Home | History | Annotate | Line # | Download | only in igc
      1 /*	$NetBSD: igc_i225.c,v 1.3 2025/02/25 15:29:00 andvar Exp $	*/
      2 /*	$OpenBSD: igc_i225.c,v 1.4 2023/02/03 11:31:52 mbuhl Exp $	*/
      3 /*-
      4  * Copyright 2021 Intel Corp
      5  * Copyright 2021 Rubicon Communications, LLC (Netgate)
      6  * SPDX-License-Identifier: BSD-3-Clause
      7  */
      8 
      9 #include <sys/cdefs.h>
     10 __KERNEL_RCSID(0, "$NetBSD: igc_i225.c,v 1.3 2025/02/25 15:29:00 andvar Exp $");
     11 
     12 #include <dev/pci/igc/igc_api.h>
     13 
     14 int	igc_init_nvm_params_i225(struct igc_hw *);
     15 int	igc_init_mac_params_i225(struct igc_hw *);
     16 int	igc_init_phy_params_i225(struct igc_hw *);
     17 int	igc_reset_hw_i225(struct igc_hw *);
     18 int	igc_acquire_nvm_i225(struct igc_hw *);
     19 void	igc_release_nvm_i225(struct igc_hw *);
     20 int	igc_get_hw_semaphore_i225(struct igc_hw *);
     21 int	__igc_write_nvm_srwr(struct igc_hw *, uint16_t, uint16_t, uint16_t *);
     22 int	igc_pool_flash_update_done_i225(struct igc_hw *);
     23 
     24 /**
     25  *  igc_init_nvm_params_i225 - Init NVM func ptrs.
     26  *  @hw: pointer to the HW structure
     27  **/
     28 int
     29 igc_init_nvm_params_i225(struct igc_hw *hw)
     30 {
     31 	struct igc_nvm_info *nvm = &hw->nvm;
     32 	uint32_t eecd = IGC_READ_REG(hw, IGC_EECD);
     33 	uint16_t size;
     34 
     35 	DEBUGFUNC("igc_init_nvm_params_i225");
     36 
     37 	size = (uint16_t)((eecd & IGC_EECD_SIZE_EX_MASK) >>
     38 	    IGC_EECD_SIZE_EX_SHIFT);
     39 	/*
     40 	 * Added to a constant, "size" becomes the left-shift value
     41 	 * for setting word_size.
     42 	 */
     43 	size += NVM_WORD_SIZE_BASE_SHIFT;
     44 
     45 	/* Just in case size is out of range, cap it to the largest
     46 	 * EEPROM size supported.
     47 	 */
     48 	if (size > 15)
     49 		size = 15;
     50 
     51 	nvm->word_size = 1 << size;
     52 	nvm->opcode_bits = 8;
     53 	nvm->delay_usec = 1;
     54 	nvm->type = igc_nvm_eeprom_spi;
     55 
     56 	nvm->page_size = eecd & IGC_EECD_ADDR_BITS ? 32 : 8;
     57 	nvm->address_bits = eecd & IGC_EECD_ADDR_BITS ? 16 : 8;
     58 
     59 	if (nvm->word_size == (1 << 15))
     60 		nvm->page_size = 128;
     61 
     62 	nvm->ops.acquire = igc_acquire_nvm_i225;
     63 	nvm->ops.release = igc_release_nvm_i225;
     64 	if (igc_get_flash_presence_i225(hw)) {
     65 		hw->nvm.type = igc_nvm_flash_hw;
     66 		nvm->ops.read = igc_read_nvm_srrd_i225;
     67 		nvm->ops.write = igc_write_nvm_srwr_i225;
     68 		nvm->ops.validate = igc_validate_nvm_checksum_i225;
     69 		nvm->ops.update = igc_update_nvm_checksum_i225;
     70 	} else {
     71 		hw->nvm.type = igc_nvm_invm;
     72 		nvm->ops.write = igc_null_write_nvm;
     73 		nvm->ops.validate = igc_null_ops_generic;
     74 		nvm->ops.update = igc_null_ops_generic;
     75 	}
     76 
     77 	return IGC_SUCCESS;
     78 }
     79 
     80 /**
     81  *  igc_init_mac_params_i225 - Init MAC func ptrs.
     82  *  @hw: pointer to the HW structure
     83  **/
     84 int
     85 igc_init_mac_params_i225(struct igc_hw *hw)
     86 {
     87 	struct igc_mac_info *mac = &hw->mac;
     88 	struct igc_dev_spec_i225 *dev_spec = &hw->dev_spec._i225;
     89 
     90 	DEBUGFUNC("igc_init_mac_params_i225");
     91 
     92 	/* Initialize function pointer */
     93 	igc_init_mac_ops_generic(hw);
     94 
     95 	/* Set media type */
     96 	hw->phy.media_type = igc_media_type_copper;
     97 	/* Set mta register count */
     98 	mac->mta_reg_count = 128;
     99 	/* Set rar entry count */
    100 	mac->rar_entry_count = IGC_RAR_ENTRIES_BASE;
    101 
    102 	/* reset */
    103 	mac->ops.reset_hw = igc_reset_hw_i225;
    104 	/* hw initialization */
    105 	mac->ops.init_hw = igc_init_hw_i225;
    106 	/* link setup */
    107 	mac->ops.setup_link = igc_setup_link_generic;
    108 	/* check for link */
    109 	mac->ops.check_for_link = igc_check_for_link_i225;
    110 	/* link info */
    111 	mac->ops.get_link_up_info = igc_get_speed_and_duplex_copper_generic;
    112 	/* acquire SW_FW sync */
    113 	mac->ops.acquire_swfw_sync = igc_acquire_swfw_sync_i225;
    114 	/* release SW_FW sync */
    115 	mac->ops.release_swfw_sync = igc_release_swfw_sync_i225;
    116 
    117 	/* Allow a single clear of the SW semaphore on I225 */
    118 	dev_spec->clear_semaphore_once = true;
    119 	mac->ops.setup_physical_interface = igc_setup_copper_link_i225;
    120 
    121 	/* Set if part includes ASF firmware */
    122 	mac->asf_firmware_present = true;
    123 
    124 	/* multicast address update */
    125 	mac->ops.update_mc_addr_list = igc_update_mc_addr_list_generic;
    126 
    127 	mac->ops.write_vfta = igc_write_vfta_generic;
    128 
    129 	return IGC_SUCCESS;
    130 }
    131 
    132 /**
    133  *  igc_init_phy_params_i225 - Init PHY func ptrs.
    134  *  @hw: pointer to the HW structure
    135  **/
    136 int
    137 igc_init_phy_params_i225(struct igc_hw *hw)
    138 {
    139 	struct igc_phy_info *phy = &hw->phy;
    140 	int ret_val = IGC_SUCCESS;
    141 
    142 	DEBUGFUNC("igc_init_phy_params_i225");
    143 
    144 	if (hw->phy.media_type != igc_media_type_copper) {
    145 		phy->type = igc_phy_none;
    146 		goto out;
    147 	}
    148 
    149 	phy->ops.power_up = igc_power_up_phy_copper;
    150 	phy->ops.power_down = igc_power_down_phy_copper_base;
    151 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT_2500;
    152 	phy->reset_delay_us = 100;
    153 	phy->ops.acquire = igc_acquire_phy_base;
    154 	phy->ops.check_reset_block = igc_check_reset_block_generic;
    155 	phy->ops.release = igc_release_phy_base;
    156 	phy->ops.reset = igc_phy_hw_reset_generic;
    157 	phy->ops.read_reg = igc_read_phy_reg_gpy;
    158 	phy->ops.write_reg = igc_write_phy_reg_gpy;
    159 
    160 	/* Make sure the PHY is in a good state. Several people have reported
    161 	 * firmware leaving the PHY's page select register set to something
    162 	 * other than the default of zero, which causes the PHY ID read to
    163 	 * access something other than the intended register.
    164 	 */
    165 	ret_val = hw->phy.ops.reset(hw);
    166 	if (ret_val)
    167 		goto out;
    168 
    169 	ret_val = igc_get_phy_id(hw);
    170 	phy->type = igc_phy_i225;
    171 
    172 out:
    173 	return ret_val;
    174 }
    175 
    176 /**
    177  *  igc_reset_hw_i225 - Reset hardware
    178  *  @hw: pointer to the HW structure
    179  *
    180  *  This resets the hardware into a known state.
    181  **/
    182 int
    183 igc_reset_hw_i225(struct igc_hw *hw)
    184 {
    185 	uint32_t ctrl;
    186 	int ret_val;
    187 
    188 	DEBUGFUNC("igc_reset_hw_i225");
    189 
    190 	/*
    191 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
    192 	 * on the last TLP read/write transaction when MAC is reset.
    193 	 */
    194 	ret_val = igc_disable_pcie_master_generic(hw);
    195 	if (ret_val)
    196 		DEBUGOUT("PCI-E Master disable polling has failed.\n");
    197 
    198 	DEBUGOUT("Masking off all interrupts\n");
    199 	IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
    200 
    201 	IGC_WRITE_REG(hw, IGC_RCTL, 0);
    202 	IGC_WRITE_REG(hw, IGC_TCTL, IGC_TCTL_PSP);
    203 	IGC_WRITE_FLUSH(hw);
    204 
    205 	msec_delay(10);
    206 
    207 	ctrl = IGC_READ_REG(hw, IGC_CTRL);
    208 
    209 	DEBUGOUT("Issuing a global reset to MAC\n");
    210 	IGC_WRITE_REG(hw, IGC_CTRL, ctrl | IGC_CTRL_DEV_RST);
    211 
    212 	ret_val = igc_get_auto_rd_done_generic(hw);
    213 	if (ret_val) {
    214 		/*
    215 		 * When auto config read does not complete, do not
    216 		 * return with an error. This can happen in situations
    217 		 * where there is no eeprom and prevents getting link.
    218 		 */
    219 		DEBUGOUT("Auto Read Done did not complete\n");
    220 	}
    221 
    222 	/* Clear any pending interrupt events. */
    223 	IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
    224 	IGC_READ_REG(hw, IGC_ICR);
    225 
    226 	/* Install any alternate MAC address into RAR0 */
    227 	ret_val = igc_check_alt_mac_addr_generic(hw);
    228 
    229 	return ret_val;
    230 }
    231 
    232 /* igc_acquire_nvm_i225 - Request for access to EEPROM
    233  * @hw: pointer to the HW structure
    234  *
    235  * Acquire the necessary semaphores for exclusive access to the EEPROM.
    236  * Set the EEPROM access request bit and wait for EEPROM access grant bit.
    237  * Return successful if access grant bit set, else clear the request for
    238  * EEPROM access and return -IGC_ERR_NVM (-1).
    239  */
    240 int
    241 igc_acquire_nvm_i225(struct igc_hw *hw)
    242 {
    243 	int ret_val;
    244 
    245 	DEBUGFUNC("igc_acquire_nvm_i225");
    246 
    247 	ret_val = igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
    248 
    249 	return ret_val;
    250 }
    251 
    252 /* igc_release_nvm_i225 - Release exclusive access to EEPROM
    253  * @hw: pointer to the HW structure
    254  *
    255  * Stop any current commands to the EEPROM and clear the EEPROM request bit,
    256  * then release the semaphores acquired.
    257  */
    258 void
    259 igc_release_nvm_i225(struct igc_hw *hw)
    260 {
    261 	DEBUGFUNC("igc_release_nvm_i225");
    262 
    263 	igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
    264 }
    265 
    266 /* igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore
    267  * @hw: pointer to the HW structure
    268  * @mask: specifies which semaphore to acquire
    269  *
    270  * Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
    271  * will also specify which port we're acquiring the lock for.
    272  */
    273 int
    274 igc_acquire_swfw_sync_i225(struct igc_hw *hw, uint16_t mask)
    275 {
    276 	uint32_t swfw_sync;
    277 	uint32_t swmask = mask;
    278 	uint32_t fwmask = mask << 16;
    279 	int ret_val = IGC_SUCCESS;
    280 	int i = 0, timeout = 200;	/* FIXME: find real value to use here */
    281 
    282 	DEBUGFUNC("igc_acquire_swfw_sync_i225");
    283 
    284 	while (i < timeout) {
    285 		if (igc_get_hw_semaphore_i225(hw)) {
    286 			ret_val = -IGC_ERR_SWFW_SYNC;
    287 			goto out;
    288 		}
    289 
    290 		swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC);
    291 		if (!(swfw_sync & (fwmask | swmask)))
    292 			break;
    293 
    294 		/* Firmware currently using resource (fwmask)
    295 		 * or other software thread using resource (swmask)
    296 		 */
    297 		igc_put_hw_semaphore_generic(hw);
    298 		msec_delay(5);
    299 		i++;
    300 	}
    301 
    302 	if (i == timeout) {
    303 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
    304 		ret_val = -IGC_ERR_SWFW_SYNC;
    305 		goto out;
    306 	}
    307 
    308 	swfw_sync |= swmask;
    309 	IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync);
    310 
    311 	igc_put_hw_semaphore_generic(hw);
    312 
    313 out:
    314 	return ret_val;
    315 }
    316 
    317 /* igc_release_swfw_sync_i225 - Release SW/FW semaphore
    318  * @hw: pointer to the HW structure
    319  * @mask: specifies which semaphore to acquire
    320  *
    321  * Release the SW/FW semaphore used to access the PHY or NVM.  The mask
    322  * will also specify which port we're releasing the lock for.
    323  */
    324 void
    325 igc_release_swfw_sync_i225(struct igc_hw *hw, uint16_t mask)
    326 {
    327 	uint32_t swfw_sync;
    328 
    329 	DEBUGFUNC("igc_release_swfw_sync_i225");
    330 
    331 	while (igc_get_hw_semaphore_i225(hw) != IGC_SUCCESS)
    332 		; /* Empty */
    333 
    334 	swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC);
    335 	swfw_sync &= ~mask;
    336 	IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync);
    337 
    338 	igc_put_hw_semaphore_generic(hw);
    339 }
    340 
    341 /*
    342  * igc_setup_copper_link_i225 - Configure copper link settings
    343  * @hw: pointer to the HW structure
    344  *
    345  * Configures the link for auto-neg or forced speed and duplex.  Then we check
    346  * for link, once link is established calls to configure collision distance
    347  * and flow control are called.
    348  */
    349 int
    350 igc_setup_copper_link_i225(struct igc_hw *hw)
    351 {
    352 	uint32_t ctrl, phpm_reg;
    353 	int ret_val;
    354 
    355 	DEBUGFUNC("igc_setup_copper_link_i225");
    356 
    357 	ctrl = IGC_READ_REG(hw, IGC_CTRL);
    358 	ctrl |= IGC_CTRL_SLU;
    359 	ctrl &= ~(IGC_CTRL_FRCSPD | IGC_CTRL_FRCDPX);
    360 	IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
    361 
    362 	phpm_reg = IGC_READ_REG(hw, IGC_I225_PHPM);
    363 	phpm_reg &= ~IGC_I225_PHPM_GO_LINKD;
    364 	IGC_WRITE_REG(hw, IGC_I225_PHPM, phpm_reg);
    365 
    366 	ret_val = igc_setup_copper_link_generic(hw);
    367 
    368 	return ret_val;
    369 }
    370 
    371 /* igc_get_hw_semaphore_i225 - Acquire hardware semaphore
    372  * @hw: pointer to the HW structure
    373  *
    374  * Acquire the HW semaphore to access the PHY or NVM
    375  */
    376 int
    377 igc_get_hw_semaphore_i225(struct igc_hw *hw)
    378 {
    379 	uint32_t swsm;
    380 	int timeout = hw->nvm.word_size + 1;
    381 	int i = 0;
    382 
    383 	DEBUGFUNC("igc_get_hw_semaphore_i225");
    384 
    385 	/* Get the SW semaphore */
    386 	while (i < timeout) {
    387 		swsm = IGC_READ_REG(hw, IGC_SWSM);
    388 		if (!(swsm & IGC_SWSM_SMBI))
    389 			break;
    390 
    391 		DELAY(50);
    392 		i++;
    393 	}
    394 
    395 	if (i == timeout) {
    396 		/* In rare circumstances, the SW semaphore may already be held
    397 		 * unintentionally. Clear the semaphore once before giving up.
    398 		 */
    399 		if (hw->dev_spec._i225.clear_semaphore_once) {
    400 			hw->dev_spec._i225.clear_semaphore_once = false;
    401 			igc_put_hw_semaphore_generic(hw);
    402 			for (i = 0; i < timeout; i++) {
    403 				swsm = IGC_READ_REG(hw, IGC_SWSM);
    404 				if (!(swsm & IGC_SWSM_SMBI))
    405 					break;
    406 
    407 				DELAY(50);
    408 			}
    409 		}
    410 
    411 		/* If we do not have the semaphore here, we have to give up. */
    412 		if (i == timeout) {
    413 			DEBUGOUT("Driver can't access device -\n");
    414 			DEBUGOUT("SMBI bit is set.\n");
    415 			return -IGC_ERR_NVM;
    416 		}
    417 	}
    418 
    419 	/* Get the FW semaphore. */
    420 	for (i = 0; i < timeout; i++) {
    421 		swsm = IGC_READ_REG(hw, IGC_SWSM);
    422 		IGC_WRITE_REG(hw, IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
    423 
    424 		/* Semaphore acquired if bit latched */
    425 		if (IGC_READ_REG(hw, IGC_SWSM) & IGC_SWSM_SWESMBI)
    426 			break;
    427 
    428 		DELAY(50);
    429 	}
    430 
    431 	if (i == timeout) {
    432 		/* Release semaphores */
    433 		igc_put_hw_semaphore_generic(hw);
    434 		DEBUGOUT("Driver can't access the NVM\n");
    435 		return -IGC_ERR_NVM;
    436 	}
    437 
    438 	return IGC_SUCCESS;
    439 }
    440 
    441 /* igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
    442  * @hw: pointer to the HW structure
    443  * @offset: offset of word in the Shadow Ram to read
    444  * @words: number of words to read
    445  * @data: word read from the Shadow Ram
    446  *
    447  * Reads a 16 bit word from the Shadow Ram using the EERD register.
    448  * Uses necessary synchronization semaphores.
    449  */
    450 int
    451 igc_read_nvm_srrd_i225(struct igc_hw *hw, uint16_t offset, uint16_t words,
    452     uint16_t *data)
    453 {
    454 	uint16_t i, count;
    455 	int status = IGC_SUCCESS;
    456 
    457 	DEBUGFUNC("igc_read_nvm_srrd_i225");
    458 
    459 	/* We cannot hold synchronization semaphores for too long,
    460 	 * because of forceful takeover procedure. However it is more efficient
    461 	 * to read in bursts than synchronizing access for each word.
    462 	 */
    463 	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
    464 		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
    465 		    IGC_EERD_EEWR_MAX_COUNT : (words - i);
    466 		if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
    467 			status = igc_read_nvm_eerd(hw, offset, count, data + i);
    468 			hw->nvm.ops.release(hw);
    469 		} else {
    470 			status = IGC_ERR_SWFW_SYNC;
    471 		}
    472 
    473 		if (status != IGC_SUCCESS)
    474 			break;
    475 	}
    476 
    477 	return status;
    478 }
    479 
    480 /* igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
    481  * @hw: pointer to the HW structure
    482  * @offset: offset within the Shadow RAM to be written to
    483  * @words: number of words to write
    484  * @data: 16 bit word(s) to be written to the Shadow RAM
    485  *
    486  * Writes data to Shadow RAM at offset using EEWR register.
    487  *
    488  * If igc_update_nvm_checksum is not called after this function , the
    489  * data will not be committed to FLASH and also Shadow RAM will most likely
    490  * contain an invalid checksum.
    491  *
    492  * If error code is returned, data and Shadow RAM may be inconsistent - buffer
    493  * partially written.
    494  */
    495 int
    496 igc_write_nvm_srwr_i225(struct igc_hw *hw, uint16_t offset, uint16_t words,
    497     uint16_t *data)
    498 {
    499 	uint16_t i, count;
    500 	int status = IGC_SUCCESS;
    501 
    502 	DEBUGFUNC("igc_write_nvm_srwr_i225");
    503 
    504 	/* We cannot hold synchronization semaphores for too long,
    505 	 * because of forceful takeover procedure. However it is more efficient
    506 	 * to write in bursts than synchronizing access for each word.
    507 	 */
    508 	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
    509 		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
    510 		    IGC_EERD_EEWR_MAX_COUNT : (words - i);
    511 		if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
    512 			status = __igc_write_nvm_srwr(hw, offset, count,
    513 			    data + i);
    514 			hw->nvm.ops.release(hw);
    515 		} else
    516 			status = IGC_ERR_SWFW_SYNC;
    517 
    518 		if (status != IGC_SUCCESS)
    519 			break;
    520 	}
    521 
    522 	return status;
    523 }
    524 
    525 /* __igc_write_nvm_srwr - Write to Shadow Ram using EEWR
    526  * @hw: pointer to the HW structure
    527  * @offset: offset within the Shadow Ram to be written to
    528  * @words: number of words to write
    529  * @data: 16 bit word(s) to be written to the Shadow Ram
    530  *
    531  * Writes data to Shadow Ram at offset using EEWR register.
    532  *
    533  * If igc_update_nvm_checksum is not called after this function , the
    534  * Shadow Ram will most likely contain an invalid checksum.
    535  */
    536 int
    537 __igc_write_nvm_srwr(struct igc_hw *hw, uint16_t offset, uint16_t words,
    538     uint16_t *data)
    539 {
    540 	struct igc_nvm_info *nvm = &hw->nvm;
    541 	uint32_t i, k, eewr = 0;
    542 	uint32_t attempts = 100000;
    543 	int ret_val = IGC_SUCCESS;
    544 
    545 	DEBUGFUNC("__igc_write_nvm_srwr");
    546 
    547 	/* A check for invalid values:  offset too large, too many words,
    548 	 * too many words for the offset, and not enough words.
    549 	 */
    550 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
    551 	    (words == 0)) {
    552 		DEBUGOUT("nvm parameter(s) out of bounds\n");
    553 		ret_val = -IGC_ERR_NVM;
    554 		goto out;
    555 	}
    556 
    557 	for (i = 0; i < words; i++) {
    558 		eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
    559 		    (data[i] << IGC_NVM_RW_REG_DATA) | IGC_NVM_RW_REG_START;
    560 
    561 		IGC_WRITE_REG(hw, IGC_SRWR, eewr);
    562 
    563 		for (k = 0; k < attempts; k++) {
    564 			if (IGC_NVM_RW_REG_DONE & IGC_READ_REG(hw, IGC_SRWR)) {
    565 				ret_val = IGC_SUCCESS;
    566 				break;
    567 			}
    568 			DELAY(5);
    569 		}
    570 
    571 		if (ret_val != IGC_SUCCESS) {
    572 			DEBUGOUT("Shadow RAM write EEWR timed out\n");
    573 			break;
    574 		}
    575 	}
    576 
    577 out:
    578 	return ret_val;
    579 }
    580 
    581 /* igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
    582  * @hw: pointer to the HW structure
    583  *
    584  * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
    585  * and then verifies that the sum of the EEPROM is equal to 0xBABA.
    586  */
    587 int
    588 igc_validate_nvm_checksum_i225(struct igc_hw *hw)
    589 {
    590 	int status = IGC_SUCCESS;
    591 	int (*read_op_ptr)(struct igc_hw *, uint16_t, uint16_t, uint16_t *);
    592 
    593 	DEBUGFUNC("igc_validate_nvm_checksum_i225");
    594 
    595 	if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
    596 		/* Replace the read function with semaphore grabbing with
    597 		 * the one that skips this for a while.
    598 		 * We have semaphore taken already here.
    599 		 */
    600 		read_op_ptr = hw->nvm.ops.read;
    601 		hw->nvm.ops.read = igc_read_nvm_eerd;
    602 
    603 		status = igc_validate_nvm_checksum_generic(hw);
    604 
    605 		/* Revert original read operation. */
    606 		hw->nvm.ops.read = read_op_ptr;
    607 
    608 		hw->nvm.ops.release(hw);
    609 	} else {
    610 		status = IGC_ERR_SWFW_SYNC;
    611 	}
    612 
    613 	return status;
    614 }
    615 
    616 /* igc_update_nvm_checksum_i225 - Update EEPROM checksum
    617  * @hw: pointer to the HW structure
    618  *
    619  * Updates the EEPROM checksum by reading/adding each word of the EEPROM
    620  * up to the checksum.  Then calculates the EEPROM checksum and writes the
    621  * value to the EEPROM. Next commit EEPROM data onto the Flash.
    622  */
    623 int
    624 igc_update_nvm_checksum_i225(struct igc_hw *hw)
    625 {
    626 	uint16_t checksum = 0;
    627 	uint16_t i, nvm_data;
    628 	int ret_val;
    629 
    630 	DEBUGFUNC("igc_update_nvm_checksum_i225");
    631 
    632 	/* Read the first word from the EEPROM. If this times out or fails, do
    633 	 * not continue or we could be in for a very long wait while every
    634 	 * EEPROM read fails
    635 	 */
    636 	ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
    637 	if (ret_val != IGC_SUCCESS) {
    638 		DEBUGOUT("EEPROM read failed\n");
    639 		goto out;
    640 	}
    641 
    642 	if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
    643 		/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
    644 		 * because we do not want to take the synchronization
    645 		 * semaphores twice here.
    646 		 */
    647 
    648 		for (i = 0; i < NVM_CHECKSUM_REG; i++) {
    649 			ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
    650 			if (ret_val) {
    651 				hw->nvm.ops.release(hw);
    652 				DEBUGOUT("NVM Read Error while updating\n");
    653 				DEBUGOUT("checksum.\n");
    654 				goto out;
    655 			}
    656 			checksum += nvm_data;
    657 		}
    658 		checksum = (uint16_t)NVM_SUM - checksum;
    659 		ret_val = __igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
    660 		    &checksum);
    661 		if (ret_val != IGC_SUCCESS) {
    662 			hw->nvm.ops.release(hw);
    663 			DEBUGOUT("NVM Write Error while updating checksum.\n");
    664 			goto out;
    665 		}
    666 
    667 		hw->nvm.ops.release(hw);
    668 
    669 		ret_val = igc_update_flash_i225(hw);
    670 	} else {
    671 		ret_val = IGC_ERR_SWFW_SYNC;
    672 	}
    673 out:
    674 	return ret_val;
    675 }
    676 
    677 /* igc_get_flash_presence_i225 - Check if flash device is detected.
    678  * @hw: pointer to the HW structure
    679  */
    680 bool
    681 igc_get_flash_presence_i225(struct igc_hw *hw)
    682 {
    683 	uint32_t eec = 0;
    684 	bool ret_val = false;
    685 
    686 	DEBUGFUNC("igc_get_flash_presence_i225");
    687 
    688 	eec = IGC_READ_REG(hw, IGC_EECD);
    689 
    690 	if (eec & IGC_EECD_FLASH_DETECTED_I225)
    691 		ret_val = true;
    692 
    693 	return ret_val;
    694 }
    695 
    696 /* igc_set_flsw_flash_burst_counter_i225 - sets FLSW NVM Burst
    697  * Counter in FLSWCNT register.
    698  *
    699  * @hw: pointer to the HW structure
    700  * @burst_counter: size in bytes of the Flash burst to read or write
    701  */
    702 int
    703 igc_set_flsw_flash_burst_counter_i225(struct igc_hw *hw, uint32_t burst_counter)
    704 {
    705 	int ret_val = IGC_SUCCESS;
    706 
    707 	DEBUGFUNC("igc_set_flsw_flash_burst_counter_i225");
    708 
    709 	/* Validate input data */
    710 	if (burst_counter < IGC_I225_SHADOW_RAM_SIZE) {
    711 		/* Write FLSWCNT - burst counter */
    712 		IGC_WRITE_REG(hw, IGC_I225_FLSWCNT, burst_counter);
    713 	} else {
    714 		ret_val = IGC_ERR_INVALID_ARGUMENT;
    715 	}
    716 
    717 	return ret_val;
    718 }
    719 
    720 
    721 /* igc_write_erase_flash_command_i225 - write/erase to a sector
    722  * region on a given address.
    723  *
    724  * @hw: pointer to the HW structure
    725  * @opcode: opcode to be used for the write command
    726  * @address: the offset to write into the FLASH image
    727  */
    728 int
    729 igc_write_erase_flash_command_i225(struct igc_hw *hw, uint32_t opcode,
    730     uint32_t address)
    731 {
    732 	uint32_t flswctl = 0;
    733 	int timeout = IGC_NVM_GRANT_ATTEMPTS;
    734 	int ret_val = IGC_SUCCESS;
    735 
    736 	DEBUGFUNC("igc_write_erase_flash_command_i225");
    737 
    738 	flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
    739 	/* Polling done bit on FLSWCTL register */
    740 	while (timeout) {
    741 		if (flswctl & IGC_FLSWCTL_DONE)
    742 			break;
    743 		DELAY(5);
    744 		flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
    745 		timeout--;
    746 	}
    747 
    748 	if (!timeout) {
    749 		DEBUGOUT("Flash transaction was not done\n");
    750 		return -IGC_ERR_NVM;
    751 	}
    752 
    753 	/* Build and issue command on FLSWCTL register */
    754 	flswctl = address | opcode;
    755 	IGC_WRITE_REG(hw, IGC_I225_FLSWCTL, flswctl);
    756 
    757 	/* Check if issued command is valid on FLSWCTL register */
    758 	flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
    759 	if (!(flswctl & IGC_FLSWCTL_CMDV)) {
    760 		DEBUGOUT("Write flash command failed\n");
    761 		ret_val = IGC_ERR_INVALID_ARGUMENT;
    762 	}
    763 
    764 	return ret_val;
    765 }
    766 
    767 /* igc_update_flash_i225 - Commit EEPROM to the flash
    768  * if fw_valid_bit is set, FW is active. setting FLUPD bit in EEC
    769  * register makes the FW load the internal shadow RAM into the flash.
    770  * Otherwise, fw_valid_bit is 0. if FL_SECU.block_prtotected_sw = 0
    771  * then FW is not active so the SW is responsible shadow RAM dump.
    772  *
    773  * @hw: pointer to the HW structure
    774  */
    775 int
    776 igc_update_flash_i225(struct igc_hw *hw)
    777 {
    778 	uint32_t block_sw_protect = 1;
    779 	uint32_t i, flup, fw_valid_bit;
    780 	uint16_t current_offset;
    781 	uint16_t base_address = 0x0;
    782 	uint16_t current_offset_data = 0;
    783 	int ret_val = 0;
    784 
    785 	DEBUGFUNC("igc_update_flash_i225");
    786 
    787 	block_sw_protect = IGC_READ_REG(hw, IGC_I225_FLSECU) &
    788 	    IGC_FLSECU_BLK_SW_ACCESS_I225;
    789 
    790 	fw_valid_bit = IGC_READ_REG(hw, IGC_FWSM) & IGC_FWSM_FW_VALID_I225;
    791 	if (fw_valid_bit) {
    792 		ret_val = igc_pool_flash_update_done_i225(hw);
    793 		if (ret_val == -IGC_ERR_NVM) {
    794 			DEBUGOUT("Flash update time out\n");
    795 			goto out;
    796 		}
    797 
    798 		flup = IGC_READ_REG(hw, IGC_EECD) | IGC_EECD_FLUPD_I225;
    799 		IGC_WRITE_REG(hw, IGC_EECD, flup);
    800 
    801 		ret_val = igc_pool_flash_update_done_i225(hw);
    802 		if (ret_val == IGC_SUCCESS)
    803 			DEBUGOUT("Flash update complete\n");
    804 		else
    805 			DEBUGOUT("Flash update time out\n");
    806 	} else if (!block_sw_protect) {
    807 		/* FW is not active and security protection is disabled.
    808 		 * therefore, SW is in charge of shadow RAM dump.
    809 		 * Check which sector is valid. if sector 0 is valid,
    810 		 * base address remains 0x0. otherwise, sector 1 is
    811 		 * valid and its base address is 0x1000
    812 		 */
    813 		if (IGC_READ_REG(hw, IGC_EECD) & IGC_EECD_SEC1VAL_I225)
    814 			base_address = 0x1000;
    815 
    816 		/* Valid sector erase */
    817 		ret_val = igc_write_erase_flash_command_i225(hw,
    818 		    IGC_I225_ERASE_CMD_OPCODE, base_address);
    819 		if (!ret_val) {
    820 			DEBUGOUT("Sector erase failed\n");
    821 			goto out;
    822 		}
    823 
    824 		current_offset = base_address;
    825 
    826 		/* Write */
    827 		for (i = 0; i < IGC_I225_SHADOW_RAM_SIZE / 2; i++) {
    828 			/* Set burst write length */
    829 			ret_val = igc_set_flsw_flash_burst_counter_i225(hw,
    830 			    0x2);
    831 			if (ret_val != IGC_SUCCESS)
    832 				break;
    833 
    834 			/* Set address and opcode */
    835 			ret_val = igc_write_erase_flash_command_i225(hw,
    836 			    IGC_I225_WRITE_CMD_OPCODE, 2 * current_offset);
    837 			if (ret_val != IGC_SUCCESS)
    838 				break;
    839 
    840 			ret_val = igc_read_nvm_eerd(hw, current_offset, 1,
    841 			    &current_offset_data);
    842 			if (ret_val) {
    843 				DEBUGOUT("Failed to read from EEPROM\n");
    844 				goto out;
    845 			}
    846 
    847 			/* Write CurrentOffsetData to FLSWDATA register */
    848 			IGC_WRITE_REG(hw, IGC_I225_FLSWDATA,
    849 			    current_offset_data);
    850 			current_offset++;
    851 
    852 			/* Wait till operation has finished */
    853 			ret_val = igc_poll_eerd_eewr_done(hw,
    854 			    IGC_NVM_POLL_READ);
    855 			if (ret_val)
    856 				break;
    857 
    858 			DELAY(1000);
    859 		}
    860 	}
    861 out:
    862 	return ret_val;
    863 }
    864 
    865 /* igc_pool_flash_update_done_i225 - Pool FLUDONE status.
    866  * @hw: pointer to the HW structure
    867  */
    868 int
    869 igc_pool_flash_update_done_i225(struct igc_hw *hw)
    870 {
    871 	uint32_t i, reg;
    872 	int ret_val = -IGC_ERR_NVM;
    873 
    874 	DEBUGFUNC("igc_pool_flash_update_done_i225");
    875 
    876 	for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
    877 		reg = IGC_READ_REG(hw, IGC_EECD);
    878 		if (reg & IGC_EECD_FLUDONE_I225) {
    879 			ret_val = IGC_SUCCESS;
    880 			break;
    881 		}
    882 		DELAY(5);
    883 	}
    884 
    885 	return ret_val;
    886 }
    887 
    888 /* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds.
    889  * @hw: pointer to the HW structure
    890  * @link: bool indicating link status
    891  *
    892  * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC
    893  * settings, otherwise specify that there is no LTR requirement.
    894  */
    895 int
    896 igc_set_ltr_i225(struct igc_hw *hw, bool link)
    897 {
    898 	uint16_t speed, duplex;
    899 	uint32_t tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max;
    900 	int size;
    901 
    902 	DEBUGFUNC("igc_set_ltr_i225");
    903 
    904 	/* If we do not have link, LTR thresholds are zero. */
    905 	if (link) {
    906 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
    907 
    908 		/* Check if using copper interface with EEE enabled or if the
    909 		 * link speed is 10 Mbps.
    910 		 */
    911 		if ((hw->phy.media_type == igc_media_type_copper) &&
    912 		    !(hw->dev_spec._i225.eee_disable) &&
    913 		     (speed != SPEED_10)) {
    914 			/* EEE enabled, so send LTRMAX threshold. */
    915 			ltrc = IGC_READ_REG(hw, IGC_LTRC) | IGC_LTRC_EEEMS_EN;
    916 			IGC_WRITE_REG(hw, IGC_LTRC, ltrc);
    917 
    918 			/* Calculate tw_system (nsec). */
    919 			if (speed == SPEED_100) {
    920 				tw_system = ((IGC_READ_REG(hw, IGC_EEE_SU) &
    921 				    IGC_TW_SYSTEM_100_MASK) >>
    922 				    IGC_TW_SYSTEM_100_SHIFT) * 500;
    923 			} else {
    924 				tw_system = (IGC_READ_REG(hw, IGC_EEE_SU) &
    925 				    IGC_TW_SYSTEM_1000_MASK) * 500;
    926 				}
    927 		} else {
    928 			tw_system = 0;
    929 			}
    930 
    931 		/* Get the Rx packet buffer size. */
    932 		size = IGC_READ_REG(hw, IGC_RXPBS) & IGC_RXPBS_SIZE_I225_MASK;
    933 
    934 		/* Calculations vary based on DMAC settings. */
    935 		if (IGC_READ_REG(hw, IGC_DMACR) & IGC_DMACR_DMAC_EN) {
    936 			size -= (IGC_READ_REG(hw, IGC_DMACR) &
    937 			    IGC_DMACR_DMACTHR_MASK) >> IGC_DMACR_DMACTHR_SHIFT;
    938 			/* Convert size to bits. */
    939 			size *= 1024 * 8;
    940 		} else {
    941 			/* Convert size to bytes, subtract the MTU, and then
    942 			 * convert the size to bits.
    943 			 */
    944 			size *= 1024;
    945 			size -= hw->dev_spec._i225.mtu;
    946 			size *= 8;
    947 		}
    948 
    949 		if (size < 0) {
    950 			DEBUGOUT1("Invalid effective Rx buffer size %d\n",
    951 			    size);
    952 			return -IGC_ERR_CONFIG;
    953 		}
    954 
    955 		/* Calculate the thresholds. Since speed is in Mbps, simplify
    956 		 * the calculation by multiplying size/speed by 1000 for result
    957 		 * to be in nsec before dividing by the scale in nsec. Set the
    958 		 * scale such that the LTR threshold fits in the register.
    959 		 */
    960 		ltr_min = (1000 * size) / speed;
    961 		ltr_max = ltr_min + tw_system;
    962 		scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 :
    963 		    IGC_LTRMINV_SCALE_32768;
    964 		scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 :
    965 		    IGC_LTRMAXV_SCALE_32768;
    966 		ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768;
    967 		ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768;
    968 
    969 		/* Only write the LTR thresholds if they differ from before. */
    970 		ltrv = IGC_READ_REG(hw, IGC_LTRMINV);
    971 		if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) {
    972 			ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min |
    973 			    (scale_min << IGC_LTRMINV_SCALE_SHIFT);
    974 			IGC_WRITE_REG(hw, IGC_LTRMINV, ltrv);
    975 		}
    976 
    977 		ltrv = IGC_READ_REG(hw, IGC_LTRMAXV);
    978 		if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) {
    979 			ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max |
    980 			    (scale_min << IGC_LTRMAXV_SCALE_SHIFT);
    981 			IGC_WRITE_REG(hw, IGC_LTRMAXV, ltrv);
    982 		}
    983 	}
    984 
    985 	return IGC_SUCCESS;
    986 }
    987 
    988 /* igc_check_for_link_i225 - Check for link
    989  * @hw: pointer to the HW structure
    990  *
    991  * Checks to see of the link status of the hardware has changed.  If a
    992  * change in link status has been detected, then we read the PHY registers
    993  * to get the current speed/duplex if link exists.
    994  */
    995 int
    996 igc_check_for_link_i225(struct igc_hw *hw)
    997 {
    998 	struct igc_mac_info *mac = &hw->mac;
    999 	int ret_val;
   1000 	bool link = false;
   1001 
   1002 	DEBUGFUNC("igc_check_for_link_i225");
   1003 
   1004 	/* We only want to go out to the PHY registers to see if
   1005 	 * Auto-Neg has completed and/or if our link status has
   1006 	 * changed.  The get_link_status flag is set upon receiving
   1007 	 * a Link Status Change or Rx Sequence Error interrupt.
   1008 	 */
   1009 	if (!mac->get_link_status) {
   1010 		ret_val = IGC_SUCCESS;
   1011 		goto out;
   1012 	}
   1013 
   1014 	/* First we want to see if the MII Status Register reports
   1015 	 * link.  If so, then we want to get the current speed/duplex
   1016 	 * of the PHY.
   1017 	 */
   1018 	ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
   1019 	if (ret_val)
   1020 		goto out;
   1021 
   1022 	if (!link)
   1023 		goto out; /* No link detected */
   1024 
   1025 	/* First we want to see if the MII Status Register reports
   1026 	 * link.  If so, then we want to get the current speed/duplex
   1027 	 * of the PHY.
   1028 	 */
   1029 	ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
   1030 	if (ret_val)
   1031 		goto out;
   1032 
   1033 	if (!link)
   1034 		goto out; /* No link detected */
   1035 
   1036 	mac->get_link_status = false;
   1037 
   1038 	/* Check if there was DownShift, must be checked
   1039 	 * immediately after link-up
   1040 	 */
   1041 	igc_check_downshift_generic(hw);
   1042 
   1043 	/* If we are forcing speed/duplex, then we simply return since
   1044 	 * we have already determined whether we have link or not.
   1045 	 */
   1046 	if (!mac->autoneg)
   1047 		goto out;
   1048 
   1049 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
   1050 	 * of MAC speed/duplex configuration.  So we only need to
   1051 	 * configure Collision Distance in the MAC.
   1052 	 */
   1053 	mac->ops.config_collision_dist(hw);
   1054 
   1055 	/* Configure Flow Control now that Auto-Neg has completed.
   1056 	 * First, we need to restore the desired flow control
   1057 	 * settings because we may have had to re-autoneg with a
   1058 	 * different link partner.
   1059 	 */
   1060 	ret_val = igc_config_fc_after_link_up_generic(hw);
   1061 	if (ret_val)
   1062 		DEBUGOUT("Error configuring flow control\n");
   1063 out:
   1064 	/* Now that we are aware of our link settings, we can set the LTR
   1065 	 * thresholds.
   1066 	 */
   1067 	ret_val = igc_set_ltr_i225(hw, link);
   1068 
   1069 	return ret_val;
   1070 }
   1071 
   1072 /* igc_init_function_pointers_i225 - Init func ptrs.
   1073  * @hw: pointer to the HW structure
   1074  *
   1075  * Called to initialize all function pointers and parameters.
   1076  */
   1077 void
   1078 igc_init_function_pointers_i225(struct igc_hw *hw)
   1079 {
   1080 	igc_init_mac_ops_generic(hw);
   1081 	igc_init_phy_ops_generic(hw);
   1082 	igc_init_nvm_ops_generic(hw);
   1083 	hw->mac.ops.init_params = igc_init_mac_params_i225;
   1084 	hw->nvm.ops.init_params = igc_init_nvm_params_i225;
   1085 	hw->phy.ops.init_params = igc_init_phy_params_i225;
   1086 }
   1087 
   1088 /* igc_init_hw_i225 - Init hw for I225
   1089  * @hw: pointer to the HW structure
   1090  *
   1091  * Called to initialize hw for i225 hw family.
   1092  */
   1093 int
   1094 igc_init_hw_i225(struct igc_hw *hw)
   1095 {
   1096 	int ret_val;
   1097 
   1098 	DEBUGFUNC("igc_init_hw_i225");
   1099 
   1100 	ret_val = igc_init_hw_base(hw);
   1101 	return ret_val;
   1102 }
   1103 
   1104 /**
   1105  *  igc_set_eee_i225 - Enable/disable EEE support
   1106  *  @hw: pointer to the HW structure
   1107  *  @adv2p5G: boolean flag enabling 2.5G EEE advertisement
   1108  *  @adv1G: boolean flag enabling 1G EEE advertisement
   1109  *  @adv100M: boolean flag enabling 100M EEE advertisement
   1110  *
   1111  *  Enable/disable EEE based on setting in dev_spec structure.
   1112  *
   1113  **/
   1114 int
   1115 igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G,
   1116     bool adv100M)
   1117 {
   1118 	uint32_t ipcnfg, eeer;
   1119 
   1120 	DEBUGFUNC("igc_set_eee_i225");
   1121 
   1122 	if (hw->mac.type != igc_i225 ||
   1123 	    hw->phy.media_type != igc_media_type_copper)
   1124 		goto out;
   1125 	ipcnfg = IGC_READ_REG(hw, IGC_IPCNFG);
   1126 	eeer = IGC_READ_REG(hw, IGC_EEER);
   1127 
   1128 	/* enable or disable per user setting */
   1129 	if (!(hw->dev_spec._i225.eee_disable)) {
   1130 		uint32_t eee_su = IGC_READ_REG(hw, IGC_EEE_SU);
   1131 
   1132 		if (adv100M)
   1133 			ipcnfg |= IGC_IPCNFG_EEE_100M_AN;
   1134 		else
   1135 			ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN;
   1136 
   1137 		if (adv1G)
   1138 			ipcnfg |= IGC_IPCNFG_EEE_1G_AN;
   1139 		else
   1140 			ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN;
   1141 
   1142 		if (adv2p5G)
   1143 			ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN;
   1144 		else
   1145 			ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN;
   1146 
   1147 		eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
   1148 			IGC_EEER_LPI_FC);
   1149 
   1150 		/* This bit should not be set in normal operation. */
   1151 		if (eee_su & IGC_EEE_SU_LPI_CLK_STP)
   1152 			DEBUGOUT("LPI Clock Stop Bit should not be set!\n");
   1153 	} else {
   1154 		ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN |
   1155 			IGC_IPCNFG_EEE_100M_AN);
   1156 		eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
   1157 			IGC_EEER_LPI_FC);
   1158 	}
   1159 	IGC_WRITE_REG(hw, IGC_IPCNFG, ipcnfg);
   1160 	IGC_WRITE_REG(hw, IGC_EEER, eeer);
   1161 	IGC_READ_REG(hw, IGC_IPCNFG);
   1162 	IGC_READ_REG(hw, IGC_EEER);
   1163 out:
   1164 
   1165 	return IGC_SUCCESS;
   1166 }
   1167