Home | History | Annotate | Line # | Download | only in kern
      1 /*	$NetBSD: subr_kcpuset.c,v 1.20 2023/09/23 18:21:11 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2011, 2023 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Mindaugas Rasiukevicius.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Kernel CPU set implementation.
     34  *
     35  * Interface can be used by kernel subsystems as a unified dynamic CPU
     36  * bitset implementation handling many CPUs.  Facility also supports early
     37  * use by MD code on boot, as it fixups bitsets on further boot.
     38  *
     39  * TODO:
     40  * - Handle "reverse" bitset on fixup/grow.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: subr_kcpuset.c,v 1.20 2023/09/23 18:21:11 ad Exp $");
     45 
     46 #include <sys/param.h>
     47 #include <sys/types.h>
     48 
     49 #include <sys/atomic.h>
     50 #include <sys/intr.h>
     51 #include <sys/sched.h>
     52 #include <sys/kcpuset.h>
     53 #include <sys/kmem.h>
     54 
     55 /* Number of CPUs to support. */
     56 #define	KC_MAXCPUS		roundup2(MAXCPUS, 32)
     57 
     58 /*
     59  * Structure of dynamic CPU set in the kernel.
     60  */
     61 struct kcpuset {
     62 	uint32_t		bits[0];
     63 };
     64 
     65 typedef struct kcpuset_impl {
     66 	/* Reference count. */
     67 	u_int			kc_refcnt;
     68 	/* Next to free, if non-NULL (used when multiple references). */
     69 	struct kcpuset *	kc_next;
     70 	/* Actual variable-sized field of bits. */
     71 	struct kcpuset		kc_field;
     72 } kcpuset_impl_t;
     73 
     74 #define	KC_BITS_OFF		(offsetof(struct kcpuset_impl, kc_field))
     75 #define	KC_GETSTRUCT(b)		((kcpuset_impl_t *)((char *)(b) - KC_BITS_OFF))
     76 #define	KC_GETCSTRUCT(b)	((const kcpuset_impl_t *)((const char *)(b) - KC_BITS_OFF))
     77 
     78 /* Sizes of a single bitset. */
     79 #define	KC_SHIFT		5
     80 #define	KC_MASK			31
     81 
     82 /* An array of noted early kcpuset creations and data. */
     83 #define	KC_SAVE_NITEMS		8
     84 
     85 /* Structures for early boot mechanism (must be statically initialised). */
     86 static kcpuset_t **		kc_noted_early[KC_SAVE_NITEMS];
     87 static uint32_t			kc_bits_early[KC_SAVE_NITEMS];
     88 static int			kc_last_idx = 0;
     89 static bool			kc_initialised = false;
     90 
     91 #define	KC_BITSIZE_EARLY	sizeof(kc_bits_early[0])
     92 #define	KC_NFIELDS_EARLY	1
     93 
     94 /*
     95  * The size of whole bitset fields and amount of fields.
     96  * The whole size must statically initialise for early case.
     97  */
     98 static size_t			kc_bitsize __read_mostly = KC_BITSIZE_EARLY;
     99 static size_t			kc_nfields __read_mostly = KC_NFIELDS_EARLY;
    100 static size_t			kc_memsize __read_mostly;
    101 
    102 static kcpuset_t *		kcpuset_create_raw(bool);
    103 
    104 /*
    105  * kcpuset_sysinit: initialize the subsystem, transfer early boot cases
    106  * to dynamically allocated sets.
    107  */
    108 void
    109 kcpuset_sysinit(void)
    110 {
    111 	kcpuset_t *kc_dynamic[KC_SAVE_NITEMS], *kcp;
    112 	int i, s;
    113 
    114 	/* Set a kcpuset_t sizes. */
    115 	kc_nfields = (KC_MAXCPUS >> KC_SHIFT);
    116 	kc_bitsize = sizeof(uint32_t) * kc_nfields;
    117 	kc_memsize = sizeof(kcpuset_impl_t) + kc_bitsize;
    118 	KASSERT(kc_nfields != 0);
    119 	KASSERT(kc_bitsize != 0);
    120 
    121 	/* First, pre-allocate kcpuset entries. */
    122 	for (i = 0; i < kc_last_idx; i++) {
    123 		kcp = kcpuset_create_raw(true);
    124 		kc_dynamic[i] = kcp;
    125 	}
    126 
    127 	/*
    128 	 * Prepare to convert all early noted kcpuset uses to dynamic sets.
    129 	 * All processors, except the one we are currently running (primary),
    130 	 * must not be spinned yet.  Since MD facilities can use kcpuset,
    131 	 * raise the IPL to high.
    132 	 */
    133 	KASSERT(mp_online == false);
    134 
    135 	s = splhigh();
    136 	for (i = 0; i < kc_last_idx; i++) {
    137 		/*
    138 		 * Transfer the bits from early static storage to the kcpuset.
    139 		 */
    140 		KASSERT(kc_bitsize >= KC_BITSIZE_EARLY);
    141 		memcpy(kc_dynamic[i], &kc_bits_early[i], KC_BITSIZE_EARLY);
    142 
    143 		/*
    144 		 * Store the new pointer, pointing to the allocated kcpuset.
    145 		 * Note: we are not in an interrupt context and it is the only
    146 		 * CPU running - thus store is safe (e.g. no need for pointer
    147 		 * variable to be volatile).
    148 		 */
    149 		*kc_noted_early[i] = kc_dynamic[i];
    150 	}
    151 	kc_initialised = true;
    152 	kc_last_idx = 0;
    153 	splx(s);
    154 }
    155 
    156 /*
    157  * kcpuset_early_ptr: note an early boot use by saving the pointer and
    158  * returning a pointer to a static, temporary bit field.
    159  */
    160 static kcpuset_t *
    161 kcpuset_early_ptr(kcpuset_t **kcptr)
    162 {
    163 	kcpuset_t *kcp;
    164 	int s;
    165 
    166 	s = splhigh();
    167 	if (kc_last_idx < KC_SAVE_NITEMS) {
    168 		/*
    169 		 * Save the pointer, return pointer to static early field.
    170 		 * Need to zero it out.
    171 		 */
    172 		kc_noted_early[kc_last_idx] = kcptr;
    173 		kcp = (kcpuset_t *)&kc_bits_early[kc_last_idx];
    174 		kc_last_idx++;
    175 		memset(kcp, 0, KC_BITSIZE_EARLY);
    176 		KASSERT(kc_bitsize == KC_BITSIZE_EARLY);
    177 	} else {
    178 		panic("kcpuset(9): all early-use entries exhausted; "
    179 		    "increase KC_SAVE_NITEMS\n");
    180 	}
    181 	splx(s);
    182 
    183 	return kcp;
    184 }
    185 
    186 /*
    187  * Routines to create or destroy the CPU set.
    188  * Early boot case is handled.
    189  */
    190 
    191 static kcpuset_t *
    192 kcpuset_create_raw(bool zero)
    193 {
    194 	kcpuset_impl_t *kc;
    195 
    196 	kc = kmem_alloc(kc_memsize, KM_SLEEP);
    197 	kc->kc_refcnt = 1;
    198 	kc->kc_next = NULL;
    199 
    200 	if (zero) {
    201 		memset(&kc->kc_field, 0, kc_bitsize);
    202 	}
    203 
    204 	/* Note: return pointer to the actual field of bits. */
    205 	KASSERT((uint8_t *)kc + KC_BITS_OFF == (uint8_t *)&kc->kc_field);
    206 	return &kc->kc_field;
    207 }
    208 
    209 void
    210 kcpuset_create(kcpuset_t **retkcp, bool zero)
    211 {
    212 	if (__predict_false(!kc_initialised)) {
    213 		/* Early boot use - special case. */
    214 		*retkcp = kcpuset_early_ptr(retkcp);
    215 		return;
    216 	}
    217 	*retkcp = kcpuset_create_raw(zero);
    218 }
    219 
    220 void
    221 kcpuset_clone(kcpuset_t **retkcp, const kcpuset_t *kcp)
    222 {
    223 	kcpuset_create(retkcp, false);
    224 	memcpy(*retkcp, kcp, kc_bitsize);
    225 }
    226 
    227 void
    228 kcpuset_destroy(kcpuset_t *kcp)
    229 {
    230 	const size_t size = kc_memsize;
    231 	kcpuset_impl_t *kc;
    232 
    233 	KASSERT(kc_initialised);
    234 	KASSERT(kcp != NULL);
    235 
    236 	do {
    237 		kc = KC_GETSTRUCT(kcp);
    238 		kcp = kc->kc_next;
    239 		kmem_free(kc, size);
    240 	} while (kcp);
    241 }
    242 
    243 /*
    244  * Routines to reference/unreference the CPU set.
    245  * Note: early boot case is not supported by these routines.
    246  */
    247 
    248 void
    249 kcpuset_use(kcpuset_t *kcp)
    250 {
    251 	kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
    252 
    253 	KASSERT(kc_initialised);
    254 	atomic_inc_uint(&kc->kc_refcnt);
    255 }
    256 
    257 void
    258 kcpuset_unuse(kcpuset_t *kcp, kcpuset_t **lst)
    259 {
    260 	kcpuset_impl_t *kc = KC_GETSTRUCT(kcp);
    261 
    262 	KASSERT(kc_initialised);
    263 	KASSERT(kc->kc_refcnt > 0);
    264 
    265 	membar_release();
    266 	if (atomic_dec_uint_nv(&kc->kc_refcnt) != 0) {
    267 		return;
    268 	}
    269 	membar_acquire();
    270 	KASSERT(kc->kc_next == NULL);
    271 	if (lst == NULL) {
    272 		kcpuset_destroy(kcp);
    273 		return;
    274 	}
    275 	kc->kc_next = *lst;
    276 	*lst = kcp;
    277 }
    278 
    279 /*
    280  * Routines to transfer the CPU set from / to userspace.
    281  * Note: early boot case is not supported by these routines.
    282  */
    283 
    284 int
    285 kcpuset_copyin(const cpuset_t *ucp, kcpuset_t *kcp, size_t len)
    286 {
    287 	kcpuset_impl_t *kc __diagused = KC_GETSTRUCT(kcp);
    288 
    289 	KASSERT(kc_initialised);
    290 	KASSERT(kc->kc_refcnt > 0);
    291 	KASSERT(kc->kc_next == NULL);
    292 
    293 	if (len > kc_bitsize) { /* XXX */
    294 		return EINVAL;
    295 	}
    296 	return copyin(ucp, kcp, len);
    297 }
    298 
    299 int
    300 kcpuset_copyout(kcpuset_t *kcp, cpuset_t *ucp, size_t len)
    301 {
    302 	kcpuset_impl_t *kc __diagused = KC_GETSTRUCT(kcp);
    303 
    304 	KASSERT(kc_initialised);
    305 	KASSERT(kc->kc_refcnt > 0);
    306 	KASSERT(kc->kc_next == NULL);
    307 
    308 	if (len > kc_bitsize) { /* XXX */
    309 		return EINVAL;
    310 	}
    311 	return copyout(kcp, ucp, len);
    312 }
    313 
    314 void
    315 kcpuset_export_u32(const kcpuset_t *kcp, uint32_t *bitfield, size_t len)
    316 {
    317 	size_t rlen = MIN(kc_bitsize, len);
    318 
    319 	KASSERT(kcp != NULL);
    320 	memcpy(bitfield, kcp->bits, rlen);
    321 }
    322 
    323 /*
    324  * Routines to change bit field - zero, fill, copy, set, unset, etc.
    325  */
    326 
    327 void
    328 kcpuset_zero(kcpuset_t *kcp)
    329 {
    330 
    331 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
    332 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
    333 	memset(kcp, 0, kc_bitsize);
    334 }
    335 
    336 void
    337 kcpuset_fill(kcpuset_t *kcp)
    338 {
    339 
    340 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_refcnt > 0);
    341 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
    342 	memset(kcp, ~0, kc_bitsize);
    343 }
    344 
    345 void
    346 kcpuset_copy(kcpuset_t *dkcp, const kcpuset_t *skcp)
    347 {
    348 
    349 	KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_refcnt > 0);
    350 	KASSERT(!kc_initialised || KC_GETSTRUCT(dkcp)->kc_next == NULL);
    351 	memcpy(dkcp, skcp, kc_bitsize);
    352 }
    353 
    354 void
    355 kcpuset_set(kcpuset_t *kcp, cpuid_t i)
    356 {
    357 	const size_t j = i >> KC_SHIFT;
    358 
    359 	KASSERT(!kc_initialised || KC_GETSTRUCT(kcp)->kc_next == NULL);
    360 	KASSERT(j < kc_nfields);
    361 
    362 	kcp->bits[j] |= __BIT(i & KC_MASK);
    363 }
    364 
    365 void
    366 kcpuset_clear(kcpuset_t *kcp, cpuid_t i)
    367 {
    368 	const size_t j = i >> KC_SHIFT;
    369 
    370 	KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_next == NULL);
    371 	KASSERT(j < kc_nfields);
    372 
    373 	kcp->bits[j] &= ~(__BIT(i & KC_MASK));
    374 }
    375 
    376 bool
    377 kcpuset_isset(const kcpuset_t *kcp, cpuid_t i)
    378 {
    379 	const size_t j = i >> KC_SHIFT;
    380 
    381 	KASSERT(kcp != NULL);
    382 	KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_refcnt > 0);
    383 	KASSERT(!kc_initialised || KC_GETCSTRUCT(kcp)->kc_next == NULL);
    384 	KASSERT(j < kc_nfields);
    385 
    386 	return ((__BIT(i & KC_MASK)) & kcp->bits[j]) != 0;
    387 }
    388 
    389 bool
    390 kcpuset_isotherset(const kcpuset_t *kcp, cpuid_t i)
    391 {
    392 	const size_t j2 = i >> KC_SHIFT;
    393 	const uint32_t mask = ~(__BIT(i & KC_MASK));
    394 
    395 	for (size_t j = 0; j < kc_nfields; j++) {
    396 		const uint32_t bits = kcp->bits[j];
    397 		if (bits && (j != j2 || (bits & mask) != 0)) {
    398 			return true;
    399 		}
    400 	}
    401 	return false;
    402 }
    403 
    404 bool
    405 kcpuset_iszero(const kcpuset_t *kcp)
    406 {
    407 
    408 	for (size_t j = 0; j < kc_nfields; j++) {
    409 		if (kcp->bits[j] != 0) {
    410 			return false;
    411 		}
    412 	}
    413 	return true;
    414 }
    415 
    416 bool
    417 kcpuset_match(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
    418 {
    419 
    420 	return memcmp(kcp1, kcp2, kc_bitsize) == 0;
    421 }
    422 
    423 bool
    424 kcpuset_intersecting_p(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
    425 {
    426 
    427 	for (size_t j = 0; j < kc_nfields; j++) {
    428 		if (kcp1->bits[j] & kcp2->bits[j])
    429 			return true;
    430 	}
    431 	return false;
    432 }
    433 
    434 cpuid_t
    435 kcpuset_ffs(const kcpuset_t *kcp)
    436 {
    437 
    438 	for (size_t j = 0; j < kc_nfields; j++) {
    439 		if (kcp->bits[j])
    440 			return 32 * j + ffs(kcp->bits[j]);
    441 	}
    442 	return 0;
    443 }
    444 
    445 cpuid_t
    446 kcpuset_ffs_intersecting(const kcpuset_t *kcp1, const kcpuset_t *kcp2)
    447 {
    448 
    449 	for (size_t j = 0; j < kc_nfields; j++) {
    450 		uint32_t bits = kcp1->bits[j] & kcp2->bits[j];
    451 		if (bits)
    452 			return 32 * j + ffs(bits);
    453 	}
    454 	return 0;
    455 }
    456 
    457 void
    458 kcpuset_merge(kcpuset_t *kcp1, const kcpuset_t *kcp2)
    459 {
    460 
    461 	for (size_t j = 0; j < kc_nfields; j++) {
    462 		kcp1->bits[j] |= kcp2->bits[j];
    463 	}
    464 }
    465 
    466 void
    467 kcpuset_intersect(kcpuset_t *kcp1, const kcpuset_t *kcp2)
    468 {
    469 
    470 	for (size_t j = 0; j < kc_nfields; j++) {
    471 		kcp1->bits[j] &= kcp2->bits[j];
    472 	}
    473 }
    474 
    475 void
    476 kcpuset_remove(kcpuset_t *kcp1, const kcpuset_t *kcp2)
    477 {
    478 
    479 	for (size_t j = 0; j < kc_nfields; j++) {
    480 		kcp1->bits[j] &= ~kcp2->bits[j];
    481 	}
    482 }
    483 
    484 int
    485 kcpuset_countset(const kcpuset_t *kcp)
    486 {
    487 	int count = 0;
    488 
    489 	for (size_t j = 0; j < kc_nfields; j++) {
    490 		count += popcount32(kcp->bits[j]);
    491 	}
    492 	return count;
    493 }
    494 
    495 /*
    496  * Routines to set/clear the flags atomically.
    497  */
    498 
    499 void
    500 kcpuset_atomic_set(kcpuset_t *kcp, cpuid_t i)
    501 {
    502 	const size_t j = i >> KC_SHIFT;
    503 
    504 	KASSERT(j < kc_nfields);
    505 	atomic_or_32(&kcp->bits[j], __BIT(i & KC_MASK));
    506 }
    507 
    508 void
    509 kcpuset_atomic_clear(kcpuset_t *kcp, cpuid_t i)
    510 {
    511 	const size_t j = i >> KC_SHIFT;
    512 
    513 	KASSERT(j < kc_nfields);
    514 	atomic_and_32(&kcp->bits[j], ~(__BIT(i & KC_MASK)));
    515 }
    516 
    517 void
    518 kcpuset_atomicly_intersect(kcpuset_t *kcp1, const kcpuset_t *kcp2)
    519 {
    520 
    521 	for (size_t j = 0; j < kc_nfields; j++) {
    522 		if (kcp2->bits[j])
    523 			atomic_and_32(&kcp1->bits[j], kcp2->bits[j]);
    524 	}
    525 }
    526 
    527 void
    528 kcpuset_atomicly_merge(kcpuset_t *kcp1, const kcpuset_t *kcp2)
    529 {
    530 
    531 	for (size_t j = 0; j < kc_nfields; j++) {
    532 		if (kcp2->bits[j])
    533 			atomic_or_32(&kcp1->bits[j], kcp2->bits[j]);
    534 	}
    535 }
    536 
    537 void
    538 kcpuset_atomicly_remove(kcpuset_t *kcp1, const kcpuset_t *kcp2)
    539 {
    540 
    541 	for (size_t j = 0; j < kc_nfields; j++) {
    542 		if (kcp2->bits[j])
    543 			atomic_and_32(&kcp1->bits[j], ~kcp2->bits[j]);
    544 	}
    545 }
    546