1 /* $NetBSD: lfs_accessors.h,v 1.54 2025/11/04 00:50:36 perseant Exp $ */ 2 3 /* from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp */ 4 /* from NetBSD: dinode.h,v 1.25 2016/01/22 23:06:10 dholland Exp */ 5 /* from NetBSD: dir.h,v 1.25 2015/09/01 06:16:03 dholland Exp */ 6 7 /*- 8 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc. 9 * All rights reserved. 10 * 11 * This code is derived from software contributed to The NetBSD Foundation 12 * by Konrad E. Schroder <perseant (at) hhhh.org>. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 33 * POSSIBILITY OF SUCH DAMAGE. 34 */ 35 /*- 36 * Copyright (c) 1991, 1993 37 * The Regents of the University of California. All rights reserved. 38 * 39 * Redistribution and use in source and binary forms, with or without 40 * modification, are permitted provided that the following conditions 41 * are met: 42 * 1. Redistributions of source code must retain the above copyright 43 * notice, this list of conditions and the following disclaimer. 44 * 2. Redistributions in binary form must reproduce the above copyright 45 * notice, this list of conditions and the following disclaimer in the 46 * documentation and/or other materials provided with the distribution. 47 * 3. Neither the name of the University nor the names of its contributors 48 * may be used to endorse or promote products derived from this software 49 * without specific prior written permission. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 61 * SUCH DAMAGE. 62 * 63 * @(#)lfs.h 8.9 (Berkeley) 5/8/95 64 */ 65 /* 66 * Copyright (c) 2002 Networks Associates Technology, Inc. 67 * All rights reserved. 68 * 69 * This software was developed for the FreeBSD Project by Marshall 70 * Kirk McKusick and Network Associates Laboratories, the Security 71 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 72 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 73 * research program 74 * 75 * Copyright (c) 1982, 1989, 1993 76 * The Regents of the University of California. All rights reserved. 77 * (c) UNIX System Laboratories, Inc. 78 * All or some portions of this file are derived from material licensed 79 * to the University of California by American Telephone and Telegraph 80 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 81 * the permission of UNIX System Laboratories, Inc. 82 * 83 * Redistribution and use in source and binary forms, with or without 84 * modification, are permitted provided that the following conditions 85 * are met: 86 * 1. Redistributions of source code must retain the above copyright 87 * notice, this list of conditions and the following disclaimer. 88 * 2. Redistributions in binary form must reproduce the above copyright 89 * notice, this list of conditions and the following disclaimer in the 90 * documentation and/or other materials provided with the distribution. 91 * 3. Neither the name of the University nor the names of its contributors 92 * may be used to endorse or promote products derived from this software 93 * without specific prior written permission. 94 * 95 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 96 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 97 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 98 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 99 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 100 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 101 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 102 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 103 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 104 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 105 * SUCH DAMAGE. 106 * 107 * @(#)dinode.h 8.9 (Berkeley) 3/29/95 108 */ 109 /* 110 * Copyright (c) 1982, 1986, 1989, 1993 111 * The Regents of the University of California. All rights reserved. 112 * (c) UNIX System Laboratories, Inc. 113 * All or some portions of this file are derived from material licensed 114 * to the University of California by American Telephone and Telegraph 115 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 116 * the permission of UNIX System Laboratories, Inc. 117 * 118 * Redistribution and use in source and binary forms, with or without 119 * modification, are permitted provided that the following conditions 120 * are met: 121 * 1. Redistributions of source code must retain the above copyright 122 * notice, this list of conditions and the following disclaimer. 123 * 2. Redistributions in binary form must reproduce the above copyright 124 * notice, this list of conditions and the following disclaimer in the 125 * documentation and/or other materials provided with the distribution. 126 * 3. Neither the name of the University nor the names of its contributors 127 * may be used to endorse or promote products derived from this software 128 * without specific prior written permission. 129 * 130 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 131 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 132 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 133 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 134 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 135 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 136 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 137 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 138 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 139 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 140 * SUCH DAMAGE. 141 * 142 * @(#)dir.h 8.5 (Berkeley) 4/27/95 143 */ 144 145 #ifndef _UFS_LFS_LFS_ACCESSORS_H_ 146 #define _UFS_LFS_LFS_ACCESSORS_H_ 147 148 #if defined(_KERNEL_OPT) 149 #include "opt_lfs.h" 150 #endif 151 152 #include <sys/bswap.h> 153 154 #include <ufs/lfs/lfs.h> 155 156 #if !defined(_KERNEL) && !defined(_STANDALONE) 157 #include <assert.h> 158 #include <string.h> 159 #define KASSERT assert 160 #else 161 #include <sys/systm.h> 162 #endif 163 164 /* 165 * STRUCT_LFS is used by the libsa code to get accessors that work 166 * with struct salfs instead of struct lfs, and by the cleaner to 167 * get accessors that work with struct clfs. 168 */ 169 170 #ifndef STRUCT_LFS 171 #define STRUCT_LFS struct lfs 172 #endif 173 174 /* 175 * byte order 176 */ 177 178 /* 179 * For now at least, the bootblocks shall not be endian-independent. 180 * We can see later if it fits in the size budget. Also disable the 181 * byteswapping if LFS_EI is off. 182 * 183 * Caution: these functions "know" that bswap16/32/64 are unsigned, 184 * and if that changes will likely break silently. 185 */ 186 187 #if defined(_STANDALONE) || (defined(_KERNEL) && !defined(LFS_EI)) 188 #define LFS_SWAP_int16_t(fs, val) (val) 189 #define LFS_SWAP_int32_t(fs, val) (val) 190 #define LFS_SWAP_int64_t(fs, val) (val) 191 #define LFS_SWAP_uint16_t(fs, val) (val) 192 #define LFS_SWAP_uint32_t(fs, val) (val) 193 #define LFS_SWAP_uint64_t(fs, val) (val) 194 #else 195 #define LFS_SWAP_int16_t(fs, val) \ 196 ((fs)->lfs_dobyteswap ? (int16_t)bswap16(val) : (val)) 197 #define LFS_SWAP_int32_t(fs, val) \ 198 ((fs)->lfs_dobyteswap ? (int32_t)bswap32(val) : (val)) 199 #define LFS_SWAP_int64_t(fs, val) \ 200 ((fs)->lfs_dobyteswap ? (int64_t)bswap64(val) : (val)) 201 #define LFS_SWAP_uint16_t(fs, val) \ 202 ((fs)->lfs_dobyteswap ? bswap16(val) : (val)) 203 #define LFS_SWAP_uint32_t(fs, val) \ 204 ((fs)->lfs_dobyteswap ? bswap32(val) : (val)) 205 #define LFS_SWAP_uint64_t(fs, val) \ 206 ((fs)->lfs_dobyteswap ? bswap64(val) : (val)) 207 #endif 208 209 /* 210 * For handling directories we will need to know if the volume is 211 * little-endian. 212 */ 213 #if BYTE_ORDER == LITTLE_ENDIAN 214 #define LFS_LITTLE_ENDIAN_ONDISK(fs) (!(fs)->lfs_dobyteswap) 215 #else 216 #define LFS_LITTLE_ENDIAN_ONDISK(fs) ((fs)->lfs_dobyteswap) 217 #endif 218 219 220 /* 221 * Suppress spurious warnings -- we use 222 * 223 * type *foo = &obj->member; 224 * 225 * in macros to verify that obj->member has the right type. When the 226 * object is a packed structure with misaligned members, this causes 227 * some compiles to squeal that taking the address might lead to 228 * undefined behaviour later on -- which is helpful in general, not 229 * relevant in this case, because we don't do anything with foo 230 * afterward; we only declare it to get a type check and then we 231 * discard it. 232 */ 233 #ifdef __GNUC__ 234 #if defined(__clang__) 235 #pragma clang diagnostic push 236 #pragma clang diagnostic ignored "-Waddress-of-packed-member" 237 #elif __GNUC_PREREQ__(9,0) 238 #pragma GCC diagnostic push 239 #pragma GCC diagnostic ignored "-Waddress-of-packed-member" 240 #endif 241 #endif 242 243 244 245 /* 246 * directories 247 */ 248 249 #define LFS_DIRHEADERSIZE(fs) \ 250 ((fs)->lfs_is64 ? sizeof(struct lfs_dirheader64) : sizeof(struct lfs_dirheader32)) 251 252 /* 253 * The LFS_DIRSIZ macro gives the minimum record length which will hold 254 * the directory entry. This requires the amount of space in struct lfs_direct 255 * without the d_name field, plus enough space for the name with a terminating 256 * null byte (dp->d_namlen+1), rounded up to a 4 byte boundary. 257 */ 258 #define LFS_DIRECTSIZ(fs, namlen) \ 259 (LFS_DIRHEADERSIZE(fs) + (((namlen)+1 + 3) &~ 3)) 260 261 /* 262 * The size of the largest possible directory entry. This is 263 * used by ulfs_dirhash to figure the size of an array, so we 264 * need a single constant value true for both lfs32 and lfs64. 265 */ 266 #define LFS_MAXDIRENTRYSIZE \ 267 (sizeof(struct lfs_dirheader64) + (((LFS_MAXNAMLEN+1)+1 + 3) & ~3)) 268 269 #if (BYTE_ORDER == LITTLE_ENDIAN) 270 #define LFS_OLDDIRSIZ(oldfmt, dp, needswap) \ 271 (((oldfmt) && !(needswap)) ? \ 272 LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen)) 273 #else 274 #define LFS_OLDDIRSIZ(oldfmt, dp, needswap) \ 275 (((oldfmt) && (needswap)) ? \ 276 LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen)) 277 #endif 278 279 #define LFS_DIRSIZ(fs, dp) LFS_DIRECTSIZ(fs, lfs_dir_getnamlen(fs, dp)) 280 281 /* Constants for the first argument of LFS_OLDDIRSIZ */ 282 #define LFS_OLDDIRFMT 1 283 #define LFS_NEWDIRFMT 0 284 285 #define LFS_NEXTDIR(fs, dp) \ 286 ((LFS_DIRHEADER *)((char *)(dp) + lfs_dir_getreclen(fs, dp))) 287 288 static __inline char * 289 lfs_dir_nameptr(const STRUCT_LFS *fs, LFS_DIRHEADER *dh) 290 { 291 if (fs->lfs_is64) { 292 return (char *)(&dh->u_64 + 1); 293 } else { 294 return (char *)(&dh->u_32 + 1); 295 } 296 } 297 298 static __inline uint64_t 299 lfs_dir_getino(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh) 300 { 301 if (fs->lfs_is64) { 302 return LFS_SWAP_uint64_t(fs, dh->u_64.dh_ino); 303 } else { 304 return LFS_SWAP_uint32_t(fs, dh->u_32.dh_ino); 305 } 306 } 307 308 static __inline uint16_t 309 lfs_dir_getreclen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh) 310 { 311 if (fs->lfs_is64) { 312 return LFS_SWAP_uint16_t(fs, dh->u_64.dh_reclen); 313 } else { 314 return LFS_SWAP_uint16_t(fs, dh->u_32.dh_reclen); 315 } 316 } 317 318 static __inline uint8_t 319 lfs_dir_gettype(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh) 320 { 321 if (fs->lfs_is64) { 322 KASSERT(fs->lfs_hasolddirfmt == 0); 323 return dh->u_64.dh_type; 324 } else if (fs->lfs_hasolddirfmt) { 325 return LFS_DT_UNKNOWN; 326 } else { 327 return dh->u_32.dh_type; 328 } 329 } 330 331 static __inline uint8_t 332 lfs_dir_getnamlen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh) 333 { 334 if (fs->lfs_is64) { 335 KASSERT(fs->lfs_hasolddirfmt == 0); 336 return dh->u_64.dh_namlen; 337 } else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) { 338 /* low-order byte of old 16-bit namlen field */ 339 return dh->u_32.dh_type; 340 } else { 341 return dh->u_32.dh_namlen; 342 } 343 } 344 345 static __inline void 346 lfs_dir_setino(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint64_t ino) 347 { 348 if (fs->lfs_is64) { 349 dh->u_64.dh_ino = LFS_SWAP_uint64_t(fs, ino); 350 } else { 351 dh->u_32.dh_ino = LFS_SWAP_uint32_t(fs, ino); 352 } 353 } 354 355 static __inline void 356 lfs_dir_setreclen(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint16_t reclen) 357 { 358 if (fs->lfs_is64) { 359 dh->u_64.dh_reclen = LFS_SWAP_uint16_t(fs, reclen); 360 } else { 361 dh->u_32.dh_reclen = LFS_SWAP_uint16_t(fs, reclen); 362 } 363 } 364 365 static __inline void 366 lfs_dir_settype(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t type) 367 { 368 if (fs->lfs_is64) { 369 KASSERT(fs->lfs_hasolddirfmt == 0); 370 dh->u_64.dh_type = type; 371 } else if (fs->lfs_hasolddirfmt) { 372 /* do nothing */ 373 return; 374 } else { 375 dh->u_32.dh_type = type; 376 } 377 } 378 379 static __inline void 380 lfs_dir_setnamlen(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t namlen) 381 { 382 if (fs->lfs_is64) { 383 KASSERT(fs->lfs_hasolddirfmt == 0); 384 dh->u_64.dh_namlen = namlen; 385 } else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) { 386 /* low-order byte of old 16-bit namlen field */ 387 dh->u_32.dh_type = namlen; 388 } else { 389 dh->u_32.dh_namlen = namlen; 390 } 391 } 392 393 static __inline void 394 lfs_copydirname(STRUCT_LFS *fs, char *dest, const char *src, 395 unsigned namlen, unsigned reclen) 396 { 397 unsigned spacelen; 398 399 KASSERT(reclen > LFS_DIRHEADERSIZE(fs)); 400 spacelen = reclen - LFS_DIRHEADERSIZE(fs); 401 402 /* must always be at least 1 byte as a null terminator */ 403 KASSERT(spacelen > namlen); 404 405 memcpy(dest, src, namlen); 406 memset(dest + namlen, '\0', spacelen - namlen); 407 } 408 409 static __inline LFS_DIRHEADER * 410 lfs_dirtemplate_dotdot(STRUCT_LFS *fs, union lfs_dirtemplate *dt) 411 { 412 /* XXX blah, be nice to have a way to do this w/o casts */ 413 if (fs->lfs_is64) { 414 return (LFS_DIRHEADER *)&dt->u_64.dotdot_header; 415 } else { 416 return (LFS_DIRHEADER *)&dt->u_32.dotdot_header; 417 } 418 } 419 420 static __inline char * 421 lfs_dirtemplate_dotdotname(STRUCT_LFS *fs, union lfs_dirtemplate *dt) 422 { 423 if (fs->lfs_is64) { 424 return dt->u_64.dotdot_name; 425 } else { 426 return dt->u_32.dotdot_name; 427 } 428 } 429 430 /* 431 * dinodes 432 */ 433 434 /* 435 * Maximum length of a symlink that can be stored within the inode. 436 */ 437 #define LFS32_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t)) 438 #define LFS64_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t)) 439 440 #define LFS_MAXSYMLINKLEN(fs) \ 441 ((fs)->lfs_is64 ? LFS64_MAXSYMLINKLEN : LFS32_MAXSYMLINKLEN) 442 443 #define DINOSIZE(fs) ((fs)->lfs_is64 ? sizeof(struct lfs64_dinode) : sizeof(struct lfs32_dinode)) 444 445 #define DINO_IN_BLOCK(fs, base, ix) \ 446 ((union lfs_dinode *)((char *)(base) + DINOSIZE(fs) * (ix))) 447 448 static __inline void 449 lfs_copy_dinode(STRUCT_LFS *fs, 450 union lfs_dinode *dst, const union lfs_dinode *src) 451 { 452 /* 453 * We can do structure assignment of the structs, but not of 454 * the whole union, as the union is the size of the (larger) 455 * 64-bit struct and on a 32-bit fs the upper half of it might 456 * be off the end of a buffer or otherwise invalid. 457 */ 458 if (fs->lfs_is64) { 459 dst->u_64 = src->u_64; 460 } else { 461 dst->u_32 = src->u_32; 462 } 463 } 464 465 #define LFS_DEF_DINO_ACCESSOR(type, type32, field) \ 466 static __inline type \ 467 lfs_dino_get##field(STRUCT_LFS *fs, union lfs_dinode *dip) \ 468 { \ 469 if (fs->lfs_is64) { \ 470 return LFS_SWAP_##type(fs, dip->u_64.di_##field); \ 471 } else { \ 472 return LFS_SWAP_##type32(fs, dip->u_32.di_##field); \ 473 } \ 474 } \ 475 static __inline void \ 476 lfs_dino_set##field(STRUCT_LFS *fs, union lfs_dinode *dip, type val) \ 477 { \ 478 if (fs->lfs_is64) { \ 479 type *p = &dip->u_64.di_##field; \ 480 (void)p; \ 481 dip->u_64.di_##field = LFS_SWAP_##type(fs, val); \ 482 } else { \ 483 type32 *p = &dip->u_32.di_##field; \ 484 (void)p; \ 485 dip->u_32.di_##field = LFS_SWAP_##type32(fs, val); \ 486 } \ 487 } \ 488 489 LFS_DEF_DINO_ACCESSOR(uint16_t, uint16_t, mode) 490 LFS_DEF_DINO_ACCESSOR(int16_t, int16_t, nlink) 491 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, inumber) 492 LFS_DEF_DINO_ACCESSOR(uint64_t, uint64_t, size) 493 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, atime) 494 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, atimensec) 495 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, mtime) 496 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, mtimensec) 497 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, ctime) 498 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, ctimensec) 499 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, flags) 500 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, blocks) 501 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, gen) 502 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, uid) 503 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, gid) 504 505 /* XXX this should be done differently (it's a fake field) */ 506 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, rdev) 507 508 static __inline daddr_t 509 lfs_dino_getdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix) 510 { 511 KASSERT(ix < ULFS_NDADDR); 512 if (fs->lfs_is64) { 513 return LFS_SWAP_int64_t(fs, dip->u_64.di_db[ix]); 514 } else { 515 /* note: this must sign-extend or UNWRITTEN gets trashed */ 516 return (int32_t)LFS_SWAP_int32_t(fs, dip->u_32.di_db[ix]); 517 } 518 } 519 520 static __inline daddr_t 521 lfs_dino_getib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix) 522 { 523 KASSERT(ix < ULFS_NIADDR); 524 if (fs->lfs_is64) { 525 return LFS_SWAP_int64_t(fs, dip->u_64.di_ib[ix]); 526 } else { 527 /* note: this must sign-extend or UNWRITTEN gets trashed */ 528 return (int32_t)LFS_SWAP_int32_t(fs, dip->u_32.di_ib[ix]); 529 } 530 } 531 532 static __inline void 533 lfs_dino_setdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val) 534 { 535 KASSERT(ix < ULFS_NDADDR); 536 if (fs->lfs_is64) { 537 dip->u_64.di_db[ix] = LFS_SWAP_int64_t(fs, val); 538 } else { 539 dip->u_32.di_db[ix] = LFS_SWAP_uint32_t(fs, val); 540 } 541 } 542 543 static __inline void 544 lfs_dino_setib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val) 545 { 546 KASSERT(ix < ULFS_NIADDR); 547 if (fs->lfs_is64) { 548 dip->u_64.di_ib[ix] = LFS_SWAP_int64_t(fs, val); 549 } else { 550 dip->u_32.di_ib[ix] = LFS_SWAP_uint32_t(fs, val); 551 } 552 } 553 554 /* birthtime is present only in the 64-bit inode */ 555 static __inline void 556 lfs_dino_setbirthtime(STRUCT_LFS *fs, union lfs_dinode *dip, 557 const struct timespec *ts) 558 { 559 if (fs->lfs_is64) { 560 dip->u_64.di_birthtime = ts->tv_sec; 561 dip->u_64.di_birthnsec = ts->tv_nsec; 562 } else { 563 /* drop it on the floor */ 564 } 565 } 566 567 /* 568 * indirect blocks 569 */ 570 571 static __inline daddr_t 572 lfs_iblock_get(STRUCT_LFS *fs, void *block, unsigned ix) 573 { 574 if (fs->lfs_is64) { 575 // XXX re-enable these asserts after reorging this file 576 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t)); 577 return (daddr_t)(((int64_t *)block)[ix]); 578 } else { 579 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t)); 580 /* must sign-extend or UNWRITTEN gets trashed */ 581 return (daddr_t)(int64_t)(((int32_t *)block)[ix]); 582 } 583 } 584 585 static __inline void 586 lfs_iblock_set(STRUCT_LFS *fs, void *block, unsigned ix, daddr_t val) 587 { 588 if (fs->lfs_is64) { 589 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t)); 590 ((int64_t *)block)[ix] = val; 591 } else { 592 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t)); 593 ((int32_t *)block)[ix] = val; 594 } 595 } 596 597 /* 598 * "struct buf" associated definitions 599 */ 600 601 # define LFS_LOCK_BUF(bp) do { \ 602 if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) { \ 603 mutex_enter(&lfs_lock); \ 604 ++locked_queue_count; \ 605 locked_queue_bytes += bp->b_bufsize; \ 606 mutex_exit(&lfs_lock); \ 607 } \ 608 (bp)->b_flags |= B_LOCKED; \ 609 } while (0) 610 611 # define LFS_UNLOCK_BUF(bp) do { \ 612 if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) { \ 613 mutex_enter(&lfs_lock); \ 614 --locked_queue_count; \ 615 locked_queue_bytes -= bp->b_bufsize; \ 616 if (locked_queue_count < LFS_WAIT_BUFS && \ 617 locked_queue_bytes < LFS_WAIT_BYTES) \ 618 cv_broadcast(&locked_queue_cv); \ 619 mutex_exit(&lfs_lock); \ 620 } \ 621 (bp)->b_flags &= ~B_LOCKED; \ 622 } while (0) 623 624 /* 625 * "struct inode" associated definitions 626 */ 627 628 #define LFS_SET_UINO(ip, states) do { \ 629 if (((states) & IN_ACCESSED) && !((ip)->i_state & IN_ACCESSED)) \ 630 lfs_sb_adduinodes((ip)->i_lfs, 1); \ 631 if (((states) & IN_CLEANING) && !((ip)->i_state & IN_CLEANING)) \ 632 lfs_sb_adduinodes((ip)->i_lfs, 1); \ 633 if (((states) & IN_MODIFIED) && !((ip)->i_state & IN_MODIFIED)) \ 634 lfs_sb_adduinodes((ip)->i_lfs, 1); \ 635 (ip)->i_state |= (states); \ 636 } while (0) 637 638 #define LFS_CLR_UINO(ip, states) do { \ 639 if (((states) & IN_ACCESSED) && ((ip)->i_state & IN_ACCESSED)) \ 640 lfs_sb_subuinodes((ip)->i_lfs, 1); \ 641 if (((states) & IN_CLEANING) && ((ip)->i_state & IN_CLEANING)) \ 642 lfs_sb_subuinodes((ip)->i_lfs, 1); \ 643 if (((states) & IN_MODIFIED) && ((ip)->i_state & IN_MODIFIED)) \ 644 lfs_sb_subuinodes((ip)->i_lfs, 1); \ 645 (ip)->i_state &= ~(states); \ 646 if (lfs_sb_getuinodes((ip)->i_lfs) < 0) { \ 647 panic("lfs_uinodes < 0"); \ 648 } \ 649 } while (0) 650 651 #define LFS_ITIMES(ip, acc, mod, cre) \ 652 while ((ip)->i_state & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \ 653 lfs_itimes(ip, acc, mod, cre) 654 655 /* 656 * On-disk and in-memory checkpoint segment usage structure. 657 */ 658 659 #define SEGUPB(fs) (lfs_sb_getsepb(fs)) 660 #define SEGTABSIZE_SU(fs) \ 661 ((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs)) 662 663 #ifdef _KERNEL 664 # define SHARE_IFLOCK(F) \ 665 do { \ 666 rw_enter(&(F)->lfs_iflock, RW_READER); \ 667 } while(0) 668 # define UNSHARE_IFLOCK(F) \ 669 do { \ 670 rw_exit(&(F)->lfs_iflock); \ 671 } while(0) 672 #else /* ! _KERNEL */ 673 # define SHARE_IFLOCK(F) 674 # define UNSHARE_IFLOCK(F) 675 #endif /* ! _KERNEL */ 676 677 /* Read in the block with a specific segment usage entry from the ifile. */ 678 #define LFS_SEGENTRY(SP, F, IN, BP) do { \ 679 int _e; \ 680 SHARE_IFLOCK(F); \ 681 VTOI((F)->lfs_ivnode)->i_state |= IN_ACCESS; \ 682 if ((_e = bread((F)->lfs_ivnode, \ 683 ((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F), \ 684 lfs_sb_getbsize(F), 0, &(BP))) != 0) \ 685 panic("lfs: ifile read: segentry %llu: error %d\n", \ 686 (unsigned long long)(IN), _e); \ 687 if (lfs_sb_getversion(F) == 1) \ 688 (SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data + \ 689 ((IN) & (lfs_sb_getsepb(F) - 1))); \ 690 else \ 691 (SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \ 692 UNSHARE_IFLOCK(F); \ 693 } while (0) 694 695 #define LFS_WRITESEGENTRY(SP, F, IN, BP) do { \ 696 LFS_BWRITE_LOG(BP); \ 697 } while (0) 698 699 /* 700 * FINFO (file info) entries. 701 */ 702 703 /* Size of an on-disk block pointer, e.g. in an indirect block. */ 704 /* XXX: move to a more suitable location in this file */ 705 #define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t)) 706 707 /* Size of an on-disk inode number. */ 708 /* XXX: move to a more suitable location in this file */ 709 #define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t)) 710 711 /* size of a FINFO, without the block pointers */ 712 #define FINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32)) 713 714 /* Full size of the provided FINFO record, including its block pointers. */ 715 #define FINFO_FULLSIZE(fs, fip) \ 716 (FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs)) 717 718 #define NEXT_FINFO(fs, fip) \ 719 ((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip))) 720 721 #define LFS_DEF_FI_ACCESSOR(type, type32, field) \ 722 static __inline type \ 723 lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip) \ 724 { \ 725 if (fs->lfs_is64) { \ 726 return fip->u_64.fi_##field; \ 727 } else { \ 728 return fip->u_32.fi_##field; \ 729 } \ 730 } \ 731 static __inline void \ 732 lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \ 733 { \ 734 if (fs->lfs_is64) { \ 735 type *p = &fip->u_64.fi_##field; \ 736 (void)p; \ 737 fip->u_64.fi_##field = val; \ 738 } else { \ 739 type32 *p = &fip->u_32.fi_##field; \ 740 (void)p; \ 741 fip->u_32.fi_##field = val; \ 742 } \ 743 } \ 744 745 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks) 746 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version) 747 LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino) 748 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength) 749 750 static __inline daddr_t 751 lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned idx) 752 { 753 void *firstblock; 754 755 firstblock = (char *)fip + FINFOSIZE(fs); 756 KASSERT(idx < lfs_fi_getnblocks(fs, fip)); 757 if (fs->lfs_is64) { 758 return ((int64_t *)firstblock)[idx]; 759 } else { 760 return ((int32_t *)firstblock)[idx]; 761 } 762 } 763 764 static __inline void 765 lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned idx, daddr_t blk) 766 { 767 void *firstblock; 768 769 firstblock = (char *)fip + FINFOSIZE(fs); 770 KASSERT(idx < lfs_fi_getnblocks(fs, fip)); 771 if (fs->lfs_is64) { 772 ((int64_t *)firstblock)[idx] = blk; 773 } else { 774 ((int32_t *)firstblock)[idx] = blk; 775 } 776 } 777 778 /* 779 * inode info entries (in the segment summary) 780 */ 781 782 #define IINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(IINFO64) : sizeof(IINFO32)) 783 784 /* iinfos scroll backward from the end of the segment summary block */ 785 #define SEGSUM_IINFOSTART(fs, buf) \ 786 ((IINFO *)((char *)buf + lfs_sb_getsumsize(fs) - IINFOSIZE(fs))) 787 788 #define NEXTLOWER_IINFO(fs, iip) \ 789 ((IINFO *)((char *)(iip) - IINFOSIZE(fs))) 790 791 #define NTH_IINFO(fs, buf, n) \ 792 ((IINFO *)((char *)SEGSUM_IINFOSTART(fs, buf) - (n)*IINFOSIZE(fs))) 793 794 static __inline uint64_t 795 lfs_ii_getblock(STRUCT_LFS *fs, IINFO *iip) 796 { 797 if (fs->lfs_is64) { 798 return iip->u_64.ii_block; 799 } else { 800 return iip->u_32.ii_block; 801 } 802 } 803 804 static __inline void 805 lfs_ii_setblock(STRUCT_LFS *fs, IINFO *iip, uint64_t block) 806 { 807 if (fs->lfs_is64) { 808 iip->u_64.ii_block = block; 809 } else { 810 iip->u_32.ii_block = block; 811 } 812 } 813 814 /* 815 * Index file inode entries. 816 */ 817 818 #define IFILE_ENTRYSIZE(fs) \ 819 ((fs)->lfs_is64 ? sizeof(IFILE64) : sizeof(IFILE32)) 820 821 /* 822 * LFSv1 compatibility code is not allowed to touch if_atime, since it 823 * may not be mapped! 824 */ 825 /* Read in the block with a specific inode from the ifile. */ 826 #define LFS_IENTRY_INBLOCK(IP, F, IN, BP) do { \ 827 if ((F)->lfs_is64) { \ 828 (IP) = (IFILE *)((IFILE64 *)(BP)->b_data + \ 829 (IN) % lfs_sb_getifpb(F)); \ 830 } else if (lfs_sb_getversion(F) > 1) { \ 831 (IP) = (IFILE *)((IFILE32 *)(BP)->b_data + \ 832 (IN) % lfs_sb_getifpb(F)); \ 833 } else { \ 834 (IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data + \ 835 (IN) % lfs_sb_getifpb(F)); \ 836 } \ 837 } while (0) 838 #define LFS_IENTRY(IP, F, IN, BP) do { \ 839 int _e; \ 840 SHARE_IFLOCK(F); \ 841 VTOI((F)->lfs_ivnode)->i_state |= IN_ACCESS; \ 842 if ((_e = bread((F)->lfs_ivnode, \ 843 (IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \ 844 lfs_sb_getbsize(F), 0, &(BP))) != 0) \ 845 panic("lfs: ifile ino %d read %d", (int)(IN), _e); \ 846 LFS_IENTRY_INBLOCK(IP, F, IN, BP); \ 847 UNSHARE_IFLOCK(F); \ 848 } while (0) 849 #define LFS_IENTRY_NEXT(IP, F) do { \ 850 if ((F)->lfs_is64) { \ 851 (IP) = (IFILE *)((IFILE64 *)(IP) + 1); \ 852 } else if (lfs_sb_getversion(F) > 1) { \ 853 (IP) = (IFILE *)((IFILE32 *)(IP) + 1); \ 854 } else { \ 855 (IP) = (IFILE *)((IFILE_V1 *)(IP) + 1); \ 856 } \ 857 } while (0) 858 859 #define LFS_DEF_IF_ACCESSOR(type, type32, field) \ 860 static __inline type \ 861 lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp) \ 862 { \ 863 if (fs->lfs_is64) { \ 864 return ifp->u_64.if_##field; \ 865 } else { \ 866 return ifp->u_32.if_##field; \ 867 } \ 868 } \ 869 static __inline void \ 870 lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \ 871 { \ 872 if (fs->lfs_is64) { \ 873 type *p = &ifp->u_64.if_##field; \ 874 (void)p; \ 875 ifp->u_64.if_##field = val; \ 876 } else { \ 877 type32 *p = &ifp->u_32.if_##field; \ 878 (void)p; \ 879 ifp->u_32.if_##field = val; \ 880 } \ 881 } \ 882 883 LFS_DEF_IF_ACCESSOR(uint32_t, uint32_t, version) 884 LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr) 885 LFS_DEF_IF_ACCESSOR(uint64_t, uint32_t, nextfree) 886 LFS_DEF_IF_ACCESSOR(uint64_t, uint32_t, atime_sec) 887 LFS_DEF_IF_ACCESSOR(uint32_t, uint32_t, atime_nsec) 888 889 /* 890 * Cleaner information structure. This resides in the ifile and is used 891 * to pass information from the kernel to the cleaner. 892 */ 893 894 #define CLEANSIZE_SU(fs) \ 895 ((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \ 896 lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs)) 897 898 #define LFS_DEF_CI_ACCESSOR(type, type32, field) \ 899 static __inline type \ 900 lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip) \ 901 { \ 902 if (fs->lfs_is64) { \ 903 return cip->u_64.field; \ 904 } else { \ 905 return cip->u_32.field; \ 906 } \ 907 } \ 908 static __inline void \ 909 lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \ 910 { \ 911 if (fs->lfs_is64) { \ 912 type *p = &cip->u_64.field; \ 913 (void)p; \ 914 cip->u_64.field = val; \ 915 } else { \ 916 type32 *p = &cip->u_32.field; \ 917 (void)p; \ 918 cip->u_32.field = val; \ 919 } \ 920 } \ 921 922 LFS_DEF_CI_ACCESSOR(uint32_t, uint32_t, clean) 923 LFS_DEF_CI_ACCESSOR(uint32_t, uint32_t, dirty) 924 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree) 925 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail) 926 LFS_DEF_CI_ACCESSOR(uint64_t, uint32_t, free_head) 927 LFS_DEF_CI_ACCESSOR(uint64_t, uint32_t, free_tail) 928 LFS_DEF_CI_ACCESSOR(uint32_t, uint32_t, flags) 929 930 static __inline void 931 lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num) 932 { 933 lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num); 934 lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num); 935 } 936 937 static __inline void 938 lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num) 939 { 940 lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num); 941 lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num); 942 } 943 944 /* Read in the block with the cleaner info from the ifile. */ 945 #define LFS_CLEANERINFO(CP, F, BP) do { \ 946 int _e; \ 947 SHARE_IFLOCK(F); \ 948 VTOI((F)->lfs_ivnode)->i_state |= IN_ACCESS; \ 949 _e = bread((F)->lfs_ivnode, \ 950 (daddr_t)0, lfs_sb_getbsize(F), 0, &(BP)); \ 951 if (_e) \ 952 panic("lfs: ifile read: cleanerinfo: error %d\n", _e); \ 953 (CP) = (CLEANERINFO *)(BP)->b_data; \ 954 UNSHARE_IFLOCK(F); \ 955 } while (0) 956 957 /* 958 * Synchronize the Ifile cleaner info with current avail and bfree. 959 */ 960 #define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do { \ 961 mutex_enter(&lfs_lock); \ 962 if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) || \ 963 lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \ 964 fs->lfs_favail) { \ 965 lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs)); \ 966 lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail - \ 967 fs->lfs_favail); \ 968 if (((bp)->b_flags & B_GATHERED) == 0) { \ 969 fs->lfs_flags |= LFS_IFDIRTY; \ 970 } \ 971 mutex_exit(&lfs_lock); \ 972 (void) LFS_BWRITE_LOG(bp); /* Ifile */ \ 973 } else { \ 974 mutex_exit(&lfs_lock); \ 975 brelse(bp, 0); \ 976 } \ 977 } while (0) 978 979 /* 980 * Get the head of the inode free list. 981 * Always called with the segment lock held. 982 */ 983 #define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do { \ 984 if (lfs_sb_getversion(FS) > 1) { \ 985 LFS_CLEANERINFO((CIP), (FS), (BP)); \ 986 lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP)); \ 987 brelse(BP, 0); \ 988 } \ 989 *(FREEP) = lfs_sb_getfreehd(FS); \ 990 } while (0) 991 992 #define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do { \ 993 lfs_sb_setfreehd(FS, VAL); \ 994 if (lfs_sb_getversion(FS) > 1) { \ 995 LFS_CLEANERINFO((CIP), (FS), (BP)); \ 996 lfs_ci_setfree_head(FS, CIP, VAL); \ 997 if ((VAL) == LFS_UNUSED_INUM) \ 998 lfs_ci_setfree_tail(FS, CIP, VAL); \ 999 LFS_BWRITE_LOG(BP); \ 1000 mutex_enter(&lfs_lock); \ 1001 (FS)->lfs_flags |= LFS_IFDIRTY; \ 1002 mutex_exit(&lfs_lock); \ 1003 } \ 1004 } while (0) 1005 1006 #define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do { \ 1007 LFS_CLEANERINFO((CIP), (FS), (BP)); \ 1008 *(FREEP) = lfs_ci_getfree_tail(FS, CIP); \ 1009 brelse(BP, 0); \ 1010 } while (0) 1011 1012 #define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do { \ 1013 LFS_CLEANERINFO((CIP), (FS), (BP)); \ 1014 lfs_ci_setfree_tail(FS, CIP, VAL); \ 1015 if ((VAL) == LFS_UNUSED_INUM) \ 1016 lfs_ci_setfree_head(FS, CIP, VAL); \ 1017 LFS_BWRITE_LOG(BP); \ 1018 mutex_enter(&lfs_lock); \ 1019 (FS)->lfs_flags |= LFS_IFDIRTY; \ 1020 mutex_exit(&lfs_lock); \ 1021 } while (0) 1022 1023 /* 1024 * On-disk segment summary information 1025 */ 1026 1027 #define SEGSUM_SIZE(fs) \ 1028 (fs->lfs_is64 ? sizeof(SEGSUM64) : \ 1029 lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1)) 1030 1031 /* 1032 * The SEGSUM structure is followed by FINFO structures. Get the pointer 1033 * to the first FINFO. 1034 * 1035 * XXX this can't be a macro yet; this file needs to be resorted. 1036 */ 1037 #if 0 1038 static __inline FINFO * 1039 segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp) 1040 { 1041 return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs)); 1042 } 1043 #else 1044 #define SEGSUM_FINFOBASE(fs, ssp) \ 1045 ((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs))); 1046 #endif 1047 1048 #define LFS_DEF_SS_ACCESSOR(type, type32, field) \ 1049 static __inline type \ 1050 lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp) \ 1051 { \ 1052 if (fs->lfs_is64) { \ 1053 return ssp->u_64.ss_##field; \ 1054 } else { \ 1055 return ssp->u_32.ss_##field; \ 1056 } \ 1057 } \ 1058 static __inline void \ 1059 lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \ 1060 { \ 1061 if (fs->lfs_is64) { \ 1062 type *p = &ssp->u_64.ss_##field; \ 1063 (void)p; \ 1064 ssp->u_64.ss_##field = val; \ 1065 } else { \ 1066 type32 *p = &ssp->u_32.ss_##field; \ 1067 (void)p; \ 1068 ssp->u_32.ss_##field = val; \ 1069 } \ 1070 } \ 1071 1072 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum) 1073 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum) 1074 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic) 1075 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident) 1076 LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next) 1077 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo) 1078 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos) 1079 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags) 1080 LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino) 1081 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial) 1082 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create) 1083 1084 static __inline size_t 1085 lfs_ss_getsumstart(STRUCT_LFS *fs) 1086 { 1087 /* These are actually all the same. */ 1088 if (fs->lfs_is64) { 1089 return offsetof(SEGSUM64, ss_datasum); 1090 } else /* if (lfs_sb_getversion(fs) > 1) */ { 1091 return offsetof(SEGSUM32, ss_datasum); 1092 } /* else { 1093 return offsetof(SEGSUM_V1, ss_datasum); 1094 } */ 1095 /* 1096 * XXX ^^^ until this file is resorted lfs_sb_getversion isn't 1097 * defined yet. 1098 */ 1099 } 1100 1101 static __inline uint32_t 1102 lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp) 1103 { 1104 KASSERT(fs->lfs_is64 == 0); 1105 /* XXX need to resort this file before we can do this */ 1106 //KASSERT(lfs_sb_getversion(fs) == 1); 1107 1108 return ssp->u_v1.ss_create; 1109 } 1110 1111 static __inline void 1112 lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val) 1113 { 1114 KASSERT(fs->lfs_is64 == 0); 1115 /* XXX need to resort this file before we can do this */ 1116 //KASSERT(lfs_sb_getversion(fs) == 1); 1117 1118 ssp->u_v1.ss_create = val; 1119 } 1120 1121 1122 /* 1123 * Super block. 1124 */ 1125 1126 /* 1127 * Generate accessors for the on-disk superblock fields with cpp. 1128 */ 1129 1130 #define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \ 1131 static __inline type \ 1132 lfs_sb_get##field(STRUCT_LFS *fs) \ 1133 { \ 1134 if (fs->lfs_is64) { \ 1135 return fs->lfs_dlfs_u.u_64.dlfs_##field; \ 1136 } else { \ 1137 return fs->lfs_dlfs_u.u_32.dlfs_##field; \ 1138 } \ 1139 } \ 1140 static __inline void \ 1141 lfs_sb_set##field(STRUCT_LFS *fs, type val) \ 1142 { \ 1143 if (fs->lfs_is64) { \ 1144 fs->lfs_dlfs_u.u_64.dlfs_##field = val; \ 1145 } else { \ 1146 fs->lfs_dlfs_u.u_32.dlfs_##field = val; \ 1147 } \ 1148 } \ 1149 static __inline void \ 1150 lfs_sb_add##field(STRUCT_LFS *fs, type val) \ 1151 { \ 1152 if (fs->lfs_is64) { \ 1153 type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \ 1154 *p64 += val; \ 1155 } else { \ 1156 type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \ 1157 *p32 += val; \ 1158 } \ 1159 } \ 1160 static __inline void \ 1161 lfs_sb_sub##field(STRUCT_LFS *fs, type val) \ 1162 { \ 1163 if (fs->lfs_is64) { \ 1164 type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \ 1165 *p64 -= val; \ 1166 } else { \ 1167 type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \ 1168 *p32 -= val; \ 1169 } \ 1170 } 1171 1172 #define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f) 1173 1174 #define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \ 1175 static __inline type \ 1176 lfs_sb_get##field(STRUCT_LFS *fs) \ 1177 { \ 1178 if (fs->lfs_is64) { \ 1179 return val64; \ 1180 } else { \ 1181 return fs->lfs_dlfs_u.u_32.dlfs_##field; \ 1182 } \ 1183 } 1184 1185 LFS_DEF_SB_ACCESSOR(uint32_t, version) 1186 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, size) 1187 LFS_DEF_SB_ACCESSOR(uint32_t, ssize) 1188 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, dsize) 1189 LFS_DEF_SB_ACCESSOR(uint32_t, bsize) 1190 LFS_DEF_SB_ACCESSOR(uint32_t, fsize) 1191 LFS_DEF_SB_ACCESSOR(uint32_t, frag) 1192 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, freehd) 1193 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree) 1194 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, nfiles) 1195 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail) 1196 LFS_DEF_SB_ACCESSOR(int32_t, uinodes) 1197 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr) 1198 LFS_DEF_SB_ACCESSOR_32ONLY(uint32_t, ifile, LFS_IFILE_INUM) 1199 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg) 1200 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg) 1201 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg) 1202 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset) 1203 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg) 1204 LFS_DEF_SB_ACCESSOR(uint32_t, inopf) 1205 LFS_DEF_SB_ACCESSOR(uint32_t, minfree) 1206 LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize) 1207 LFS_DEF_SB_ACCESSOR(uint32_t, fsbpseg) 1208 LFS_DEF_SB_ACCESSOR(uint32_t, inopb) 1209 LFS_DEF_SB_ACCESSOR(uint32_t, ifpb) 1210 LFS_DEF_SB_ACCESSOR(uint32_t, sepb) 1211 LFS_DEF_SB_ACCESSOR(uint32_t, nindir) 1212 LFS_DEF_SB_ACCESSOR(uint32_t, nseg) 1213 LFS_DEF_SB_ACCESSOR(uint32_t, nspf) 1214 LFS_DEF_SB_ACCESSOR(uint32_t, cleansz) 1215 LFS_DEF_SB_ACCESSOR(uint32_t, segtabsz) 1216 LFS_DEF_SB_ACCESSOR_32ONLY(uint32_t, segmask, 0) 1217 LFS_DEF_SB_ACCESSOR_32ONLY(uint32_t, segshift, 0) 1218 LFS_DEF_SB_ACCESSOR(uint64_t, bmask) 1219 LFS_DEF_SB_ACCESSOR(uint32_t, bshift) 1220 LFS_DEF_SB_ACCESSOR(uint64_t, ffmask) 1221 LFS_DEF_SB_ACCESSOR(uint32_t, ffshift) 1222 LFS_DEF_SB_ACCESSOR(uint64_t, fbmask) 1223 LFS_DEF_SB_ACCESSOR(uint32_t, fbshift) 1224 LFS_DEF_SB_ACCESSOR(uint32_t, blktodb) 1225 LFS_DEF_SB_ACCESSOR(uint32_t, fsbtodb) 1226 LFS_DEF_SB_ACCESSOR(uint32_t, sushift) 1227 LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen) 1228 LFS_DEF_SB_ACCESSOR(uint32_t, cksum) 1229 LFS_DEF_SB_ACCESSOR(uint16_t, pflags) 1230 LFS_DEF_SB_ACCESSOR(uint32_t, nclean) 1231 LFS_DEF_SB_ACCESSOR(int32_t, dmeta) 1232 LFS_DEF_SB_ACCESSOR(uint32_t, minfreeseg) 1233 LFS_DEF_SB_ACCESSOR(uint32_t, sumsize) 1234 LFS_DEF_SB_ACCESSOR(uint64_t, serial) 1235 LFS_DEF_SB_ACCESSOR(uint32_t, ibsize) 1236 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr) 1237 LFS_DEF_SB_ACCESSOR(uint64_t, tstamp) 1238 LFS_DEF_SB_ACCESSOR(uint32_t, inodefmt) 1239 LFS_DEF_SB_ACCESSOR(uint32_t, interleave) 1240 LFS_DEF_SB_ACCESSOR(uint32_t, ident) 1241 LFS_DEF_SB_ACCESSOR(uint32_t, resvseg) 1242 1243 /* special-case accessors */ 1244 1245 /* 1246 * the v1 otstamp field lives in what's now dlfs_inopf 1247 */ 1248 #define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs) 1249 #define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val) 1250 1251 /* 1252 * lfs_sboffs is an array 1253 */ 1254 static __inline int32_t 1255 lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n) 1256 { 1257 #ifdef KASSERT /* ugh */ 1258 KASSERT(n < LFS_MAXNUMSB); 1259 #endif 1260 if (fs->lfs_is64) { 1261 return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n]; 1262 } else { 1263 return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n]; 1264 } 1265 } 1266 static __inline void 1267 lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val) 1268 { 1269 #ifdef KASSERT /* ugh */ 1270 KASSERT(n < LFS_MAXNUMSB); 1271 #endif 1272 if (fs->lfs_is64) { 1273 fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val; 1274 } else { 1275 fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val; 1276 } 1277 } 1278 1279 /* 1280 * lfs_fsmnt is a string 1281 */ 1282 static __inline const char * 1283 lfs_sb_getfsmnt(STRUCT_LFS *fs) 1284 { 1285 if (fs->lfs_is64) { 1286 return (const char *)fs->lfs_dlfs_u.u_64.dlfs_fsmnt; 1287 } else { 1288 return (const char *)fs->lfs_dlfs_u.u_32.dlfs_fsmnt; 1289 } 1290 } 1291 1292 static __inline void 1293 lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str) 1294 { 1295 if (fs->lfs_is64) { 1296 (void)strncpy((char *)fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str, 1297 sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt)); 1298 } else { 1299 (void)strncpy((char *)fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str, 1300 sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt)); 1301 } 1302 } 1303 1304 /* Highest addressable fsb */ 1305 #define LFS_MAX_DADDR(fs) \ 1306 ((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff) 1307 1308 /* LFS_NINDIR is the number of indirects in a file system block. */ 1309 #define LFS_NINDIR(fs) (lfs_sb_getnindir(fs)) 1310 1311 /* LFS_INOPB is the number of inodes in a secondary storage block. */ 1312 #define LFS_INOPB(fs) (lfs_sb_getinopb(fs)) 1313 /* LFS_INOPF is the number of inodes in a fragment. */ 1314 #define LFS_INOPF(fs) (lfs_sb_getinopf(fs)) 1315 1316 #define lfs_blkoff(fs, loc) ((int)((loc) & lfs_sb_getbmask(fs))) 1317 #define lfs_fragoff(fs, loc) /* calculates (loc % fs->lfs_fsize) */ \ 1318 ((int)((loc) & lfs_sb_getffmask(fs))) 1319 1320 /* XXX: lowercase these as they're no longer macros */ 1321 /* Frags to diskblocks */ 1322 static __inline uint64_t 1323 LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b) 1324 { 1325 #if defined(_KERNEL) 1326 return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT); 1327 #else 1328 return b << lfs_sb_getfsbtodb(fs); 1329 #endif 1330 } 1331 /* Diskblocks to frags */ 1332 static __inline uint64_t 1333 LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b) 1334 { 1335 #if defined(_KERNEL) 1336 return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT); 1337 #else 1338 return b >> lfs_sb_getfsbtodb(fs); 1339 #endif 1340 } 1341 1342 #define lfs_lblkno(fs, loc) ((loc) >> lfs_sb_getbshift(fs)) 1343 #define lfs_lblktosize(fs, blk) ((blk) << lfs_sb_getbshift(fs)) 1344 1345 /* Frags to bytes */ 1346 static __inline uint64_t 1347 lfs_fsbtob(STRUCT_LFS *fs, uint64_t b) 1348 { 1349 return b << lfs_sb_getffshift(fs); 1350 } 1351 /* Bytes to frags */ 1352 static __inline uint64_t 1353 lfs_btofsb(STRUCT_LFS *fs, uint64_t b) 1354 { 1355 return b >> lfs_sb_getffshift(fs); 1356 } 1357 1358 #define lfs_numfrags(fs, loc) /* calculates (loc / fs->lfs_fsize) */ \ 1359 ((loc) >> lfs_sb_getffshift(fs)) 1360 #define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \ 1361 ((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs)))) 1362 #define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \ 1363 ((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs)))) 1364 #define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \ 1365 ((frags) >> lfs_sb_getfbshift(fs)) 1366 #define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \ 1367 ((blks) << lfs_sb_getfbshift(fs)) 1368 #define lfs_fragnum(fs, fsb) /* calculates (fsb % fs->lfs_frag) */ \ 1369 ((fsb) & ((fs)->lfs_frag - 1)) 1370 #define lfs_blknum(fs, fsb) /* calculates rounddown(fsb, fs->lfs_frag) */ \ 1371 ((fsb) &~ ((fs)->lfs_frag - 1)) 1372 #define lfs_dblksize(fs, dp, lbn) \ 1373 (((lbn) >= ULFS_NDADDR || lfs_dino_getsize(fs, dp) >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \ 1374 ? lfs_sb_getbsize(fs) \ 1375 : (lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, dp))))) 1376 1377 #define lfs_segsize(fs) (lfs_sb_getversion(fs) == 1 ? \ 1378 lfs_lblktosize((fs), lfs_sb_getssize(fs)) : \ 1379 lfs_sb_getssize(fs)) 1380 /* XXX segtod produces a result in frags despite the 'd' */ 1381 #define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg)) 1382 #define lfs_dtosn(fs, daddr) /* block address to segment number */ \ 1383 ((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1))) 1384 #define lfs_sntod(fs, sn) /* segment number to disk address */ \ 1385 ((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs))) 1386 1387 /* XXX, blah. make this appear only if struct inode is defined */ 1388 #ifdef _UFS_LFS_LFS_INODE_H_ 1389 static __inline uint32_t 1390 lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn) 1391 { 1392 if (lbn >= ULFS_NDADDR || lfs_dino_getsize(fs, ip->i_din) >= (lbn + 1) << lfs_sb_getbshift(fs)) { 1393 return lfs_sb_getbsize(fs); 1394 } else { 1395 return lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, ip->i_din))); 1396 } 1397 } 1398 #endif 1399 1400 /* 1401 * union lfs_blocks 1402 */ 1403 1404 static __inline void 1405 lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p) 1406 { 1407 if (fs->lfs_is64) { 1408 bp->b64 = p; 1409 } else { 1410 bp->b32 = p; 1411 } 1412 } 1413 1414 static __inline void 1415 lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip) 1416 { 1417 void *firstblock; 1418 1419 firstblock = (char *)fip + FINFOSIZE(fs); 1420 if (fs->lfs_is64) { 1421 bp->b64 = (int64_t *)firstblock; 1422 } else { 1423 bp->b32 = (int32_t *)firstblock; 1424 } 1425 } 1426 1427 static __inline daddr_t 1428 lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned idx) 1429 { 1430 if (fs->lfs_is64) { 1431 return bp->b64[idx]; 1432 } else { 1433 return bp->b32[idx]; 1434 } 1435 } 1436 1437 static __inline void 1438 lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned idx, daddr_t val) 1439 { 1440 if (fs->lfs_is64) { 1441 bp->b64[idx] = val; 1442 } else { 1443 bp->b32[idx] = val; 1444 } 1445 } 1446 1447 static __inline void 1448 lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp) 1449 { 1450 if (fs->lfs_is64) { 1451 bp->b64++; 1452 } else { 1453 bp->b32++; 1454 } 1455 } 1456 1457 static __inline int 1458 lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2) 1459 { 1460 if (fs->lfs_is64) { 1461 return bp1->b64 == bp2->b64; 1462 } else { 1463 return bp1->b32 == bp2->b32; 1464 } 1465 } 1466 1467 static __inline int 1468 lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2) 1469 { 1470 /* (remember that the pointers are typed) */ 1471 if (fs->lfs_is64) { 1472 return bp1->b64 - bp2->b64; 1473 } else { 1474 return bp1->b32 - bp2->b32; 1475 } 1476 } 1477 1478 /* 1479 * struct segment 1480 */ 1481 1482 1483 /* 1484 * Macros for determining free space on the disk, with the variable metadata 1485 * of segment summaries and inode blocks taken into account. 1486 */ 1487 /* 1488 * Estimate number of clean blocks not available for writing because 1489 * they will contain metadata or overhead. This is calculated as 1490 * 1491 * E = ((C * M / D) * D + (0) * (T - D)) / T 1492 * or more simply 1493 * E = (C * M) / T 1494 * 1495 * where 1496 * C is the clean space, 1497 * D is the dirty space, 1498 * M is the dirty metadata, and 1499 * T = C + D is the total space on disk. 1500 * 1501 * This approximates the old formula of E = C * M / D when D is close to T, 1502 * but avoids falsely reporting "disk full" when the sample size (D) is small. 1503 */ 1504 #define LFS_EST_CMETA(F) (( \ 1505 (lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) / \ 1506 (lfs_sb_getnseg(F)))) 1507 1508 /* Estimate total size of the disk not including metadata */ 1509 #define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F)) 1510 1511 /* Estimate number of blocks actually available for writing */ 1512 #define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ? \ 1513 lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0) 1514 1515 /* Amount of non-meta space not available to mortal man */ 1516 #define LFS_EST_RSVD(F) ((LFS_EST_NONMETA(F) * \ 1517 (uint64_t)lfs_sb_getminfree(F)) / \ 1518 100) 1519 1520 /* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */ 1521 #define ISSPACE(F, BB, C) \ 1522 ((((C) == NOCRED || kauth_cred_geteuid(C) == 0) && \ 1523 LFS_EST_BFREE(F) >= (BB)) || \ 1524 (kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB))) 1525 1526 /* Can an ordinary user write BB blocks */ 1527 #define IS_FREESPACE(F, BB) \ 1528 (LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F)) 1529 1530 /* 1531 * The minimum number of blocks to create a new inode. This is: 1532 * directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) + 1533 * ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks. 1534 */ 1535 #define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F))) 1536 1537 1538 /* 1539 * Suppress spurious clang warnings 1540 */ 1541 #ifdef __GNUC__ 1542 #if defined(__clang__) 1543 #pragma clang diagnostic pop 1544 #elif __GNUC_PREREQ__(9,0) 1545 #pragma GCC diagnostic pop 1546 #endif 1547 #endif 1548 1549 1550 #endif /* _UFS_LFS_LFS_ACCESSORS_H_ */ 1551