 997 sc->sc_cf[10] = IEE_CF_10_DEF; 998 sc->sc_cf[11] = IEE_CF_11_DEF & ~IEE_CF_11_LNGFLD; 999 sc->sc_cf[12] = IEE_CF_12_DEF; 1000 sc->sc_cf[13] = IEE_CF_13_DEF; 1001 iee_cb_setup(sc, IEE_CB_CMD_CONF | IEE_CB_S | IEE_CB_EL); 1002 SC_SCB(sc)->scb_rfa_addr = IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off)); 1003 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, 0, sc->sc_shmem_sz, 1004 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1005 (sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE | IEE_SCB_RUC_ST); 1006 /* Issue a Channel Attention to ACK interrupts we may have caused. */ 1007 (sc->sc_iee_cmd)(sc, IEE_SCB_ACK); 1008 1009 /* Mark the interface as running and ready to RX/TX packets. */ 1010 ifp->if_flags |= IFF_RUNNING; 1011 ifp->if_flags &= ~IFF_OACTIVE; 1012 return 0; 1013 } 1014 1015 1016 /* Stop routine */ 1017 void 1018 iee_stop(struct ifnet *ifp, int disable) 1019 { 1020 struct iee_softc *sc = ifp->if_softc; 1021 int n; 1022 1023 ifp->if_flags &= ~IFF_RUNNING; 1024 ifp->if_flags |= IFF_OACTIVE; 1025 ifp->if_timer = 0; 1026 /* Reset the chip to get it quiet. */ 1027 (sc->sc_iee_reset)(ifp->if_softc); 1028 /* Issue a Channel Attention to ACK interrupts we may have caused. */ 1029 (sc->sc_iee_cmd)(ifp->if_softc, IEE_SCB_ACK); 1030 /* Release any dynamically allocated resources. */ 1031 for (n = 0 ; n < IEE_NCB ; n++) { 1032 if (sc->sc_tx_map[n] != NULL) 1033 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_map[n]); 1034 sc->sc_tx_map[n] = NULL; 1035 } 1036 for (n = 0 ; n < IEE_NRFD ; n++) { 1037 if (sc->sc_rx_map[n] != NULL) { 1038 bus_dmamap_unload(sc->sc_dmat, sc->sc_rx_map[n]); 1039 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_map[n]); 1040 } 1041 sc->sc_rx_map[n] = NULL; 1042 m_freem(sc->sc_rx_mbuf[n]); 1043 sc->sc_rx_mbuf[n] = NULL; 1044 } 1045 } 1046 1047 1048 /* Timer routine */ 1049 void 1050 iee_watchdog(struct ifnet *ifp) 1051 { 1052 struct iee_softc *sc = ifp->if_softc; 1053 1054 (sc->sc_iee_reset)(sc); 1055 if (sc->sc_next_tbd != 0) 1056 printf("%s: iee_watchdog: transmit timeout %d\n", 1057 device_xname(sc->sc_dev), ++sc->sc_tx_timeout); 1058 else 1059 printf("%s: iee_watchdog: setup timeout %d\n", 1060 device_xname(sc->sc_dev), ++sc->sc_setup_timeout); 1061 iee_init(ifp); 1062 } 1063