Home | History | Annotate | Line # | Download | only in lfs
      1 /*	$NetBSD: lfs_accessors.h,v 1.52 2025/09/15 04:14:59 perseant Exp $	*/
      2 
      3 /*  from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp  */
      4 /*  from NetBSD: dinode.h,v 1.25 2016/01/22 23:06:10 dholland Exp  */
      5 /*  from NetBSD: dir.h,v 1.25 2015/09/01 06:16:03 dholland Exp  */
      6 
      7 /*-
      8  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      9  * All rights reserved.
     10  *
     11  * This code is derived from software contributed to The NetBSD Foundation
     12  * by Konrad E. Schroder <perseant (at) hhhh.org>.
     13  *
     14  * Redistribution and use in source and binary forms, with or without
     15  * modification, are permitted provided that the following conditions
     16  * are met:
     17  * 1. Redistributions of source code must retain the above copyright
     18  *    notice, this list of conditions and the following disclaimer.
     19  * 2. Redistributions in binary form must reproduce the above copyright
     20  *    notice, this list of conditions and the following disclaimer in the
     21  *    documentation and/or other materials provided with the distribution.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 /*-
     36  * Copyright (c) 1991, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. Neither the name of the University nor the names of its contributors
     48  *    may be used to endorse or promote products derived from this software
     49  *    without specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     52  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     54  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     55  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     61  * SUCH DAMAGE.
     62  *
     63  *	@(#)lfs.h	8.9 (Berkeley) 5/8/95
     64  */
     65 /*
     66  * Copyright (c) 2002 Networks Associates Technology, Inc.
     67  * All rights reserved.
     68  *
     69  * This software was developed for the FreeBSD Project by Marshall
     70  * Kirk McKusick and Network Associates Laboratories, the Security
     71  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     72  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     73  * research program
     74  *
     75  * Copyright (c) 1982, 1989, 1993
     76  *	The Regents of the University of California.  All rights reserved.
     77  * (c) UNIX System Laboratories, Inc.
     78  * All or some portions of this file are derived from material licensed
     79  * to the University of California by American Telephone and Telegraph
     80  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     81  * the permission of UNIX System Laboratories, Inc.
     82  *
     83  * Redistribution and use in source and binary forms, with or without
     84  * modification, are permitted provided that the following conditions
     85  * are met:
     86  * 1. Redistributions of source code must retain the above copyright
     87  *    notice, this list of conditions and the following disclaimer.
     88  * 2. Redistributions in binary form must reproduce the above copyright
     89  *    notice, this list of conditions and the following disclaimer in the
     90  *    documentation and/or other materials provided with the distribution.
     91  * 3. Neither the name of the University nor the names of its contributors
     92  *    may be used to endorse or promote products derived from this software
     93  *    without specific prior written permission.
     94  *
     95  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     96  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     97  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     98  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     99  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    100  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    101  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    102  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    103  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    104  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    105  * SUCH DAMAGE.
    106  *
    107  *	@(#)dinode.h	8.9 (Berkeley) 3/29/95
    108  */
    109 /*
    110  * Copyright (c) 1982, 1986, 1989, 1993
    111  *	The Regents of the University of California.  All rights reserved.
    112  * (c) UNIX System Laboratories, Inc.
    113  * All or some portions of this file are derived from material licensed
    114  * to the University of California by American Telephone and Telegraph
    115  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    116  * the permission of UNIX System Laboratories, Inc.
    117  *
    118  * Redistribution and use in source and binary forms, with or without
    119  * modification, are permitted provided that the following conditions
    120  * are met:
    121  * 1. Redistributions of source code must retain the above copyright
    122  *    notice, this list of conditions and the following disclaimer.
    123  * 2. Redistributions in binary form must reproduce the above copyright
    124  *    notice, this list of conditions and the following disclaimer in the
    125  *    documentation and/or other materials provided with the distribution.
    126  * 3. Neither the name of the University nor the names of its contributors
    127  *    may be used to endorse or promote products derived from this software
    128  *    without specific prior written permission.
    129  *
    130  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    131  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    132  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    133  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    134  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    135  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    136  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    137  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    138  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    139  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    140  * SUCH DAMAGE.
    141  *
    142  *	@(#)dir.h	8.5 (Berkeley) 4/27/95
    143  */
    144 
    145 #ifndef _UFS_LFS_LFS_ACCESSORS_H_
    146 #define _UFS_LFS_LFS_ACCESSORS_H_
    147 
    148 #if defined(_KERNEL_OPT)
    149 #include "opt_lfs.h"
    150 #endif
    151 
    152 #include <sys/bswap.h>
    153 
    154 #include <ufs/lfs/lfs.h>
    155 
    156 #if !defined(_KERNEL) && !defined(_STANDALONE)
    157 #include <assert.h>
    158 #include <string.h>
    159 #define KASSERT assert
    160 #else
    161 #include <sys/systm.h>
    162 #endif
    163 
    164 /*
    165  * STRUCT_LFS is used by the libsa code to get accessors that work
    166  * with struct salfs instead of struct lfs, and by the cleaner to
    167  * get accessors that work with struct clfs.
    168  */
    169 
    170 #ifndef STRUCT_LFS
    171 #define STRUCT_LFS struct lfs
    172 #endif
    173 
    174 /*
    175  * byte order
    176  */
    177 
    178 /*
    179  * For now at least, the bootblocks shall not be endian-independent.
    180  * We can see later if it fits in the size budget. Also disable the
    181  * byteswapping if LFS_EI is off.
    182  *
    183  * Caution: these functions "know" that bswap16/32/64 are unsigned,
    184  * and if that changes will likely break silently.
    185  */
    186 
    187 #if defined(_STANDALONE) || (defined(_KERNEL) && !defined(LFS_EI))
    188 #define LFS_SWAP_int16_t(fs, val) (val)
    189 #define LFS_SWAP_int32_t(fs, val) (val)
    190 #define LFS_SWAP_int64_t(fs, val) (val)
    191 #define LFS_SWAP_uint16_t(fs, val) (val)
    192 #define LFS_SWAP_uint32_t(fs, val) (val)
    193 #define LFS_SWAP_uint64_t(fs, val) (val)
    194 #else
    195 #define LFS_SWAP_int16_t(fs, val) \
    196 	((fs)->lfs_dobyteswap ? (int16_t)bswap16(val) : (val))
    197 #define LFS_SWAP_int32_t(fs, val) \
    198 	((fs)->lfs_dobyteswap ? (int32_t)bswap32(val) : (val))
    199 #define LFS_SWAP_int64_t(fs, val) \
    200 	((fs)->lfs_dobyteswap ? (int64_t)bswap64(val) : (val))
    201 #define LFS_SWAP_uint16_t(fs, val) \
    202 	((fs)->lfs_dobyteswap ? bswap16(val) : (val))
    203 #define LFS_SWAP_uint32_t(fs, val) \
    204 	((fs)->lfs_dobyteswap ? bswap32(val) : (val))
    205 #define LFS_SWAP_uint64_t(fs, val) \
    206 	((fs)->lfs_dobyteswap ? bswap64(val) : (val))
    207 #endif
    208 
    209 /*
    210  * For handling directories we will need to know if the volume is
    211  * little-endian.
    212  */
    213 #if BYTE_ORDER == LITTLE_ENDIAN
    214 #define LFS_LITTLE_ENDIAN_ONDISK(fs) (!(fs)->lfs_dobyteswap)
    215 #else
    216 #define LFS_LITTLE_ENDIAN_ONDISK(fs) ((fs)->lfs_dobyteswap)
    217 #endif
    218 
    219 
    220 /*
    221  * Suppress spurious warnings -- we use
    222  *
    223  *	type *foo = &obj->member;
    224  *
    225  * in macros to verify that obj->member has the right type.  When the
    226  * object is a packed structure with misaligned members, this causes
    227  * some compiles to squeal that taking the address might lead to
    228  * undefined behaviour later on -- which is helpful in general, not
    229  * relevant in this case, because we don't do anything with foo
    230  * afterward; we only declare it to get a type check and then we
    231  * discard it.
    232  */
    233 #ifdef __GNUC__
    234 #if defined(__clang__)
    235 #pragma clang diagnostic push
    236 #pragma clang diagnostic ignored "-Waddress-of-packed-member"
    237 #elif __GNUC_PREREQ__(9,0)
    238 #pragma GCC diagnostic push
    239 #pragma GCC diagnostic ignored "-Waddress-of-packed-member"
    240 #endif
    241 #endif
    242 
    243 
    244 
    245 /*
    246  * directories
    247  */
    248 
    249 #define LFS_DIRHEADERSIZE(fs) \
    250 	((fs)->lfs_is64 ? sizeof(struct lfs_dirheader64) : sizeof(struct lfs_dirheader32))
    251 
    252 /*
    253  * The LFS_DIRSIZ macro gives the minimum record length which will hold
    254  * the directory entry.  This requires the amount of space in struct lfs_direct
    255  * without the d_name field, plus enough space for the name with a terminating
    256  * null byte (dp->d_namlen+1), rounded up to a 4 byte boundary.
    257  */
    258 #define	LFS_DIRECTSIZ(fs, namlen) \
    259 	(LFS_DIRHEADERSIZE(fs) + (((namlen)+1 + 3) &~ 3))
    260 
    261 /*
    262  * The size of the largest possible directory entry. This is
    263  * used by ulfs_dirhash to figure the size of an array, so we
    264  * need a single constant value true for both lfs32 and lfs64.
    265  */
    266 #define LFS_MAXDIRENTRYSIZE \
    267 	(sizeof(struct lfs_dirheader64) + (((LFS_MAXNAMLEN+1)+1 + 3) & ~3))
    268 
    269 #if (BYTE_ORDER == LITTLE_ENDIAN)
    270 #define LFS_OLDDIRSIZ(oldfmt, dp, needswap)	\
    271     (((oldfmt) && !(needswap)) ?		\
    272     LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
    273 #else
    274 #define LFS_OLDDIRSIZ(oldfmt, dp, needswap)	\
    275     (((oldfmt) && (needswap)) ?			\
    276     LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
    277 #endif
    278 
    279 #define LFS_DIRSIZ(fs, dp) LFS_DIRECTSIZ(fs, lfs_dir_getnamlen(fs, dp))
    280 
    281 /* Constants for the first argument of LFS_OLDDIRSIZ */
    282 #define LFS_OLDDIRFMT	1
    283 #define LFS_NEWDIRFMT	0
    284 
    285 #define LFS_NEXTDIR(fs, dp) \
    286 	((LFS_DIRHEADER *)((char *)(dp) + lfs_dir_getreclen(fs, dp)))
    287 
    288 static __inline char *
    289 lfs_dir_nameptr(const STRUCT_LFS *fs, LFS_DIRHEADER *dh)
    290 {
    291 	if (fs->lfs_is64) {
    292 		return (char *)(&dh->u_64 + 1);
    293 	} else {
    294 		return (char *)(&dh->u_32 + 1);
    295 	}
    296 }
    297 
    298 static __inline uint64_t
    299 lfs_dir_getino(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
    300 {
    301 	if (fs->lfs_is64) {
    302 		return LFS_SWAP_uint64_t(fs, dh->u_64.dh_ino);
    303 	} else {
    304 		return LFS_SWAP_uint32_t(fs, dh->u_32.dh_ino);
    305 	}
    306 }
    307 
    308 static __inline uint16_t
    309 lfs_dir_getreclen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
    310 {
    311 	if (fs->lfs_is64) {
    312 		return LFS_SWAP_uint16_t(fs, dh->u_64.dh_reclen);
    313 	} else {
    314 		return LFS_SWAP_uint16_t(fs, dh->u_32.dh_reclen);
    315 	}
    316 }
    317 
    318 static __inline uint8_t
    319 lfs_dir_gettype(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
    320 {
    321 	if (fs->lfs_is64) {
    322 		KASSERT(fs->lfs_hasolddirfmt == 0);
    323 		return dh->u_64.dh_type;
    324 	} else if (fs->lfs_hasolddirfmt) {
    325 		return LFS_DT_UNKNOWN;
    326 	} else {
    327 		return dh->u_32.dh_type;
    328 	}
    329 }
    330 
    331 static __inline uint8_t
    332 lfs_dir_getnamlen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
    333 {
    334 	if (fs->lfs_is64) {
    335 		KASSERT(fs->lfs_hasolddirfmt == 0);
    336 		return dh->u_64.dh_namlen;
    337 	} else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
    338 		/* low-order byte of old 16-bit namlen field */
    339 		return dh->u_32.dh_type;
    340 	} else {
    341 		return dh->u_32.dh_namlen;
    342 	}
    343 }
    344 
    345 static __inline void
    346 lfs_dir_setino(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint64_t ino)
    347 {
    348 	if (fs->lfs_is64) {
    349 		dh->u_64.dh_ino = LFS_SWAP_uint64_t(fs, ino);
    350 	} else {
    351 		dh->u_32.dh_ino = LFS_SWAP_uint32_t(fs, ino);
    352 	}
    353 }
    354 
    355 static __inline void
    356 lfs_dir_setreclen(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint16_t reclen)
    357 {
    358 	if (fs->lfs_is64) {
    359 		dh->u_64.dh_reclen = LFS_SWAP_uint16_t(fs, reclen);
    360 	} else {
    361 		dh->u_32.dh_reclen = LFS_SWAP_uint16_t(fs, reclen);
    362 	}
    363 }
    364 
    365 static __inline void
    366 lfs_dir_settype(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t type)
    367 {
    368 	if (fs->lfs_is64) {
    369 		KASSERT(fs->lfs_hasolddirfmt == 0);
    370 		dh->u_64.dh_type = type;
    371 	} else if (fs->lfs_hasolddirfmt) {
    372 		/* do nothing */
    373 		return;
    374 	} else {
    375 		dh->u_32.dh_type = type;
    376 	}
    377 }
    378 
    379 static __inline void
    380 lfs_dir_setnamlen(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t namlen)
    381 {
    382 	if (fs->lfs_is64) {
    383 		KASSERT(fs->lfs_hasolddirfmt == 0);
    384 		dh->u_64.dh_namlen = namlen;
    385 	} else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
    386 		/* low-order byte of old 16-bit namlen field */
    387 		dh->u_32.dh_type = namlen;
    388 	} else {
    389 		dh->u_32.dh_namlen = namlen;
    390 	}
    391 }
    392 
    393 static __inline void
    394 lfs_copydirname(STRUCT_LFS *fs, char *dest, const char *src,
    395 		unsigned namlen, unsigned reclen)
    396 {
    397 	unsigned spacelen;
    398 
    399 	KASSERT(reclen > LFS_DIRHEADERSIZE(fs));
    400 	spacelen = reclen - LFS_DIRHEADERSIZE(fs);
    401 
    402 	/* must always be at least 1 byte as a null terminator */
    403 	KASSERT(spacelen > namlen);
    404 
    405 	memcpy(dest, src, namlen);
    406 	memset(dest + namlen, '\0', spacelen - namlen);
    407 }
    408 
    409 static __inline LFS_DIRHEADER *
    410 lfs_dirtemplate_dotdot(STRUCT_LFS *fs, union lfs_dirtemplate *dt)
    411 {
    412 	/* XXX blah, be nice to have a way to do this w/o casts */
    413 	if (fs->lfs_is64) {
    414 		return (LFS_DIRHEADER *)&dt->u_64.dotdot_header;
    415 	} else {
    416 		return (LFS_DIRHEADER *)&dt->u_32.dotdot_header;
    417 	}
    418 }
    419 
    420 static __inline char *
    421 lfs_dirtemplate_dotdotname(STRUCT_LFS *fs, union lfs_dirtemplate *dt)
    422 {
    423 	if (fs->lfs_is64) {
    424 		return dt->u_64.dotdot_name;
    425 	} else {
    426 		return dt->u_32.dotdot_name;
    427 	}
    428 }
    429 
    430 /*
    431  * dinodes
    432  */
    433 
    434 /*
    435  * Maximum length of a symlink that can be stored within the inode.
    436  */
    437 #define LFS32_MAXSYMLINKLEN	((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t))
    438 #define LFS64_MAXSYMLINKLEN	((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t))
    439 
    440 #define LFS_MAXSYMLINKLEN(fs) \
    441 	((fs)->lfs_is64 ? LFS64_MAXSYMLINKLEN : LFS32_MAXSYMLINKLEN)
    442 
    443 #define DINOSIZE(fs) ((fs)->lfs_is64 ? sizeof(struct lfs64_dinode) : sizeof(struct lfs32_dinode))
    444 
    445 #define DINO_IN_BLOCK(fs, base, ix) \
    446 	((union lfs_dinode *)((char *)(base) + DINOSIZE(fs) * (ix)))
    447 
    448 static __inline void
    449 lfs_copy_dinode(STRUCT_LFS *fs,
    450     union lfs_dinode *dst, const union lfs_dinode *src)
    451 {
    452 	/*
    453 	 * We can do structure assignment of the structs, but not of
    454 	 * the whole union, as the union is the size of the (larger)
    455 	 * 64-bit struct and on a 32-bit fs the upper half of it might
    456 	 * be off the end of a buffer or otherwise invalid.
    457 	 */
    458 	if (fs->lfs_is64) {
    459 		dst->u_64 = src->u_64;
    460 	} else {
    461 		dst->u_32 = src->u_32;
    462 	}
    463 }
    464 
    465 #define LFS_DEF_DINO_ACCESSOR(type, type32, field) \
    466 	static __inline type				\
    467 	lfs_dino_get##field(STRUCT_LFS *fs, union lfs_dinode *dip) \
    468 	{							\
    469 		if (fs->lfs_is64) {				\
    470 			return LFS_SWAP_##type(fs, dip->u_64.di_##field); \
    471 		} else {					\
    472 			return LFS_SWAP_##type32(fs, dip->u_32.di_##field); \
    473 		}						\
    474 	}							\
    475 	static __inline void				\
    476 	lfs_dino_set##field(STRUCT_LFS *fs, union lfs_dinode *dip, type val) \
    477 	{							\
    478 		if (fs->lfs_is64) {				\
    479 			type *p = &dip->u_64.di_##field;	\
    480 			(void)p;				\
    481 			dip->u_64.di_##field = LFS_SWAP_##type(fs, val); \
    482 		} else {					\
    483 			type32 *p = &dip->u_32.di_##field;	\
    484 			(void)p;				\
    485 			dip->u_32.di_##field = LFS_SWAP_##type32(fs, val); \
    486 		}						\
    487 	}							\
    488 
    489 LFS_DEF_DINO_ACCESSOR(uint16_t, uint16_t, mode)
    490 LFS_DEF_DINO_ACCESSOR(int16_t, int16_t, nlink)
    491 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, inumber)
    492 LFS_DEF_DINO_ACCESSOR(uint64_t, uint64_t, size)
    493 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, atime)
    494 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, atimensec)
    495 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, mtime)
    496 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, mtimensec)
    497 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, ctime)
    498 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, ctimensec)
    499 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, flags)
    500 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, blocks)
    501 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, gen)
    502 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, uid)
    503 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, gid)
    504 
    505 /* XXX this should be done differently (it's a fake field) */
    506 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, rdev)
    507 
    508 static __inline daddr_t
    509 lfs_dino_getdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
    510 {
    511 	KASSERT(ix < ULFS_NDADDR);
    512 	if (fs->lfs_is64) {
    513 		return LFS_SWAP_int64_t(fs, dip->u_64.di_db[ix]);
    514 	} else {
    515 		/* note: this must sign-extend or UNWRITTEN gets trashed */
    516 		return (int32_t)LFS_SWAP_int32_t(fs, dip->u_32.di_db[ix]);
    517 	}
    518 }
    519 
    520 static __inline daddr_t
    521 lfs_dino_getib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
    522 {
    523 	KASSERT(ix < ULFS_NIADDR);
    524 	if (fs->lfs_is64) {
    525 		return LFS_SWAP_int64_t(fs, dip->u_64.di_ib[ix]);
    526 	} else {
    527 		/* note: this must sign-extend or UNWRITTEN gets trashed */
    528 		return (int32_t)LFS_SWAP_int32_t(fs, dip->u_32.di_ib[ix]);
    529 	}
    530 }
    531 
    532 static __inline void
    533 lfs_dino_setdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
    534 {
    535 	KASSERT(ix < ULFS_NDADDR);
    536 	if (fs->lfs_is64) {
    537 		dip->u_64.di_db[ix] = LFS_SWAP_int64_t(fs, val);
    538 	} else {
    539 		dip->u_32.di_db[ix] = LFS_SWAP_uint32_t(fs, val);
    540 	}
    541 }
    542 
    543 static __inline void
    544 lfs_dino_setib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
    545 {
    546 	KASSERT(ix < ULFS_NIADDR);
    547 	if (fs->lfs_is64) {
    548 		dip->u_64.di_ib[ix] = LFS_SWAP_int64_t(fs, val);
    549 	} else {
    550 		dip->u_32.di_ib[ix] = LFS_SWAP_uint32_t(fs, val);
    551 	}
    552 }
    553 
    554 /* birthtime is present only in the 64-bit inode */
    555 static __inline void
    556 lfs_dino_setbirthtime(STRUCT_LFS *fs, union lfs_dinode *dip,
    557     const struct timespec *ts)
    558 {
    559 	if (fs->lfs_is64) {
    560 		dip->u_64.di_birthtime = ts->tv_sec;
    561 		dip->u_64.di_birthnsec = ts->tv_nsec;
    562 	} else {
    563 		/* drop it on the floor */
    564 	}
    565 }
    566 
    567 /*
    568  * indirect blocks
    569  */
    570 
    571 static __inline daddr_t
    572 lfs_iblock_get(STRUCT_LFS *fs, void *block, unsigned ix)
    573 {
    574 	if (fs->lfs_is64) {
    575 		// XXX re-enable these asserts after reorging this file
    576 		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
    577 		return (daddr_t)(((int64_t *)block)[ix]);
    578 	} else {
    579 		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
    580 		/* must sign-extend or UNWRITTEN gets trashed */
    581 		return (daddr_t)(int64_t)(((int32_t *)block)[ix]);
    582 	}
    583 }
    584 
    585 static __inline void
    586 lfs_iblock_set(STRUCT_LFS *fs, void *block, unsigned ix, daddr_t val)
    587 {
    588 	if (fs->lfs_is64) {
    589 		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
    590 		((int64_t *)block)[ix] = val;
    591 	} else {
    592 		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
    593 		((int32_t *)block)[ix] = val;
    594 	}
    595 }
    596 
    597 /*
    598  * "struct buf" associated definitions
    599  */
    600 
    601 # define LFS_LOCK_BUF(bp) do {						\
    602 	if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) {	\
    603 		mutex_enter(&lfs_lock);					\
    604 		++locked_queue_count;					\
    605 		locked_queue_bytes += bp->b_bufsize;			\
    606 		mutex_exit(&lfs_lock);					\
    607 	}								\
    608 	(bp)->b_flags |= B_LOCKED;					\
    609 } while (0)
    610 
    611 # define LFS_UNLOCK_BUF(bp) do {					\
    612 	if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) {	\
    613 		mutex_enter(&lfs_lock);					\
    614 		--locked_queue_count;					\
    615 		locked_queue_bytes -= bp->b_bufsize;			\
    616 		if (locked_queue_count < LFS_WAIT_BUFS &&		\
    617 		    locked_queue_bytes < LFS_WAIT_BYTES)		\
    618 			cv_broadcast(&locked_queue_cv);			\
    619 		mutex_exit(&lfs_lock);					\
    620 	}								\
    621 	(bp)->b_flags &= ~B_LOCKED;					\
    622 } while (0)
    623 
    624 /*
    625  * "struct inode" associated definitions
    626  */
    627 
    628 #define LFS_SET_UINO(ip, states) do {					\
    629 	if (((states) & IN_ACCESSED) && !((ip)->i_state & IN_ACCESSED))	\
    630 		lfs_sb_adduinodes((ip)->i_lfs, 1);			\
    631 	if (((states) & IN_CLEANING) && !((ip)->i_state & IN_CLEANING))	\
    632 		lfs_sb_adduinodes((ip)->i_lfs, 1);			\
    633 	if (((states) & IN_MODIFIED) && !((ip)->i_state & IN_MODIFIED))	\
    634 		lfs_sb_adduinodes((ip)->i_lfs, 1);			\
    635 	(ip)->i_state |= (states);					\
    636 } while (0)
    637 
    638 #define LFS_CLR_UINO(ip, states) do {					\
    639 	if (((states) & IN_ACCESSED) && ((ip)->i_state & IN_ACCESSED))	\
    640 		lfs_sb_subuinodes((ip)->i_lfs, 1);			\
    641 	if (((states) & IN_CLEANING) && ((ip)->i_state & IN_CLEANING))	\
    642 		lfs_sb_subuinodes((ip)->i_lfs, 1);			\
    643 	if (((states) & IN_MODIFIED) && ((ip)->i_state & IN_MODIFIED))	\
    644 		lfs_sb_subuinodes((ip)->i_lfs, 1);			\
    645 	(ip)->i_state &= ~(states);					\
    646 	if (lfs_sb_getuinodes((ip)->i_lfs) < 0) {			\
    647 		panic("lfs_uinodes < 0");				\
    648 	}								\
    649 } while (0)
    650 
    651 #define LFS_ITIMES(ip, acc, mod, cre) \
    652 	while ((ip)->i_state & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \
    653 		lfs_itimes(ip, acc, mod, cre)
    654 
    655 /*
    656  * On-disk and in-memory checkpoint segment usage structure.
    657  */
    658 
    659 #define	SEGUPB(fs)	(lfs_sb_getsepb(fs))
    660 #define	SEGTABSIZE_SU(fs)						\
    661 	((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs))
    662 
    663 #ifdef _KERNEL
    664 # define SHARE_IFLOCK(F) 						\
    665   do {									\
    666 	rw_enter(&(F)->lfs_iflock, RW_READER);				\
    667   } while(0)
    668 # define UNSHARE_IFLOCK(F)						\
    669   do {									\
    670 	rw_exit(&(F)->lfs_iflock);					\
    671   } while(0)
    672 #else /* ! _KERNEL */
    673 # define SHARE_IFLOCK(F)
    674 # define UNSHARE_IFLOCK(F)
    675 #endif /* ! _KERNEL */
    676 
    677 /* Read in the block with a specific segment usage entry from the ifile. */
    678 #define	LFS_SEGENTRY(SP, F, IN, BP) do {				\
    679 	int _e;								\
    680 	SHARE_IFLOCK(F);						\
    681 	VTOI((F)->lfs_ivnode)->i_state |= IN_ACCESS;			\
    682 	if ((_e = bread((F)->lfs_ivnode,				\
    683 	    ((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F),		\
    684 	    lfs_sb_getbsize(F), 0, &(BP))) != 0)			\
    685 		panic("lfs: ifile read: segentry %llu: error %d\n",	\
    686 			 (unsigned long long)(IN), _e);			\
    687 	if (lfs_sb_getversion(F) == 1)					\
    688 		(SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data +		\
    689 			((IN) & (lfs_sb_getsepb(F) - 1)));		\
    690 	else								\
    691 		(SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \
    692 	UNSHARE_IFLOCK(F);						\
    693 } while (0)
    694 
    695 #define LFS_WRITESEGENTRY(SP, F, IN, BP) do {				\
    696 	if ((SP)->su_nbytes == 0)					\
    697 		(SP)->su_flags |= SEGUSE_EMPTY;				\
    698 	else								\
    699 		(SP)->su_flags &= ~SEGUSE_EMPTY;			\
    700 	(F)->lfs_suflags[(F)->lfs_activesb][(IN)] = (SP)->su_flags;	\
    701 	LFS_BWRITE_LOG(BP);						\
    702 } while (0)
    703 
    704 /*
    705  * FINFO (file info) entries.
    706  */
    707 
    708 /* Size of an on-disk block pointer, e.g. in an indirect block. */
    709 /* XXX: move to a more suitable location in this file */
    710 #define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
    711 
    712 /* Size of an on-disk inode number. */
    713 /* XXX: move to a more suitable location in this file */
    714 #define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
    715 
    716 /* size of a FINFO, without the block pointers */
    717 #define	FINFOSIZE(fs)	((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32))
    718 
    719 /* Full size of the provided FINFO record, including its block pointers. */
    720 #define FINFO_FULLSIZE(fs, fip) \
    721 	(FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs))
    722 
    723 #define NEXT_FINFO(fs, fip) \
    724 	((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip)))
    725 
    726 #define LFS_DEF_FI_ACCESSOR(type, type32, field) \
    727 	static __inline type				\
    728 	lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip)		\
    729 	{							\
    730 		if (fs->lfs_is64) {				\
    731 			return fip->u_64.fi_##field; 		\
    732 		} else {					\
    733 			return fip->u_32.fi_##field; 		\
    734 		}						\
    735 	}							\
    736 	static __inline void				\
    737 	lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \
    738 	{							\
    739 		if (fs->lfs_is64) {				\
    740 			type *p = &fip->u_64.fi_##field;	\
    741 			(void)p;				\
    742 			fip->u_64.fi_##field = val;		\
    743 		} else {					\
    744 			type32 *p = &fip->u_32.fi_##field;	\
    745 			(void)p;				\
    746 			fip->u_32.fi_##field = val;		\
    747 		}						\
    748 	}							\
    749 
    750 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks)
    751 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version)
    752 LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino)
    753 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength)
    754 
    755 static __inline daddr_t
    756 lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned idx)
    757 {
    758 	void *firstblock;
    759 
    760 	firstblock = (char *)fip + FINFOSIZE(fs);
    761 	KASSERT(idx < lfs_fi_getnblocks(fs, fip));
    762 	if (fs->lfs_is64) {
    763 		return ((int64_t *)firstblock)[idx];
    764 	} else {
    765 		return ((int32_t *)firstblock)[idx];
    766 	}
    767 }
    768 
    769 static __inline void
    770 lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned idx, daddr_t blk)
    771 {
    772 	void *firstblock;
    773 
    774 	firstblock = (char *)fip + FINFOSIZE(fs);
    775 	KASSERT(idx < lfs_fi_getnblocks(fs, fip));
    776 	if (fs->lfs_is64) {
    777 		((int64_t *)firstblock)[idx] = blk;
    778 	} else {
    779 		((int32_t *)firstblock)[idx] = blk;
    780 	}
    781 }
    782 
    783 /*
    784  * inode info entries (in the segment summary)
    785  */
    786 
    787 #define IINFOSIZE(fs)	((fs)->lfs_is64 ? sizeof(IINFO64) : sizeof(IINFO32))
    788 
    789 /* iinfos scroll backward from the end of the segment summary block */
    790 #define SEGSUM_IINFOSTART(fs, buf) \
    791 	((IINFO *)((char *)buf + lfs_sb_getsumsize(fs) - IINFOSIZE(fs)))
    792 
    793 #define NEXTLOWER_IINFO(fs, iip) \
    794 	((IINFO *)((char *)(iip) - IINFOSIZE(fs)))
    795 
    796 #define NTH_IINFO(fs, buf, n) \
    797 	((IINFO *)((char *)SEGSUM_IINFOSTART(fs, buf) - (n)*IINFOSIZE(fs)))
    798 
    799 static __inline uint64_t
    800 lfs_ii_getblock(STRUCT_LFS *fs, IINFO *iip)
    801 {
    802 	if (fs->lfs_is64) {
    803 		return iip->u_64.ii_block;
    804 	} else {
    805 		return iip->u_32.ii_block;
    806 	}
    807 }
    808 
    809 static __inline void
    810 lfs_ii_setblock(STRUCT_LFS *fs, IINFO *iip, uint64_t block)
    811 {
    812 	if (fs->lfs_is64) {
    813 		iip->u_64.ii_block = block;
    814 	} else {
    815 		iip->u_32.ii_block = block;
    816 	}
    817 }
    818 
    819 /*
    820  * Index file inode entries.
    821  */
    822 
    823 #define IFILE_ENTRYSIZE(fs) \
    824 	((fs)->lfs_is64 ? sizeof(IFILE64) : sizeof(IFILE32))
    825 
    826 /*
    827  * LFSv1 compatibility code is not allowed to touch if_atime, since it
    828  * may not be mapped!
    829  */
    830 /* Read in the block with a specific inode from the ifile. */
    831 #define	LFS_IENTRY(IP, F, IN, BP) do {					\
    832 	int _e;								\
    833 	SHARE_IFLOCK(F);						\
    834 	VTOI((F)->lfs_ivnode)->i_state |= IN_ACCESS;			\
    835 	if ((_e = bread((F)->lfs_ivnode,				\
    836 	(IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \
    837 	lfs_sb_getbsize(F), 0, &(BP))) != 0)				\
    838 		panic("lfs: ifile ino %d read %d", (int)(IN), _e);	\
    839 	if ((F)->lfs_is64) {						\
    840 		(IP) = (IFILE *)((IFILE64 *)(BP)->b_data +		\
    841 				 (IN) % lfs_sb_getifpb(F));		\
    842 	} else if (lfs_sb_getversion(F) > 1) {				\
    843 		(IP) = (IFILE *)((IFILE32 *)(BP)->b_data +		\
    844 				(IN) % lfs_sb_getifpb(F)); 		\
    845 	} else {							\
    846 		(IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data +		\
    847 				 (IN) % lfs_sb_getifpb(F));		\
    848 	}								\
    849 	UNSHARE_IFLOCK(F);						\
    850 } while (0)
    851 #define LFS_IENTRY_NEXT(IP, F) do { \
    852 	if ((F)->lfs_is64) {						\
    853 		(IP) = (IFILE *)((IFILE64 *)(IP) + 1);			\
    854 	} else if (lfs_sb_getversion(F) > 1) {				\
    855 		(IP) = (IFILE *)((IFILE32 *)(IP) + 1);			\
    856 	} else {							\
    857 		(IP) = (IFILE *)((IFILE_V1 *)(IP) + 1);			\
    858 	}								\
    859 } while (0)
    860 
    861 #define LFS_DEF_IF_ACCESSOR(type, type32, field) \
    862 	static __inline type				\
    863 	lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp)		\
    864 	{							\
    865 		if (fs->lfs_is64) {				\
    866 			return ifp->u_64.if_##field; 		\
    867 		} else {					\
    868 			return ifp->u_32.if_##field; 		\
    869 		}						\
    870 	}							\
    871 	static __inline void				\
    872 	lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \
    873 	{							\
    874 		if (fs->lfs_is64) {				\
    875 			type *p = &ifp->u_64.if_##field;	\
    876 			(void)p;				\
    877 			ifp->u_64.if_##field = val;		\
    878 		} else {					\
    879 			type32 *p = &ifp->u_32.if_##field;	\
    880 			(void)p;				\
    881 			ifp->u_32.if_##field = val;		\
    882 		}						\
    883 	}							\
    884 
    885 LFS_DEF_IF_ACCESSOR(uint32_t, uint32_t, version)
    886 LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr)
    887 LFS_DEF_IF_ACCESSOR(uint64_t, uint32_t, nextfree)
    888 LFS_DEF_IF_ACCESSOR(uint64_t, uint32_t, atime_sec)
    889 LFS_DEF_IF_ACCESSOR(uint32_t, uint32_t, atime_nsec)
    890 
    891 /*
    892  * Cleaner information structure.  This resides in the ifile and is used
    893  * to pass information from the kernel to the cleaner.
    894  */
    895 
    896 #define	CLEANSIZE_SU(fs)						\
    897 	((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \
    898 		lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs))
    899 
    900 #define LFS_DEF_CI_ACCESSOR(type, type32, field) \
    901 	static __inline type				\
    902 	lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip)	\
    903 	{							\
    904 		if (fs->lfs_is64) {				\
    905 			return cip->u_64.field; 		\
    906 		} else {					\
    907 			return cip->u_32.field; 		\
    908 		}						\
    909 	}							\
    910 	static __inline void				\
    911 	lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \
    912 	{							\
    913 		if (fs->lfs_is64) {				\
    914 			type *p = &cip->u_64.field;		\
    915 			(void)p;				\
    916 			cip->u_64.field = val;			\
    917 		} else {					\
    918 			type32 *p = &cip->u_32.field;		\
    919 			(void)p;				\
    920 			cip->u_32.field = val;			\
    921 		}						\
    922 	}							\
    923 
    924 LFS_DEF_CI_ACCESSOR(uint32_t, uint32_t, clean)
    925 LFS_DEF_CI_ACCESSOR(uint32_t, uint32_t, dirty)
    926 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree)
    927 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail)
    928 LFS_DEF_CI_ACCESSOR(uint64_t, uint32_t, free_head)
    929 LFS_DEF_CI_ACCESSOR(uint64_t, uint32_t, free_tail)
    930 LFS_DEF_CI_ACCESSOR(uint32_t, uint32_t, flags)
    931 
    932 static __inline void
    933 lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
    934 {
    935 	lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num);
    936 	lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num);
    937 }
    938 
    939 static __inline void
    940 lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
    941 {
    942 	lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num);
    943 	lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num);
    944 }
    945 
    946 /* Read in the block with the cleaner info from the ifile. */
    947 #define LFS_CLEANERINFO(CP, F, BP) do {					\
    948 	int _e;								\
    949 	SHARE_IFLOCK(F);						\
    950 	VTOI((F)->lfs_ivnode)->i_state |= IN_ACCESS;			\
    951 	_e = bread((F)->lfs_ivnode,					\
    952 	    (daddr_t)0, lfs_sb_getbsize(F), 0, &(BP));			\
    953 	if (_e)								\
    954 		panic("lfs: ifile read: cleanerinfo: error %d\n", _e);	\
    955 	(CP) = (CLEANERINFO *)(BP)->b_data;				\
    956 	UNSHARE_IFLOCK(F);						\
    957 } while (0)
    958 
    959 /*
    960  * Synchronize the Ifile cleaner info with current avail and bfree.
    961  */
    962 #define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do {		 	\
    963     mutex_enter(&lfs_lock);						\
    964     if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) ||	\
    965 	lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \
    966 	fs->lfs_favail) {	 					\
    967 	lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs));		 	\
    968 	lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail -	\
    969 		fs->lfs_favail);				 	\
    970 	if (((bp)->b_flags & B_GATHERED) == 0) {		 	\
    971 		fs->lfs_flags |= LFS_IFDIRTY;				\
    972 	}								\
    973 	mutex_exit(&lfs_lock);						\
    974 	(void) LFS_BWRITE_LOG(bp); /* Ifile */			 	\
    975     } else {							 	\
    976 	mutex_exit(&lfs_lock);						\
    977 	brelse(bp, 0);						 	\
    978     }									\
    979 } while (0)
    980 
    981 /*
    982  * Get the head of the inode free list.
    983  * Always called with the segment lock held.
    984  */
    985 #define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do {			\
    986 	if (lfs_sb_getversion(FS) > 1) {				\
    987 		LFS_CLEANERINFO((CIP), (FS), (BP));			\
    988 		lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP));	\
    989 		brelse(BP, 0);						\
    990 	}								\
    991 	*(FREEP) = lfs_sb_getfreehd(FS);				\
    992 } while (0)
    993 
    994 #define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do {				\
    995 	lfs_sb_setfreehd(FS, VAL);					\
    996 	if (lfs_sb_getversion(FS) > 1) {				\
    997 		LFS_CLEANERINFO((CIP), (FS), (BP));			\
    998 		lfs_ci_setfree_head(FS, CIP, VAL);			\
    999 		if ((VAL) == LFS_UNUSED_INUM)				\
   1000 			lfs_ci_setfree_tail(FS, CIP, VAL);		\
   1001 		LFS_BWRITE_LOG(BP);					\
   1002 		mutex_enter(&lfs_lock);					\
   1003 		(FS)->lfs_flags |= LFS_IFDIRTY;				\
   1004 		mutex_exit(&lfs_lock);					\
   1005 	}								\
   1006 } while (0)
   1007 
   1008 #define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do {			\
   1009 	LFS_CLEANERINFO((CIP), (FS), (BP));				\
   1010 	*(FREEP) = lfs_ci_getfree_tail(FS, CIP);			\
   1011 	brelse(BP, 0);							\
   1012 } while (0)
   1013 
   1014 #define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do {				\
   1015 	LFS_CLEANERINFO((CIP), (FS), (BP));				\
   1016 	lfs_ci_setfree_tail(FS, CIP, VAL);				\
   1017 	if ((VAL) == LFS_UNUSED_INUM)					\
   1018 		lfs_ci_setfree_head(FS, CIP, VAL);			\
   1019 	LFS_BWRITE_LOG(BP);						\
   1020 	mutex_enter(&lfs_lock);						\
   1021 	(FS)->lfs_flags |= LFS_IFDIRTY;					\
   1022 	mutex_exit(&lfs_lock);						\
   1023 } while (0)
   1024 
   1025 /*
   1026  * On-disk segment summary information
   1027  */
   1028 
   1029 #define SEGSUM_SIZE(fs) \
   1030 	(fs->lfs_is64 ? sizeof(SEGSUM64) : \
   1031 	 lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1))
   1032 
   1033 /*
   1034  * The SEGSUM structure is followed by FINFO structures. Get the pointer
   1035  * to the first FINFO.
   1036  *
   1037  * XXX this can't be a macro yet; this file needs to be resorted.
   1038  */
   1039 #if 0
   1040 static __inline FINFO *
   1041 segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp)
   1042 {
   1043 	return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs));
   1044 }
   1045 #else
   1046 #define SEGSUM_FINFOBASE(fs, ssp) \
   1047 	((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs)));
   1048 #endif
   1049 
   1050 #define LFS_DEF_SS_ACCESSOR(type, type32, field) \
   1051 	static __inline type				\
   1052 	lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp)		\
   1053 	{							\
   1054 		if (fs->lfs_is64) {				\
   1055 			return ssp->u_64.ss_##field; 		\
   1056 		} else {					\
   1057 			return ssp->u_32.ss_##field; 		\
   1058 		}						\
   1059 	}							\
   1060 	static __inline void				\
   1061 	lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \
   1062 	{							\
   1063 		if (fs->lfs_is64) {				\
   1064 			type *p = &ssp->u_64.ss_##field;	\
   1065 			(void)p;				\
   1066 			ssp->u_64.ss_##field = val;		\
   1067 		} else {					\
   1068 			type32 *p = &ssp->u_32.ss_##field;	\
   1069 			(void)p;				\
   1070 			ssp->u_32.ss_##field = val;		\
   1071 		}						\
   1072 	}							\
   1073 
   1074 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum)
   1075 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum)
   1076 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic)
   1077 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident)
   1078 LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next)
   1079 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo)
   1080 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos)
   1081 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags)
   1082 LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino)
   1083 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial)
   1084 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create)
   1085 
   1086 static __inline size_t
   1087 lfs_ss_getsumstart(STRUCT_LFS *fs)
   1088 {
   1089 	/* These are actually all the same. */
   1090 	if (fs->lfs_is64) {
   1091 		return offsetof(SEGSUM64, ss_datasum);
   1092 	} else /* if (lfs_sb_getversion(fs) > 1) */ {
   1093 		return offsetof(SEGSUM32, ss_datasum);
   1094 	} /* else {
   1095 		return offsetof(SEGSUM_V1, ss_datasum);
   1096 	} */
   1097 	/*
   1098 	 * XXX ^^^ until this file is resorted lfs_sb_getversion isn't
   1099 	 * defined yet.
   1100 	 */
   1101 }
   1102 
   1103 static __inline uint32_t
   1104 lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp)
   1105 {
   1106 	KASSERT(fs->lfs_is64 == 0);
   1107 	/* XXX need to resort this file before we can do this */
   1108 	//KASSERT(lfs_sb_getversion(fs) == 1);
   1109 
   1110 	return ssp->u_v1.ss_create;
   1111 }
   1112 
   1113 static __inline void
   1114 lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val)
   1115 {
   1116 	KASSERT(fs->lfs_is64 == 0);
   1117 	/* XXX need to resort this file before we can do this */
   1118 	//KASSERT(lfs_sb_getversion(fs) == 1);
   1119 
   1120 	ssp->u_v1.ss_create = val;
   1121 }
   1122 
   1123 
   1124 /*
   1125  * Super block.
   1126  */
   1127 
   1128 /*
   1129  * Generate accessors for the on-disk superblock fields with cpp.
   1130  */
   1131 
   1132 #define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \
   1133 	static __inline type				\
   1134 	lfs_sb_get##field(STRUCT_LFS *fs)			\
   1135 	{							\
   1136 		if (fs->lfs_is64) {				\
   1137 			return fs->lfs_dlfs_u.u_64.dlfs_##field; \
   1138 		} else {					\
   1139 			return fs->lfs_dlfs_u.u_32.dlfs_##field; \
   1140 		}						\
   1141 	}							\
   1142 	static __inline void				\
   1143 	lfs_sb_set##field(STRUCT_LFS *fs, type val)		\
   1144 	{							\
   1145 		if (fs->lfs_is64) {				\
   1146 			fs->lfs_dlfs_u.u_64.dlfs_##field = val;	\
   1147 		} else {					\
   1148 			fs->lfs_dlfs_u.u_32.dlfs_##field = val;	\
   1149 		}						\
   1150 	}							\
   1151 	static __inline void				\
   1152 	lfs_sb_add##field(STRUCT_LFS *fs, type val)		\
   1153 	{							\
   1154 		if (fs->lfs_is64) {				\
   1155 			type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
   1156 			*p64 += val;				\
   1157 		} else {					\
   1158 			type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
   1159 			*p32 += val;				\
   1160 		}						\
   1161 	}							\
   1162 	static __inline void				\
   1163 	lfs_sb_sub##field(STRUCT_LFS *fs, type val)		\
   1164 	{							\
   1165 		if (fs->lfs_is64) {				\
   1166 			type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
   1167 			*p64 -= val;				\
   1168 		} else {					\
   1169 			type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
   1170 			*p32 -= val;				\
   1171 		}						\
   1172 	}
   1173 
   1174 #define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f)
   1175 
   1176 #define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \
   1177 	static __inline type				\
   1178 	lfs_sb_get##field(STRUCT_LFS *fs)			\
   1179 	{							\
   1180 		if (fs->lfs_is64) {				\
   1181 			return val64;				\
   1182 		} else {					\
   1183 			return fs->lfs_dlfs_u.u_32.dlfs_##field; \
   1184 		}						\
   1185 	}
   1186 
   1187 LFS_DEF_SB_ACCESSOR(uint32_t, version)
   1188 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, size)
   1189 LFS_DEF_SB_ACCESSOR(uint32_t, ssize)
   1190 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, dsize)
   1191 LFS_DEF_SB_ACCESSOR(uint32_t, bsize)
   1192 LFS_DEF_SB_ACCESSOR(uint32_t, fsize)
   1193 LFS_DEF_SB_ACCESSOR(uint32_t, frag)
   1194 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, freehd)
   1195 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree)
   1196 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, nfiles)
   1197 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail)
   1198 LFS_DEF_SB_ACCESSOR(int32_t, uinodes)
   1199 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr)
   1200 LFS_DEF_SB_ACCESSOR_32ONLY(uint32_t, ifile, LFS_IFILE_INUM)
   1201 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg)
   1202 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg)
   1203 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg)
   1204 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset)
   1205 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg)
   1206 LFS_DEF_SB_ACCESSOR(uint32_t, inopf)
   1207 LFS_DEF_SB_ACCESSOR(uint32_t, minfree)
   1208 LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize)
   1209 LFS_DEF_SB_ACCESSOR(uint32_t, fsbpseg)
   1210 LFS_DEF_SB_ACCESSOR(uint32_t, inopb)
   1211 LFS_DEF_SB_ACCESSOR(uint32_t, ifpb)
   1212 LFS_DEF_SB_ACCESSOR(uint32_t, sepb)
   1213 LFS_DEF_SB_ACCESSOR(uint32_t, nindir)
   1214 LFS_DEF_SB_ACCESSOR(uint32_t, nseg)
   1215 LFS_DEF_SB_ACCESSOR(uint32_t, nspf)
   1216 LFS_DEF_SB_ACCESSOR(uint32_t, cleansz)
   1217 LFS_DEF_SB_ACCESSOR(uint32_t, segtabsz)
   1218 LFS_DEF_SB_ACCESSOR_32ONLY(uint32_t, segmask, 0)
   1219 LFS_DEF_SB_ACCESSOR_32ONLY(uint32_t, segshift, 0)
   1220 LFS_DEF_SB_ACCESSOR(uint64_t, bmask)
   1221 LFS_DEF_SB_ACCESSOR(uint32_t, bshift)
   1222 LFS_DEF_SB_ACCESSOR(uint64_t, ffmask)
   1223 LFS_DEF_SB_ACCESSOR(uint32_t, ffshift)
   1224 LFS_DEF_SB_ACCESSOR(uint64_t, fbmask)
   1225 LFS_DEF_SB_ACCESSOR(uint32_t, fbshift)
   1226 LFS_DEF_SB_ACCESSOR(uint32_t, blktodb)
   1227 LFS_DEF_SB_ACCESSOR(uint32_t, fsbtodb)
   1228 LFS_DEF_SB_ACCESSOR(uint32_t, sushift)
   1229 LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen)
   1230 LFS_DEF_SB_ACCESSOR(uint32_t, cksum)
   1231 LFS_DEF_SB_ACCESSOR(uint16_t, pflags)
   1232 LFS_DEF_SB_ACCESSOR(uint32_t, nclean)
   1233 LFS_DEF_SB_ACCESSOR(int32_t, dmeta)
   1234 LFS_DEF_SB_ACCESSOR(uint32_t, minfreeseg)
   1235 LFS_DEF_SB_ACCESSOR(uint32_t, sumsize)
   1236 LFS_DEF_SB_ACCESSOR(uint64_t, serial)
   1237 LFS_DEF_SB_ACCESSOR(uint32_t, ibsize)
   1238 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr)
   1239 LFS_DEF_SB_ACCESSOR(uint64_t, tstamp)
   1240 LFS_DEF_SB_ACCESSOR(uint32_t, inodefmt)
   1241 LFS_DEF_SB_ACCESSOR(uint32_t, interleave)
   1242 LFS_DEF_SB_ACCESSOR(uint32_t, ident)
   1243 LFS_DEF_SB_ACCESSOR(uint32_t, resvseg)
   1244 
   1245 /* special-case accessors */
   1246 
   1247 /*
   1248  * the v1 otstamp field lives in what's now dlfs_inopf
   1249  */
   1250 #define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs)
   1251 #define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val)
   1252 
   1253 /*
   1254  * lfs_sboffs is an array
   1255  */
   1256 static __inline int32_t
   1257 lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n)
   1258 {
   1259 #ifdef KASSERT /* ugh */
   1260 	KASSERT(n < LFS_MAXNUMSB);
   1261 #endif
   1262 	if (fs->lfs_is64) {
   1263 		return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n];
   1264 	} else {
   1265 		return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n];
   1266 	}
   1267 }
   1268 static __inline void
   1269 lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val)
   1270 {
   1271 #ifdef KASSERT /* ugh */
   1272 	KASSERT(n < LFS_MAXNUMSB);
   1273 #endif
   1274 	if (fs->lfs_is64) {
   1275 		fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val;
   1276 	} else {
   1277 		fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val;
   1278 	}
   1279 }
   1280 
   1281 /*
   1282  * lfs_fsmnt is a string
   1283  */
   1284 static __inline const char *
   1285 lfs_sb_getfsmnt(STRUCT_LFS *fs)
   1286 {
   1287 	if (fs->lfs_is64) {
   1288 		return (const char *)fs->lfs_dlfs_u.u_64.dlfs_fsmnt;
   1289 	} else {
   1290 		return (const char *)fs->lfs_dlfs_u.u_32.dlfs_fsmnt;
   1291 	}
   1292 }
   1293 
   1294 static __inline void
   1295 lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str)
   1296 {
   1297 	if (fs->lfs_is64) {
   1298 		(void)strncpy((char *)fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str,
   1299 			sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt));
   1300 	} else {
   1301 		(void)strncpy((char *)fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str,
   1302 			sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt));
   1303 	}
   1304 }
   1305 
   1306 /* Highest addressable fsb */
   1307 #define LFS_MAX_DADDR(fs) \
   1308 	((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff)
   1309 
   1310 /* LFS_NINDIR is the number of indirects in a file system block. */
   1311 #define	LFS_NINDIR(fs)	(lfs_sb_getnindir(fs))
   1312 
   1313 /* LFS_INOPB is the number of inodes in a secondary storage block. */
   1314 #define	LFS_INOPB(fs)	(lfs_sb_getinopb(fs))
   1315 /* LFS_INOPF is the number of inodes in a fragment. */
   1316 #define LFS_INOPF(fs)	(lfs_sb_getinopf(fs))
   1317 
   1318 #define	lfs_blkoff(fs, loc)	((int)((loc) & lfs_sb_getbmask(fs)))
   1319 #define lfs_fragoff(fs, loc)    /* calculates (loc % fs->lfs_fsize) */ \
   1320     ((int)((loc) & lfs_sb_getffmask(fs)))
   1321 
   1322 /* XXX: lowercase these as they're no longer macros */
   1323 /* Frags to diskblocks */
   1324 static __inline uint64_t
   1325 LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b)
   1326 {
   1327 #if defined(_KERNEL)
   1328 	return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT);
   1329 #else
   1330 	return b << lfs_sb_getfsbtodb(fs);
   1331 #endif
   1332 }
   1333 /* Diskblocks to frags */
   1334 static __inline uint64_t
   1335 LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b)
   1336 {
   1337 #if defined(_KERNEL)
   1338 	return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT);
   1339 #else
   1340 	return b >> lfs_sb_getfsbtodb(fs);
   1341 #endif
   1342 }
   1343 
   1344 #define	lfs_lblkno(fs, loc)	((loc) >> lfs_sb_getbshift(fs))
   1345 #define	lfs_lblktosize(fs, blk)	((blk) << lfs_sb_getbshift(fs))
   1346 
   1347 /* Frags to bytes */
   1348 static __inline uint64_t
   1349 lfs_fsbtob(STRUCT_LFS *fs, uint64_t b)
   1350 {
   1351 	return b << lfs_sb_getffshift(fs);
   1352 }
   1353 /* Bytes to frags */
   1354 static __inline uint64_t
   1355 lfs_btofsb(STRUCT_LFS *fs, uint64_t b)
   1356 {
   1357 	return b >> lfs_sb_getffshift(fs);
   1358 }
   1359 
   1360 #define lfs_numfrags(fs, loc)	/* calculates (loc / fs->lfs_fsize) */	\
   1361 	((loc) >> lfs_sb_getffshift(fs))
   1362 #define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \
   1363 	((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs))))
   1364 #define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \
   1365 	((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs))))
   1366 #define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \
   1367 	((frags) >> lfs_sb_getfbshift(fs))
   1368 #define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \
   1369 	((blks) << lfs_sb_getfbshift(fs))
   1370 #define lfs_fragnum(fs, fsb)	/* calculates (fsb % fs->lfs_frag) */	\
   1371 	((fsb) & ((fs)->lfs_frag - 1))
   1372 #define lfs_blknum(fs, fsb)	/* calculates rounddown(fsb, fs->lfs_frag) */ \
   1373 	((fsb) &~ ((fs)->lfs_frag - 1))
   1374 #define lfs_dblksize(fs, dp, lbn) \
   1375 	(((lbn) >= ULFS_NDADDR || lfs_dino_getsize(fs, dp) >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \
   1376 	    ? lfs_sb_getbsize(fs) \
   1377 	    : (lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, dp)))))
   1378 
   1379 #define	lfs_segsize(fs)	(lfs_sb_getversion(fs) == 1 ?	     		\
   1380 			   lfs_lblktosize((fs), lfs_sb_getssize(fs)) :	\
   1381 			   lfs_sb_getssize(fs))
   1382 /* XXX segtod produces a result in frags despite the 'd' */
   1383 #define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg))
   1384 #define	lfs_dtosn(fs, daddr)	/* block address to segment number */	\
   1385 	((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1)))
   1386 #define lfs_sntod(fs, sn)	/* segment number to disk address */	\
   1387 	((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs)))
   1388 
   1389 /* XXX, blah. make this appear only if struct inode is defined */
   1390 #ifdef _UFS_LFS_LFS_INODE_H_
   1391 static __inline uint32_t
   1392 lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn)
   1393 {
   1394 	if (lbn >= ULFS_NDADDR || lfs_dino_getsize(fs, ip->i_din) >= (lbn + 1) << lfs_sb_getbshift(fs)) {
   1395 		return lfs_sb_getbsize(fs);
   1396 	} else {
   1397 		return lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, ip->i_din)));
   1398 	}
   1399 }
   1400 #endif
   1401 
   1402 /*
   1403  * union lfs_blocks
   1404  */
   1405 
   1406 static __inline void
   1407 lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p)
   1408 {
   1409 	if (fs->lfs_is64) {
   1410 		bp->b64 = p;
   1411 	} else {
   1412 		bp->b32 = p;
   1413 	}
   1414 }
   1415 
   1416 static __inline void
   1417 lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip)
   1418 {
   1419 	void *firstblock;
   1420 
   1421 	firstblock = (char *)fip + FINFOSIZE(fs);
   1422 	if (fs->lfs_is64) {
   1423 		bp->b64 = (int64_t *)firstblock;
   1424 	}  else {
   1425 		bp->b32 = (int32_t *)firstblock;
   1426 	}
   1427 }
   1428 
   1429 static __inline daddr_t
   1430 lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned idx)
   1431 {
   1432 	if (fs->lfs_is64) {
   1433 		return bp->b64[idx];
   1434 	} else {
   1435 		return bp->b32[idx];
   1436 	}
   1437 }
   1438 
   1439 static __inline void
   1440 lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned idx, daddr_t val)
   1441 {
   1442 	if (fs->lfs_is64) {
   1443 		bp->b64[idx] = val;
   1444 	} else {
   1445 		bp->b32[idx] = val;
   1446 	}
   1447 }
   1448 
   1449 static __inline void
   1450 lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp)
   1451 {
   1452 	if (fs->lfs_is64) {
   1453 		bp->b64++;
   1454 	} else {
   1455 		bp->b32++;
   1456 	}
   1457 }
   1458 
   1459 static __inline int
   1460 lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
   1461 {
   1462 	if (fs->lfs_is64) {
   1463 		return bp1->b64 == bp2->b64;
   1464 	} else {
   1465 		return bp1->b32 == bp2->b32;
   1466 	}
   1467 }
   1468 
   1469 static __inline int
   1470 lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
   1471 {
   1472 	/* (remember that the pointers are typed) */
   1473 	if (fs->lfs_is64) {
   1474 		return bp1->b64 - bp2->b64;
   1475 	} else {
   1476 		return bp1->b32 - bp2->b32;
   1477 	}
   1478 }
   1479 
   1480 /*
   1481  * struct segment
   1482  */
   1483 
   1484 
   1485 /*
   1486  * Macros for determining free space on the disk, with the variable metadata
   1487  * of segment summaries and inode blocks taken into account.
   1488  */
   1489 /*
   1490  * Estimate number of clean blocks not available for writing because
   1491  * they will contain metadata or overhead.  This is calculated as
   1492  *
   1493  *		E = ((C * M / D) * D + (0) * (T - D)) / T
   1494  * or more simply
   1495  *		E = (C * M) / T
   1496  *
   1497  * where
   1498  * C is the clean space,
   1499  * D is the dirty space,
   1500  * M is the dirty metadata, and
   1501  * T = C + D is the total space on disk.
   1502  *
   1503  * This approximates the old formula of E = C * M / D when D is close to T,
   1504  * but avoids falsely reporting "disk full" when the sample size (D) is small.
   1505  */
   1506 #define LFS_EST_CMETA(F) ((						\
   1507 	(lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) / 		\
   1508 	(lfs_sb_getnseg(F))))
   1509 
   1510 /* Estimate total size of the disk not including metadata */
   1511 #define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F))
   1512 
   1513 /* Estimate number of blocks actually available for writing */
   1514 #define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ?	     \
   1515 			  lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0)
   1516 
   1517 /* Amount of non-meta space not available to mortal man */
   1518 #define LFS_EST_RSVD(F) ((LFS_EST_NONMETA(F) *			     \
   1519 				   (uint64_t)lfs_sb_getminfree(F)) /	     \
   1520 				  100)
   1521 
   1522 /* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */
   1523 #define ISSPACE(F, BB, C)						\
   1524 	((((C) == NOCRED || kauth_cred_geteuid(C) == 0) &&		\
   1525 	  LFS_EST_BFREE(F) >= (BB)) ||					\
   1526 	 (kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB)))
   1527 
   1528 /* Can an ordinary user write BB blocks */
   1529 #define IS_FREESPACE(F, BB)						\
   1530 	  (LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F))
   1531 
   1532 /*
   1533  * The minimum number of blocks to create a new inode.  This is:
   1534  * directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) +
   1535  * ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks.
   1536  */
   1537 #define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F)))
   1538 
   1539 
   1540 /*
   1541  * Suppress spurious clang warnings
   1542  */
   1543 #ifdef __GNUC__
   1544 #if defined(__clang__)
   1545 #pragma clang diagnostic pop
   1546 #elif __GNUC_PREREQ__(9,0)
   1547 #pragma GCC diagnostic pop
   1548 #endif
   1549 #endif
   1550 
   1551 
   1552 #endif /* _UFS_LFS_LFS_ACCESSORS_H_ */
   1553