1 /* $NetBSD: intel_device_info.c,v 1.2 2021/12/18 23:45:28 riastradh Exp $ */ 2 3 /* 4 * Copyright 2016 Intel Corporation 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice (including the next 14 * paragraph) shall be included in all copies or substantial portions of the 15 * Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 23 * IN THE SOFTWARE. 24 * 25 */ 26 27 #include <sys/cdefs.h> 28 __KERNEL_RCSID(0, "$NetBSD: intel_device_info.c,v 1.2 2021/12/18 23:45:28 riastradh Exp $"); 29 30 #include <drm/drm_print.h> 31 32 #include "intel_device_info.h" 33 #include "i915_drv.h" 34 35 #define PLATFORM_NAME(x) [INTEL_##x] = #x 36 static const char * const platform_names[] = { 37 PLATFORM_NAME(I830), 38 PLATFORM_NAME(I845G), 39 PLATFORM_NAME(I85X), 40 PLATFORM_NAME(I865G), 41 PLATFORM_NAME(I915G), 42 PLATFORM_NAME(I915GM), 43 PLATFORM_NAME(I945G), 44 PLATFORM_NAME(I945GM), 45 PLATFORM_NAME(G33), 46 PLATFORM_NAME(PINEVIEW), 47 PLATFORM_NAME(I965G), 48 PLATFORM_NAME(I965GM), 49 PLATFORM_NAME(G45), 50 PLATFORM_NAME(GM45), 51 PLATFORM_NAME(IRONLAKE), 52 PLATFORM_NAME(SANDYBRIDGE), 53 PLATFORM_NAME(IVYBRIDGE), 54 PLATFORM_NAME(VALLEYVIEW), 55 PLATFORM_NAME(HASWELL), 56 PLATFORM_NAME(BROADWELL), 57 PLATFORM_NAME(CHERRYVIEW), 58 PLATFORM_NAME(SKYLAKE), 59 PLATFORM_NAME(BROXTON), 60 PLATFORM_NAME(KABYLAKE), 61 PLATFORM_NAME(GEMINILAKE), 62 PLATFORM_NAME(COFFEELAKE), 63 PLATFORM_NAME(CANNONLAKE), 64 PLATFORM_NAME(ICELAKE), 65 PLATFORM_NAME(ELKHARTLAKE), 66 PLATFORM_NAME(TIGERLAKE), 67 }; 68 #undef PLATFORM_NAME 69 70 const char *intel_platform_name(enum intel_platform platform) 71 { 72 BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS); 73 74 if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) || 75 platform_names[platform] == NULL)) 76 return "<unknown>"; 77 78 return platform_names[platform]; 79 } 80 81 static const char *iommu_name(void) 82 { 83 const char *msg = "n/a"; 84 85 #ifdef CONFIG_INTEL_IOMMU 86 msg = enableddisabled(intel_iommu_gfx_mapped); 87 #endif 88 89 return msg; 90 } 91 92 void intel_device_info_print_static(const struct intel_device_info *info, 93 struct drm_printer *p) 94 { 95 drm_printf(p, "engines: %x\n", info->engine_mask); 96 drm_printf(p, "gen: %d\n", info->gen); 97 drm_printf(p, "gt: %d\n", info->gt); 98 drm_printf(p, "iommu: %s\n", iommu_name()); 99 drm_printf(p, "memory-regions: %x\n", info->memory_regions); 100 drm_printf(p, "page-sizes: %x\n", info->page_sizes); 101 drm_printf(p, "platform: %s\n", intel_platform_name(info->platform)); 102 drm_printf(p, "ppgtt-size: %d\n", info->ppgtt_size); 103 drm_printf(p, "ppgtt-type: %d\n", info->ppgtt_type); 104 105 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name)); 106 DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG); 107 #undef PRINT_FLAG 108 109 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->display.name)); 110 DEV_INFO_DISPLAY_FOR_EACH_FLAG(PRINT_FLAG); 111 #undef PRINT_FLAG 112 } 113 114 static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p) 115 { 116 int s; 117 118 drm_printf(p, "slice total: %u, mask=%04x\n", 119 hweight8(sseu->slice_mask), sseu->slice_mask); 120 drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu)); 121 for (s = 0; s < sseu->max_slices; s++) { 122 drm_printf(p, "slice%d: %u subslices, mask=%08x\n", 123 s, intel_sseu_subslices_per_slice(sseu, s), 124 intel_sseu_get_subslices(sseu, s)); 125 } 126 drm_printf(p, "EU total: %u\n", sseu->eu_total); 127 drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice); 128 drm_printf(p, "has slice power gating: %s\n", 129 yesno(sseu->has_slice_pg)); 130 drm_printf(p, "has subslice power gating: %s\n", 131 yesno(sseu->has_subslice_pg)); 132 drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg)); 133 } 134 135 void intel_device_info_print_runtime(const struct intel_runtime_info *info, 136 struct drm_printer *p) 137 { 138 sseu_dump(&info->sseu, p); 139 140 drm_printf(p, "CS timestamp frequency: %u kHz\n", 141 info->cs_timestamp_frequency_khz); 142 } 143 144 static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice, 145 int subslice) 146 { 147 int slice_stride = sseu->max_subslices * sseu->eu_stride; 148 149 return slice * slice_stride + subslice * sseu->eu_stride; 150 } 151 152 static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice, 153 int subslice) 154 { 155 int i, offset = sseu_eu_idx(sseu, slice, subslice); 156 u16 eu_mask = 0; 157 158 for (i = 0; i < sseu->eu_stride; i++) { 159 eu_mask |= ((u16)sseu->eu_mask[offset + i]) << 160 (i * BITS_PER_BYTE); 161 } 162 163 return eu_mask; 164 } 165 166 static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice, 167 u16 eu_mask) 168 { 169 int i, offset = sseu_eu_idx(sseu, slice, subslice); 170 171 for (i = 0; i < sseu->eu_stride; i++) { 172 sseu->eu_mask[offset + i] = 173 (eu_mask >> (BITS_PER_BYTE * i)) & 0xff; 174 } 175 } 176 177 void intel_device_info_print_topology(const struct sseu_dev_info *sseu, 178 struct drm_printer *p) 179 { 180 int s, ss; 181 182 if (sseu->max_slices == 0) { 183 drm_printf(p, "Unavailable\n"); 184 return; 185 } 186 187 for (s = 0; s < sseu->max_slices; s++) { 188 drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n", 189 s, intel_sseu_subslices_per_slice(sseu, s), 190 intel_sseu_get_subslices(sseu, s)); 191 192 for (ss = 0; ss < sseu->max_subslices; ss++) { 193 u16 enabled_eus = sseu_get_eus(sseu, s, ss); 194 195 drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n", 196 ss, hweight16(enabled_eus), enabled_eus); 197 } 198 } 199 } 200 201 static u16 compute_eu_total(const struct sseu_dev_info *sseu) 202 { 203 u16 i, total = 0; 204 205 for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++) 206 total += hweight8(sseu->eu_mask[i]); 207 208 return total; 209 } 210 211 static void gen11_compute_sseu_info(struct sseu_dev_info *sseu, 212 u8 s_en, u32 ss_en, u16 eu_en) 213 { 214 int s, ss; 215 216 /* ss_en represents entire subslice mask across all slices */ 217 GEM_BUG_ON(sseu->max_slices * sseu->max_subslices > 218 sizeof(ss_en) * BITS_PER_BYTE); 219 220 for (s = 0; s < sseu->max_slices; s++) { 221 if ((s_en & BIT(s)) == 0) 222 continue; 223 224 sseu->slice_mask |= BIT(s); 225 226 intel_sseu_set_subslices(sseu, s, ss_en); 227 228 for (ss = 0; ss < sseu->max_subslices; ss++) 229 if (intel_sseu_has_subslice(sseu, s, ss)) 230 sseu_set_eus(sseu, s, ss, eu_en); 231 } 232 sseu->eu_per_subslice = hweight16(eu_en); 233 sseu->eu_total = compute_eu_total(sseu); 234 } 235 236 static void gen12_sseu_info_init(struct drm_i915_private *dev_priv) 237 { 238 struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu; 239 u8 s_en; 240 u32 dss_en; 241 u16 eu_en = 0; 242 u8 eu_en_fuse; 243 int eu; 244 245 /* 246 * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS. 247 * Instead of splitting these, provide userspace with an array 248 * of DSS to more closely represent the hardware resource. 249 */ 250 intel_sseu_set_info(sseu, 1, 6, 16); 251 252 s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK; 253 254 dss_en = I915_READ(GEN12_GT_DSS_ENABLE); 255 256 /* one bit per pair of EUs */ 257 eu_en_fuse = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK); 258 for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++) 259 if (eu_en_fuse & BIT(eu)) 260 eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1); 261 262 gen11_compute_sseu_info(sseu, s_en, dss_en, eu_en); 263 264 /* TGL only supports slice-level power gating */ 265 sseu->has_slice_pg = 1; 266 } 267 268 static void gen11_sseu_info_init(struct drm_i915_private *dev_priv) 269 { 270 struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu; 271 u8 s_en; 272 u32 ss_en; 273 u8 eu_en; 274 275 if (IS_ELKHARTLAKE(dev_priv)) 276 intel_sseu_set_info(sseu, 1, 4, 8); 277 else 278 intel_sseu_set_info(sseu, 1, 8, 8); 279 280 s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK; 281 ss_en = ~I915_READ(GEN11_GT_SUBSLICE_DISABLE); 282 eu_en = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK); 283 284 gen11_compute_sseu_info(sseu, s_en, ss_en, eu_en); 285 286 /* ICL has no power gating restrictions. */ 287 sseu->has_slice_pg = 1; 288 sseu->has_subslice_pg = 1; 289 sseu->has_eu_pg = 1; 290 } 291 292 static void gen10_sseu_info_init(struct drm_i915_private *dev_priv) 293 { 294 struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu; 295 const u32 fuse2 = I915_READ(GEN8_FUSE2); 296 int s, ss; 297 const int eu_mask = 0xff; 298 u32 subslice_mask, eu_en; 299 300 intel_sseu_set_info(sseu, 6, 4, 8); 301 302 sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >> 303 GEN10_F2_S_ENA_SHIFT; 304 305 /* Slice0 */ 306 eu_en = ~I915_READ(GEN8_EU_DISABLE0); 307 for (ss = 0; ss < sseu->max_subslices; ss++) 308 sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask); 309 /* Slice1 */ 310 sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask); 311 eu_en = ~I915_READ(GEN8_EU_DISABLE1); 312 sseu_set_eus(sseu, 1, 1, eu_en & eu_mask); 313 /* Slice2 */ 314 sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask); 315 sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask); 316 /* Slice3 */ 317 sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask); 318 eu_en = ~I915_READ(GEN8_EU_DISABLE2); 319 sseu_set_eus(sseu, 3, 1, eu_en & eu_mask); 320 /* Slice4 */ 321 sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask); 322 sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask); 323 /* Slice5 */ 324 sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask); 325 eu_en = ~I915_READ(GEN10_EU_DISABLE3); 326 sseu_set_eus(sseu, 5, 1, eu_en & eu_mask); 327 328 subslice_mask = (1 << 4) - 1; 329 subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >> 330 GEN10_F2_SS_DIS_SHIFT); 331 332 for (s = 0; s < sseu->max_slices; s++) { 333 u32 subslice_mask_with_eus = subslice_mask; 334 335 for (ss = 0; ss < sseu->max_subslices; ss++) { 336 if (sseu_get_eus(sseu, s, ss) == 0) 337 subslice_mask_with_eus &= ~BIT(ss); 338 } 339 340 /* 341 * Slice0 can have up to 3 subslices, but there are only 2 in 342 * slice1/2. 343 */ 344 intel_sseu_set_subslices(sseu, s, s == 0 ? 345 subslice_mask_with_eus : 346 subslice_mask_with_eus & 0x3); 347 } 348 349 sseu->eu_total = compute_eu_total(sseu); 350 351 /* 352 * CNL is expected to always have a uniform distribution 353 * of EU across subslices with the exception that any one 354 * EU in any one subslice may be fused off for die 355 * recovery. 356 */ 357 sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ? 358 DIV_ROUND_UP(sseu->eu_total, 359 intel_sseu_subslice_total(sseu)) : 360 0; 361 362 /* No restrictions on Power Gating */ 363 sseu->has_slice_pg = 1; 364 sseu->has_subslice_pg = 1; 365 sseu->has_eu_pg = 1; 366 } 367 368 static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv) 369 { 370 struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu; 371 u32 fuse; 372 u8 subslice_mask = 0; 373 374 fuse = I915_READ(CHV_FUSE_GT); 375 376 sseu->slice_mask = BIT(0); 377 intel_sseu_set_info(sseu, 1, 2, 8); 378 379 if (!(fuse & CHV_FGT_DISABLE_SS0)) { 380 u8 disabled_mask = 381 ((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >> 382 CHV_FGT_EU_DIS_SS0_R0_SHIFT) | 383 (((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >> 384 CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4); 385 386 subslice_mask |= BIT(0); 387 sseu_set_eus(sseu, 0, 0, ~disabled_mask); 388 } 389 390 if (!(fuse & CHV_FGT_DISABLE_SS1)) { 391 u8 disabled_mask = 392 ((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >> 393 CHV_FGT_EU_DIS_SS1_R0_SHIFT) | 394 (((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >> 395 CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4); 396 397 subslice_mask |= BIT(1); 398 sseu_set_eus(sseu, 0, 1, ~disabled_mask); 399 } 400 401 intel_sseu_set_subslices(sseu, 0, subslice_mask); 402 403 sseu->eu_total = compute_eu_total(sseu); 404 405 /* 406 * CHV expected to always have a uniform distribution of EU 407 * across subslices. 408 */ 409 sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ? 410 sseu->eu_total / 411 intel_sseu_subslice_total(sseu) : 412 0; 413 /* 414 * CHV supports subslice power gating on devices with more than 415 * one subslice, and supports EU power gating on devices with 416 * more than one EU pair per subslice. 417 */ 418 sseu->has_slice_pg = 0; 419 sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1; 420 sseu->has_eu_pg = (sseu->eu_per_subslice > 2); 421 } 422 423 static void gen9_sseu_info_init(struct drm_i915_private *dev_priv) 424 { 425 struct intel_device_info *info = mkwrite_device_info(dev_priv); 426 struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu; 427 int s, ss; 428 u32 fuse2, eu_disable, subslice_mask; 429 const u8 eu_mask = 0xff; 430 431 fuse2 = I915_READ(GEN8_FUSE2); 432 sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT; 433 434 /* BXT has a single slice and at most 3 subslices. */ 435 intel_sseu_set_info(sseu, IS_GEN9_LP(dev_priv) ? 1 : 3, 436 IS_GEN9_LP(dev_priv) ? 3 : 4, 8); 437 438 /* 439 * The subslice disable field is global, i.e. it applies 440 * to each of the enabled slices. 441 */ 442 subslice_mask = (1 << sseu->max_subslices) - 1; 443 subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >> 444 GEN9_F2_SS_DIS_SHIFT); 445 446 /* 447 * Iterate through enabled slices and subslices to 448 * count the total enabled EU. 449 */ 450 for (s = 0; s < sseu->max_slices; s++) { 451 if (!(sseu->slice_mask & BIT(s))) 452 /* skip disabled slice */ 453 continue; 454 455 intel_sseu_set_subslices(sseu, s, subslice_mask); 456 457 eu_disable = I915_READ(GEN9_EU_DISABLE(s)); 458 for (ss = 0; ss < sseu->max_subslices; ss++) { 459 int eu_per_ss; 460 u8 eu_disabled_mask; 461 462 if (!intel_sseu_has_subslice(sseu, s, ss)) 463 /* skip disabled subslice */ 464 continue; 465 466 eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask; 467 468 sseu_set_eus(sseu, s, ss, ~eu_disabled_mask); 469 470 eu_per_ss = sseu->max_eus_per_subslice - 471 hweight8(eu_disabled_mask); 472 473 /* 474 * Record which subslice(s) has(have) 7 EUs. we 475 * can tune the hash used to spread work among 476 * subslices if they are unbalanced. 477 */ 478 if (eu_per_ss == 7) 479 sseu->subslice_7eu[s] |= BIT(ss); 480 } 481 } 482 483 sseu->eu_total = compute_eu_total(sseu); 484 485 /* 486 * SKL is expected to always have a uniform distribution 487 * of EU across subslices with the exception that any one 488 * EU in any one subslice may be fused off for die 489 * recovery. BXT is expected to be perfectly uniform in EU 490 * distribution. 491 */ 492 sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ? 493 DIV_ROUND_UP(sseu->eu_total, 494 intel_sseu_subslice_total(sseu)) : 495 0; 496 /* 497 * SKL+ supports slice power gating on devices with more than 498 * one slice, and supports EU power gating on devices with 499 * more than one EU pair per subslice. BXT+ supports subslice 500 * power gating on devices with more than one subslice, and 501 * supports EU power gating on devices with more than one EU 502 * pair per subslice. 503 */ 504 sseu->has_slice_pg = 505 !IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1; 506 sseu->has_subslice_pg = 507 IS_GEN9_LP(dev_priv) && intel_sseu_subslice_total(sseu) > 1; 508 sseu->has_eu_pg = sseu->eu_per_subslice > 2; 509 510 if (IS_GEN9_LP(dev_priv)) { 511 #define IS_SS_DISABLED(ss) (!(sseu->subslice_mask[0] & BIT(ss))) 512 info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3; 513 514 sseu->min_eu_in_pool = 0; 515 if (info->has_pooled_eu) { 516 if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0)) 517 sseu->min_eu_in_pool = 3; 518 else if (IS_SS_DISABLED(1)) 519 sseu->min_eu_in_pool = 6; 520 else 521 sseu->min_eu_in_pool = 9; 522 } 523 #undef IS_SS_DISABLED 524 } 525 } 526 527 static void bdw_sseu_info_init(struct drm_i915_private *dev_priv) 528 { 529 struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu; 530 int s, ss; 531 u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */ 532 533 fuse2 = I915_READ(GEN8_FUSE2); 534 sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT; 535 intel_sseu_set_info(sseu, 3, 3, 8); 536 537 /* 538 * The subslice disable field is global, i.e. it applies 539 * to each of the enabled slices. 540 */ 541 subslice_mask = GENMASK(sseu->max_subslices - 1, 0); 542 subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >> 543 GEN8_F2_SS_DIS_SHIFT); 544 545 eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK; 546 eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) | 547 ((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) << 548 (32 - GEN8_EU_DIS0_S1_SHIFT)); 549 eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) | 550 ((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) << 551 (32 - GEN8_EU_DIS1_S2_SHIFT)); 552 553 /* 554 * Iterate through enabled slices and subslices to 555 * count the total enabled EU. 556 */ 557 for (s = 0; s < sseu->max_slices; s++) { 558 if (!(sseu->slice_mask & BIT(s))) 559 /* skip disabled slice */ 560 continue; 561 562 intel_sseu_set_subslices(sseu, s, subslice_mask); 563 564 for (ss = 0; ss < sseu->max_subslices; ss++) { 565 u8 eu_disabled_mask; 566 u32 n_disabled; 567 568 if (!intel_sseu_has_subslice(sseu, s, ss)) 569 /* skip disabled subslice */ 570 continue; 571 572 eu_disabled_mask = 573 eu_disable[s] >> (ss * sseu->max_eus_per_subslice); 574 575 sseu_set_eus(sseu, s, ss, ~eu_disabled_mask); 576 577 n_disabled = hweight8(eu_disabled_mask); 578 579 /* 580 * Record which subslices have 7 EUs. 581 */ 582 if (sseu->max_eus_per_subslice - n_disabled == 7) 583 sseu->subslice_7eu[s] |= 1 << ss; 584 } 585 } 586 587 sseu->eu_total = compute_eu_total(sseu); 588 589 /* 590 * BDW is expected to always have a uniform distribution of EU across 591 * subslices with the exception that any one EU in any one subslice may 592 * be fused off for die recovery. 593 */ 594 sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ? 595 DIV_ROUND_UP(sseu->eu_total, 596 intel_sseu_subslice_total(sseu)) : 597 0; 598 599 /* 600 * BDW supports slice power gating on devices with more than 601 * one slice. 602 */ 603 sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1; 604 sseu->has_subslice_pg = 0; 605 sseu->has_eu_pg = 0; 606 } 607 608 static void hsw_sseu_info_init(struct drm_i915_private *dev_priv) 609 { 610 struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu; 611 u32 fuse1; 612 u8 subslice_mask = 0; 613 int s, ss; 614 615 /* 616 * There isn't a register to tell us how many slices/subslices. We 617 * work off the PCI-ids here. 618 */ 619 switch (INTEL_INFO(dev_priv)->gt) { 620 default: 621 MISSING_CASE(INTEL_INFO(dev_priv)->gt); 622 /* fall through */ 623 case 1: 624 sseu->slice_mask = BIT(0); 625 subslice_mask = BIT(0); 626 break; 627 case 2: 628 sseu->slice_mask = BIT(0); 629 subslice_mask = BIT(0) | BIT(1); 630 break; 631 case 3: 632 sseu->slice_mask = BIT(0) | BIT(1); 633 subslice_mask = BIT(0) | BIT(1); 634 break; 635 } 636 637 fuse1 = I915_READ(HSW_PAVP_FUSE1); 638 switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) { 639 default: 640 MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >> 641 HSW_F1_EU_DIS_SHIFT); 642 /* fall through */ 643 case HSW_F1_EU_DIS_10EUS: 644 sseu->eu_per_subslice = 10; 645 break; 646 case HSW_F1_EU_DIS_8EUS: 647 sseu->eu_per_subslice = 8; 648 break; 649 case HSW_F1_EU_DIS_6EUS: 650 sseu->eu_per_subslice = 6; 651 break; 652 } 653 654 intel_sseu_set_info(sseu, hweight8(sseu->slice_mask), 655 hweight8(subslice_mask), 656 sseu->eu_per_subslice); 657 658 for (s = 0; s < sseu->max_slices; s++) { 659 intel_sseu_set_subslices(sseu, s, subslice_mask); 660 661 for (ss = 0; ss < sseu->max_subslices; ss++) { 662 sseu_set_eus(sseu, s, ss, 663 (1UL << sseu->eu_per_subslice) - 1); 664 } 665 } 666 667 sseu->eu_total = compute_eu_total(sseu); 668 669 /* No powergating for you. */ 670 sseu->has_slice_pg = 0; 671 sseu->has_subslice_pg = 0; 672 sseu->has_eu_pg = 0; 673 } 674 675 static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv) 676 { 677 u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE); 678 u32 base_freq, frac_freq; 679 680 base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >> 681 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1; 682 base_freq *= 1000; 683 684 frac_freq = ((ts_override & 685 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >> 686 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT); 687 frac_freq = 1000 / (frac_freq + 1); 688 689 return base_freq + frac_freq; 690 } 691 692 static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv, 693 u32 rpm_config_reg) 694 { 695 u32 f19_2_mhz = 19200; 696 u32 f24_mhz = 24000; 697 u32 crystal_clock = (rpm_config_reg & 698 GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >> 699 GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT; 700 701 switch (crystal_clock) { 702 case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ: 703 return f19_2_mhz; 704 case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ: 705 return f24_mhz; 706 default: 707 MISSING_CASE(crystal_clock); 708 return 0; 709 } 710 } 711 712 static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv, 713 u32 rpm_config_reg) 714 { 715 u32 f19_2_mhz = 19200; 716 u32 f24_mhz = 24000; 717 u32 f25_mhz = 25000; 718 u32 f38_4_mhz = 38400; 719 u32 crystal_clock = (rpm_config_reg & 720 GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >> 721 GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT; 722 723 switch (crystal_clock) { 724 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ: 725 return f24_mhz; 726 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ: 727 return f19_2_mhz; 728 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ: 729 return f38_4_mhz; 730 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ: 731 return f25_mhz; 732 default: 733 MISSING_CASE(crystal_clock); 734 return 0; 735 } 736 } 737 738 static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv) 739 { 740 u32 f12_5_mhz = 12500; 741 u32 f19_2_mhz = 19200; 742 u32 f24_mhz = 24000; 743 744 if (INTEL_GEN(dev_priv) <= 4) { 745 /* PRMs say: 746 * 747 * "The value in this register increments once every 16 748 * hclks." (through the Clocking Configuration 749 * (CLKCFG) MCHBAR register) 750 */ 751 return dev_priv->rawclk_freq / 16; 752 } else if (INTEL_GEN(dev_priv) <= 8) { 753 /* PRMs say: 754 * 755 * "The PCU TSC counts 10ns increments; this timestamp 756 * reflects bits 38:3 of the TSC (i.e. 80ns granularity, 757 * rolling over every 1.5 hours). 758 */ 759 return f12_5_mhz; 760 } else if (INTEL_GEN(dev_priv) <= 9) { 761 u32 ctc_reg = I915_READ(CTC_MODE); 762 u32 freq = 0; 763 764 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) { 765 freq = read_reference_ts_freq(dev_priv); 766 } else { 767 freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz; 768 769 /* Now figure out how the command stream's timestamp 770 * register increments from this frequency (it might 771 * increment only every few clock cycle). 772 */ 773 freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >> 774 CTC_SHIFT_PARAMETER_SHIFT); 775 } 776 777 return freq; 778 } else if (INTEL_GEN(dev_priv) <= 12) { 779 u32 ctc_reg = I915_READ(CTC_MODE); 780 u32 freq = 0; 781 782 /* First figure out the reference frequency. There are 2 ways 783 * we can compute the frequency, either through the 784 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE 785 * tells us which one we should use. 786 */ 787 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) { 788 freq = read_reference_ts_freq(dev_priv); 789 } else { 790 u32 rpm_config_reg = I915_READ(RPM_CONFIG0); 791 792 if (INTEL_GEN(dev_priv) <= 10) 793 freq = gen10_get_crystal_clock_freq(dev_priv, 794 rpm_config_reg); 795 else 796 freq = gen11_get_crystal_clock_freq(dev_priv, 797 rpm_config_reg); 798 799 /* Now figure out how the command stream's timestamp 800 * register increments from this frequency (it might 801 * increment only every few clock cycle). 802 */ 803 freq >>= 3 - ((rpm_config_reg & 804 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >> 805 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT); 806 } 807 808 return freq; 809 } 810 811 MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n"); 812 return 0; 813 } 814 815 #undef INTEL_VGA_DEVICE 816 #define INTEL_VGA_DEVICE(id, info) (id) 817 818 static const u16 subplatform_ult_ids[] = { 819 INTEL_HSW_ULT_GT1_IDS(0), 820 INTEL_HSW_ULT_GT2_IDS(0), 821 INTEL_HSW_ULT_GT3_IDS(0), 822 INTEL_BDW_ULT_GT1_IDS(0), 823 INTEL_BDW_ULT_GT2_IDS(0), 824 INTEL_BDW_ULT_GT3_IDS(0), 825 INTEL_BDW_ULT_RSVD_IDS(0), 826 INTEL_SKL_ULT_GT1_IDS(0), 827 INTEL_SKL_ULT_GT2_IDS(0), 828 INTEL_SKL_ULT_GT3_IDS(0), 829 INTEL_KBL_ULT_GT1_IDS(0), 830 INTEL_KBL_ULT_GT2_IDS(0), 831 INTEL_KBL_ULT_GT3_IDS(0), 832 INTEL_CFL_U_GT2_IDS(0), 833 INTEL_CFL_U_GT3_IDS(0), 834 INTEL_WHL_U_GT1_IDS(0), 835 INTEL_WHL_U_GT2_IDS(0), 836 INTEL_WHL_U_GT3_IDS(0), 837 INTEL_CML_U_GT1_IDS(0), 838 INTEL_CML_U_GT2_IDS(0), 839 }; 840 841 static const u16 subplatform_ulx_ids[] = { 842 INTEL_HSW_ULX_GT1_IDS(0), 843 INTEL_HSW_ULX_GT2_IDS(0), 844 INTEL_BDW_ULX_GT1_IDS(0), 845 INTEL_BDW_ULX_GT2_IDS(0), 846 INTEL_BDW_ULX_GT3_IDS(0), 847 INTEL_BDW_ULX_RSVD_IDS(0), 848 INTEL_SKL_ULX_GT1_IDS(0), 849 INTEL_SKL_ULX_GT2_IDS(0), 850 INTEL_KBL_ULX_GT1_IDS(0), 851 INTEL_KBL_ULX_GT2_IDS(0), 852 INTEL_AML_KBL_GT2_IDS(0), 853 INTEL_AML_CFL_GT2_IDS(0), 854 }; 855 856 static const u16 subplatform_portf_ids[] = { 857 INTEL_CNL_PORT_F_IDS(0), 858 INTEL_ICL_PORT_F_IDS(0), 859 }; 860 861 static bool find_devid(u16 id, const u16 *p, unsigned int num) 862 { 863 for (; num; num--, p++) { 864 if (*p == id) 865 return true; 866 } 867 868 return false; 869 } 870 871 void intel_device_info_subplatform_init(struct drm_i915_private *i915) 872 { 873 const struct intel_device_info *info = INTEL_INFO(i915); 874 const struct intel_runtime_info *rinfo = RUNTIME_INFO(i915); 875 const unsigned int pi = __platform_mask_index(rinfo, info->platform); 876 const unsigned int pb = __platform_mask_bit(rinfo, info->platform); 877 u16 devid = INTEL_DEVID(i915); 878 u32 mask = 0; 879 880 /* Make sure IS_<platform> checks are working. */ 881 RUNTIME_INFO(i915)->platform_mask[pi] = BIT(pb); 882 883 /* Find and mark subplatform bits based on the PCI device id. */ 884 if (find_devid(devid, subplatform_ult_ids, 885 ARRAY_SIZE(subplatform_ult_ids))) { 886 mask = BIT(INTEL_SUBPLATFORM_ULT); 887 } else if (find_devid(devid, subplatform_ulx_ids, 888 ARRAY_SIZE(subplatform_ulx_ids))) { 889 mask = BIT(INTEL_SUBPLATFORM_ULX); 890 if (IS_HASWELL(i915) || IS_BROADWELL(i915)) { 891 /* ULX machines are also considered ULT. */ 892 mask |= BIT(INTEL_SUBPLATFORM_ULT); 893 } 894 } else if (find_devid(devid, subplatform_portf_ids, 895 ARRAY_SIZE(subplatform_portf_ids))) { 896 mask = BIT(INTEL_SUBPLATFORM_PORTF); 897 } 898 899 GEM_BUG_ON(mask & ~INTEL_SUBPLATFORM_BITS); 900 901 RUNTIME_INFO(i915)->platform_mask[pi] |= mask; 902 } 903 904 /** 905 * intel_device_info_runtime_init - initialize runtime info 906 * @dev_priv: the i915 device 907 * 908 * Determine various intel_device_info fields at runtime. 909 * 910 * Use it when either: 911 * - it's judged too laborious to fill n static structures with the limit 912 * when a simple if statement does the job, 913 * - run-time checks (eg read fuse/strap registers) are needed. 914 * 915 * This function needs to be called: 916 * - after the MMIO has been setup as we are reading registers, 917 * - after the PCH has been detected, 918 * - before the first usage of the fields it can tweak. 919 */ 920 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv) 921 { 922 struct intel_device_info *info = mkwrite_device_info(dev_priv); 923 struct intel_runtime_info *runtime = RUNTIME_INFO(dev_priv); 924 enum pipe pipe; 925 926 if (INTEL_GEN(dev_priv) >= 10) { 927 for_each_pipe(dev_priv, pipe) 928 runtime->num_scalers[pipe] = 2; 929 } else if (IS_GEN(dev_priv, 9)) { 930 runtime->num_scalers[PIPE_A] = 2; 931 runtime->num_scalers[PIPE_B] = 2; 932 runtime->num_scalers[PIPE_C] = 1; 933 } 934 935 BUILD_BUG_ON(BITS_PER_TYPE(intel_engine_mask_t) < I915_NUM_ENGINES); 936 937 if (INTEL_GEN(dev_priv) >= 11) 938 for_each_pipe(dev_priv, pipe) 939 runtime->num_sprites[pipe] = 6; 940 else if (IS_GEN(dev_priv, 10) || IS_GEMINILAKE(dev_priv)) 941 for_each_pipe(dev_priv, pipe) 942 runtime->num_sprites[pipe] = 3; 943 else if (IS_BROXTON(dev_priv)) { 944 /* 945 * Skylake and Broxton currently don't expose the topmost plane as its 946 * use is exclusive with the legacy cursor and we only want to expose 947 * one of those, not both. Until we can safely expose the topmost plane 948 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported, 949 * we don't expose the topmost plane at all to prevent ABI breakage 950 * down the line. 951 */ 952 953 runtime->num_sprites[PIPE_A] = 2; 954 runtime->num_sprites[PIPE_B] = 2; 955 runtime->num_sprites[PIPE_C] = 1; 956 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 957 for_each_pipe(dev_priv, pipe) 958 runtime->num_sprites[pipe] = 2; 959 } else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) { 960 for_each_pipe(dev_priv, pipe) 961 runtime->num_sprites[pipe] = 1; 962 } 963 964 if (HAS_DISPLAY(dev_priv) && IS_GEN_RANGE(dev_priv, 7, 8) && 965 HAS_PCH_SPLIT(dev_priv)) { 966 u32 fuse_strap = I915_READ(FUSE_STRAP); 967 u32 sfuse_strap = I915_READ(SFUSE_STRAP); 968 969 /* 970 * SFUSE_STRAP is supposed to have a bit signalling the display 971 * is fused off. Unfortunately it seems that, at least in 972 * certain cases, fused off display means that PCH display 973 * reads don't land anywhere. In that case, we read 0s. 974 * 975 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK 976 * should be set when taking over after the firmware. 977 */ 978 if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE || 979 sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED || 980 (HAS_PCH_CPT(dev_priv) && 981 !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) { 982 DRM_INFO("Display fused off, disabling\n"); 983 info->pipe_mask = 0; 984 } else if (fuse_strap & IVB_PIPE_C_DISABLE) { 985 DRM_INFO("PipeC fused off\n"); 986 info->pipe_mask &= ~BIT(PIPE_C); 987 } 988 } else if (HAS_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 9) { 989 u32 dfsm = I915_READ(SKL_DFSM); 990 u8 enabled_mask = info->pipe_mask; 991 992 if (dfsm & SKL_DFSM_PIPE_A_DISABLE) 993 enabled_mask &= ~BIT(PIPE_A); 994 if (dfsm & SKL_DFSM_PIPE_B_DISABLE) 995 enabled_mask &= ~BIT(PIPE_B); 996 if (dfsm & SKL_DFSM_PIPE_C_DISABLE) 997 enabled_mask &= ~BIT(PIPE_C); 998 if (INTEL_GEN(dev_priv) >= 12 && 999 (dfsm & TGL_DFSM_PIPE_D_DISABLE)) 1000 enabled_mask &= ~BIT(PIPE_D); 1001 1002 /* 1003 * At least one pipe should be enabled and if there are 1004 * disabled pipes, they should be the last ones, with no holes 1005 * in the mask. 1006 */ 1007 if (enabled_mask == 0 || !is_power_of_2(enabled_mask + 1)) 1008 DRM_ERROR("invalid pipe fuse configuration: enabled_mask=0x%x\n", 1009 enabled_mask); 1010 else 1011 info->pipe_mask = enabled_mask; 1012 1013 if (dfsm & SKL_DFSM_DISPLAY_HDCP_DISABLE) 1014 info->display.has_hdcp = 0; 1015 1016 if (dfsm & SKL_DFSM_DISPLAY_PM_DISABLE) 1017 info->display.has_fbc = 0; 1018 1019 if (INTEL_GEN(dev_priv) >= 11 && (dfsm & ICL_DFSM_DMC_DISABLE)) 1020 info->display.has_csr = 0; 1021 1022 if (INTEL_GEN(dev_priv) >= 10 && 1023 (dfsm & CNL_DFSM_DISPLAY_DSC_DISABLE)) 1024 info->display.has_dsc = 0; 1025 } 1026 1027 /* Initialize slice/subslice/EU info */ 1028 if (IS_HASWELL(dev_priv)) 1029 hsw_sseu_info_init(dev_priv); 1030 else if (IS_CHERRYVIEW(dev_priv)) 1031 cherryview_sseu_info_init(dev_priv); 1032 else if (IS_BROADWELL(dev_priv)) 1033 bdw_sseu_info_init(dev_priv); 1034 else if (IS_GEN(dev_priv, 9)) 1035 gen9_sseu_info_init(dev_priv); 1036 else if (IS_GEN(dev_priv, 10)) 1037 gen10_sseu_info_init(dev_priv); 1038 else if (IS_GEN(dev_priv, 11)) 1039 gen11_sseu_info_init(dev_priv); 1040 else if (INTEL_GEN(dev_priv) >= 12) 1041 gen12_sseu_info_init(dev_priv); 1042 1043 if (IS_GEN(dev_priv, 6) && intel_vtd_active()) { 1044 DRM_INFO("Disabling ppGTT for VT-d support\n"); 1045 info->ppgtt_type = INTEL_PPGTT_NONE; 1046 } 1047 1048 /* Initialize command stream timestamp frequency */ 1049 runtime->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv); 1050 } 1051 1052 void intel_driver_caps_print(const struct intel_driver_caps *caps, 1053 struct drm_printer *p) 1054 { 1055 drm_printf(p, "Has logical contexts? %s\n", 1056 yesno(caps->has_logical_contexts)); 1057 drm_printf(p, "scheduler: %x\n", caps->scheduler); 1058 } 1059 1060 /* 1061 * Determine which engines are fused off in our particular hardware. Since the 1062 * fuse register is in the blitter powerwell, we need forcewake to be ready at 1063 * this point (but later we need to prune the forcewake domains for engines that 1064 * are indeed fused off). 1065 */ 1066 void intel_device_info_init_mmio(struct drm_i915_private *dev_priv) 1067 { 1068 struct intel_device_info *info = mkwrite_device_info(dev_priv); 1069 unsigned int logical_vdbox = 0; 1070 unsigned int i; 1071 u32 media_fuse; 1072 u16 vdbox_mask; 1073 u16 vebox_mask; 1074 1075 if (INTEL_GEN(dev_priv) < 11) 1076 return; 1077 1078 media_fuse = ~I915_READ(GEN11_GT_VEBOX_VDBOX_DISABLE); 1079 1080 vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK; 1081 vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >> 1082 GEN11_GT_VEBOX_DISABLE_SHIFT; 1083 1084 for (i = 0; i < I915_MAX_VCS; i++) { 1085 if (!HAS_ENGINE(dev_priv, _VCS(i))) { 1086 vdbox_mask &= ~BIT(i); 1087 continue; 1088 } 1089 1090 if (!(BIT(i) & vdbox_mask)) { 1091 info->engine_mask &= ~BIT(_VCS(i)); 1092 DRM_DEBUG_DRIVER("vcs%u fused off\n", i); 1093 continue; 1094 } 1095 1096 /* 1097 * In Gen11, only even numbered logical VDBOXes are 1098 * hooked up to an SFC (Scaler & Format Converter) unit. 1099 * In TGL each VDBOX has access to an SFC. 1100 */ 1101 if (INTEL_GEN(dev_priv) >= 12 || logical_vdbox++ % 2 == 0) 1102 RUNTIME_INFO(dev_priv)->vdbox_sfc_access |= BIT(i); 1103 } 1104 DRM_DEBUG_DRIVER("vdbox enable: %04x, instances: %04lx\n", 1105 vdbox_mask, VDBOX_MASK(dev_priv)); 1106 GEM_BUG_ON(vdbox_mask != VDBOX_MASK(dev_priv)); 1107 1108 for (i = 0; i < I915_MAX_VECS; i++) { 1109 if (!HAS_ENGINE(dev_priv, _VECS(i))) { 1110 vebox_mask &= ~BIT(i); 1111 continue; 1112 } 1113 1114 if (!(BIT(i) & vebox_mask)) { 1115 info->engine_mask &= ~BIT(_VECS(i)); 1116 DRM_DEBUG_DRIVER("vecs%u fused off\n", i); 1117 } 1118 } 1119 DRM_DEBUG_DRIVER("vebox enable: %04x, instances: %04lx\n", 1120 vebox_mask, VEBOX_MASK(dev_priv)); 1121 GEM_BUG_ON(vebox_mask != VEBOX_MASK(dev_priv)); 1122 } 1123