Home | History | Annotate | Line # | Download | only in kern
      1 /*	$NetBSD: kern_mutex.c,v 1.112 2023/10/15 10:28:23 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2006, 2007, 2008, 2019, 2023
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Jason R. Thorpe and Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Kernel mutex implementation, modeled after those found in Solaris,
     35  * a description of which can be found in:
     36  *
     37  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     38  *	    Richard McDougall.
     39  */
     40 
     41 #define	__MUTEX_PRIVATE
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.112 2023/10/15 10:28:23 riastradh Exp $");
     45 
     46 #include <sys/param.h>
     47 
     48 #include <sys/atomic.h>
     49 #include <sys/cpu.h>
     50 #include <sys/intr.h>
     51 #include <sys/kernel.h>
     52 #include <sys/lock.h>
     53 #include <sys/lockdebug.h>
     54 #include <sys/mutex.h>
     55 #include <sys/proc.h>
     56 #include <sys/pserialize.h>
     57 #include <sys/sched.h>
     58 #include <sys/sleepq.h>
     59 #include <sys/syncobj.h>
     60 #include <sys/systm.h>
     61 #include <sys/types.h>
     62 
     63 #include <dev/lockstat.h>
     64 
     65 #include <machine/lock.h>
     66 
     67 /*
     68  * When not running a debug kernel, spin mutexes are not much
     69  * more than an splraiseipl() and splx() pair.
     70  */
     71 
     72 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
     73 #define	FULL
     74 #endif
     75 
     76 /*
     77  * Debugging support.
     78  */
     79 
     80 #define	MUTEX_WANTLOCK(mtx)					\
     81     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
     82         (uintptr_t)__builtin_return_address(0), 0)
     83 #define	MUTEX_TESTLOCK(mtx)					\
     84     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
     85         (uintptr_t)__builtin_return_address(0), -1)
     86 #define	MUTEX_LOCKED(mtx)					\
     87     LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL,		\
     88         (uintptr_t)__builtin_return_address(0), 0)
     89 #define	MUTEX_UNLOCKED(mtx)					\
     90     LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx),		\
     91         (uintptr_t)__builtin_return_address(0), 0)
     92 #define	MUTEX_ABORT(mtx, msg)					\
     93     mutex_abort(__func__, __LINE__, mtx, msg)
     94 
     95 #if defined(LOCKDEBUG)
     96 
     97 #define	MUTEX_DASSERT(mtx, cond)				\
     98 do {								\
     99 	if (__predict_false(!(cond)))				\
    100 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
    101 } while (/* CONSTCOND */ 0)
    102 
    103 #else	/* LOCKDEBUG */
    104 
    105 #define	MUTEX_DASSERT(mtx, cond)	/* nothing */
    106 
    107 #endif /* LOCKDEBUG */
    108 
    109 #if defined(DIAGNOSTIC)
    110 
    111 #define	MUTEX_ASSERT(mtx, cond)					\
    112 do {								\
    113 	if (__predict_false(!(cond)))				\
    114 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
    115 } while (/* CONSTCOND */ 0)
    116 
    117 #else	/* DIAGNOSTIC */
    118 
    119 #define	MUTEX_ASSERT(mtx, cond)	/* nothing */
    120 
    121 #endif	/* DIAGNOSTIC */
    122 
    123 /*
    124  * Some architectures can't use __cpu_simple_lock as is so allow a way
    125  * for them to use an alternate definition.
    126  */
    127 #ifndef MUTEX_SPINBIT_LOCK_INIT
    128 #define MUTEX_SPINBIT_LOCK_INIT(mtx)	__cpu_simple_lock_init(&(mtx)->mtx_lock)
    129 #endif
    130 #ifndef MUTEX_SPINBIT_LOCKED_P
    131 #define MUTEX_SPINBIT_LOCKED_P(mtx)	__SIMPLELOCK_LOCKED_P(&(mtx)->mtx_lock)
    132 #endif
    133 #ifndef MUTEX_SPINBIT_LOCK_TRY
    134 #define MUTEX_SPINBIT_LOCK_TRY(mtx)	__cpu_simple_lock_try(&(mtx)->mtx_lock)
    135 #endif
    136 #ifndef MUTEX_SPINBIT_LOCK_UNLOCK
    137 #define MUTEX_SPINBIT_LOCK_UNLOCK(mtx)	__cpu_simple_unlock(&(mtx)->mtx_lock)
    138 #endif
    139 
    140 #ifndef MUTEX_INITIALIZE_SPIN_IPL
    141 #define MUTEX_INITIALIZE_SPIN_IPL(mtx, ipl) \
    142 					((mtx)->mtx_ipl = makeiplcookie((ipl)))
    143 #endif
    144 
    145 /*
    146  * Spin mutex SPL save / restore.
    147  */
    148 
    149 #define	MUTEX_SPIN_SPLRAISE(mtx)					\
    150 do {									\
    151 	const int s = splraiseipl(MUTEX_SPIN_IPL(mtx));			\
    152 	struct cpu_info * const x__ci = curcpu();			\
    153 	const int x__cnt = x__ci->ci_mtx_count--;			\
    154 	__insn_barrier();						\
    155 	if (x__cnt == 0)						\
    156 		x__ci->ci_mtx_oldspl = s;				\
    157 } while (/* CONSTCOND */ 0)
    158 
    159 #define	MUTEX_SPIN_SPLRESTORE(mtx)					\
    160 do {									\
    161 	struct cpu_info * const x__ci = curcpu();			\
    162 	const int s = x__ci->ci_mtx_oldspl;				\
    163 	__insn_barrier();						\
    164 	if (++(x__ci->ci_mtx_count) == 0)				\
    165 		splx(s);						\
    166 } while (/* CONSTCOND */ 0)
    167 
    168 /*
    169  * Memory barriers.
    170  */
    171 #ifdef __HAVE_ATOMIC_AS_MEMBAR
    172 #define	MUTEX_MEMBAR_ENTER()
    173 #else
    174 #define	MUTEX_MEMBAR_ENTER()		membar_enter()
    175 #endif
    176 
    177 /*
    178  * For architectures that provide 'simple' mutexes: they provide a
    179  * CAS function that is either MP-safe, or does not need to be MP
    180  * safe.  Adaptive mutexes on these architectures do not require an
    181  * additional interlock.
    182  */
    183 
    184 #ifdef __HAVE_SIMPLE_MUTEXES
    185 
    186 #define	MUTEX_OWNER(owner)						\
    187 	(owner & MUTEX_THREAD)
    188 #define	MUTEX_HAS_WAITERS(mtx)						\
    189 	(((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
    190 
    191 #define	MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug)				\
    192 do {									\
    193 	if (!dodebug)							\
    194 		(mtx)->mtx_owner |= MUTEX_BIT_NODEBUG;			\
    195 } while (/* CONSTCOND */ 0)
    196 
    197 #define	MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl)			\
    198 do {									\
    199 	(mtx)->mtx_owner = MUTEX_BIT_SPIN;				\
    200 	if (!dodebug)							\
    201 		(mtx)->mtx_owner |= MUTEX_BIT_NODEBUG;			\
    202 	MUTEX_INITIALIZE_SPIN_IPL((mtx), (ipl));			\
    203 	MUTEX_SPINBIT_LOCK_INIT((mtx));					\
    204 } while (/* CONSTCOND */ 0)
    205 
    206 #define	MUTEX_DESTROY(mtx)						\
    207 do {									\
    208 	(mtx)->mtx_owner = MUTEX_THREAD;				\
    209 } while (/* CONSTCOND */ 0)
    210 
    211 #define	MUTEX_SPIN_P(owner)		\
    212     (((owner) & MUTEX_BIT_SPIN) != 0)
    213 #define	MUTEX_ADAPTIVE_P(owner)		\
    214     (((owner) & MUTEX_BIT_SPIN) == 0)
    215 
    216 #ifndef MUTEX_CAS
    217 #define	MUTEX_CAS(p, o, n)		\
    218 	(atomic_cas_ulong((volatile unsigned long *)(p), (o), (n)) == (o))
    219 #endif /* MUTEX_CAS */
    220 
    221 #define	MUTEX_DEBUG_P(mtx)	(((mtx)->mtx_owner & MUTEX_BIT_NODEBUG) == 0)
    222 #if defined(LOCKDEBUG)
    223 #define	MUTEX_OWNED(owner)		(((owner) & ~MUTEX_BIT_NODEBUG) != 0)
    224 #define	MUTEX_INHERITDEBUG(n, o)	(n) |= (o) & MUTEX_BIT_NODEBUG
    225 #else /* defined(LOCKDEBUG) */
    226 #define	MUTEX_OWNED(owner)		((owner) != 0)
    227 #define	MUTEX_INHERITDEBUG(n, o)	/* nothing */
    228 #endif /* defined(LOCKDEBUG) */
    229 
    230 static inline int
    231 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
    232 {
    233 	int rv;
    234 	uintptr_t oldown = 0;
    235 	uintptr_t newown = curthread;
    236 
    237 	MUTEX_INHERITDEBUG(oldown, mtx->mtx_owner);
    238 	MUTEX_INHERITDEBUG(newown, oldown);
    239 	rv = MUTEX_CAS(&mtx->mtx_owner, oldown, newown);
    240 	membar_acquire();
    241 	return rv;
    242 }
    243 
    244 static inline int
    245 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
    246 {
    247 	int rv;
    248 
    249 	rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
    250 	MUTEX_MEMBAR_ENTER();
    251 	return rv;
    252 }
    253 
    254 static inline void
    255 MUTEX_RELEASE(kmutex_t *mtx)
    256 {
    257 	uintptr_t newown;
    258 
    259 	newown = 0;
    260 	MUTEX_INHERITDEBUG(newown, mtx->mtx_owner);
    261 	atomic_store_release(&mtx->mtx_owner, newown);
    262 }
    263 #endif	/* __HAVE_SIMPLE_MUTEXES */
    264 
    265 /*
    266  * Patch in stubs via strong alias where they are not available.
    267  */
    268 
    269 #if defined(LOCKDEBUG)
    270 #undef	__HAVE_MUTEX_STUBS
    271 #undef	__HAVE_SPIN_MUTEX_STUBS
    272 #endif
    273 
    274 #ifndef __HAVE_MUTEX_STUBS
    275 __strong_alias(mutex_enter,mutex_vector_enter);
    276 __strong_alias(mutex_exit,mutex_vector_exit);
    277 #endif
    278 
    279 #ifndef __HAVE_SPIN_MUTEX_STUBS
    280 __strong_alias(mutex_spin_enter,mutex_vector_enter);
    281 __strong_alias(mutex_spin_exit,mutex_vector_exit);
    282 #endif
    283 
    284 static void	mutex_abort(const char *, size_t, volatile const kmutex_t *,
    285 		    const char *);
    286 static void	mutex_dump(const volatile void *, lockop_printer_t);
    287 static lwp_t	*mutex_owner(wchan_t);
    288 
    289 lockops_t mutex_spin_lockops = {
    290 	.lo_name = "Mutex",
    291 	.lo_type = LOCKOPS_SPIN,
    292 	.lo_dump = mutex_dump,
    293 };
    294 
    295 lockops_t mutex_adaptive_lockops = {
    296 	.lo_name = "Mutex",
    297 	.lo_type = LOCKOPS_SLEEP,
    298 	.lo_dump = mutex_dump,
    299 };
    300 
    301 syncobj_t mutex_syncobj = {
    302 	.sobj_name	= "mutex",
    303 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    304 	.sobj_boostpri  = PRI_KERNEL,
    305 	.sobj_unsleep	= turnstile_unsleep,
    306 	.sobj_changepri	= turnstile_changepri,
    307 	.sobj_lendpri	= sleepq_lendpri,
    308 	.sobj_owner	= mutex_owner,
    309 };
    310 
    311 /*
    312  * mutex_dump:
    313  *
    314  *	Dump the contents of a mutex structure.
    315  */
    316 static void
    317 mutex_dump(const volatile void *cookie, lockop_printer_t pr)
    318 {
    319 	const volatile kmutex_t *mtx = cookie;
    320 	uintptr_t owner = mtx->mtx_owner;
    321 
    322 	pr("owner field  : %#018lx wait/spin: %16d/%d\n",
    323 	    (long)MUTEX_OWNER(owner), MUTEX_HAS_WAITERS(mtx),
    324 	    MUTEX_SPIN_P(owner));
    325 }
    326 
    327 /*
    328  * mutex_abort:
    329  *
    330  *	Dump information about an error and panic the system.  This
    331  *	generates a lot of machine code in the DIAGNOSTIC case, so
    332  *	we ask the compiler to not inline it.
    333  */
    334 static void __noinline
    335 mutex_abort(const char *func, size_t line, volatile const kmutex_t *mtx,
    336     const char *msg)
    337 {
    338 
    339 	LOCKDEBUG_ABORT(func, line, mtx, (MUTEX_SPIN_P(mtx->mtx_owner) ?
    340 	    &mutex_spin_lockops : &mutex_adaptive_lockops), msg);
    341 }
    342 
    343 /*
    344  * mutex_init:
    345  *
    346  *	Initialize a mutex for use.  Note that adaptive mutexes are in
    347  *	essence spin mutexes that can sleep to avoid deadlock and wasting
    348  *	CPU time.  We can't easily provide a type of mutex that always
    349  *	sleeps - see comments in mutex_vector_enter() about releasing
    350  *	mutexes unlocked.
    351  */
    352 void
    353 _mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl,
    354     uintptr_t return_address)
    355 {
    356 	lockops_t *lockops __unused;
    357 	bool dodebug;
    358 
    359 	memset(mtx, 0, sizeof(*mtx));
    360 
    361 	if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
    362 	    ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
    363 	    ipl == IPL_SOFTSERIAL) {
    364 		lockops = (type == MUTEX_NODEBUG ?
    365 		    NULL : &mutex_adaptive_lockops);
    366 		dodebug = LOCKDEBUG_ALLOC(mtx, lockops, return_address);
    367 		MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
    368 	} else {
    369 		lockops = (type == MUTEX_NODEBUG ?
    370 		    NULL : &mutex_spin_lockops);
    371 		dodebug = LOCKDEBUG_ALLOC(mtx, lockops, return_address);
    372 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    373 	}
    374 }
    375 
    376 void
    377 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
    378 {
    379 
    380 	_mutex_init(mtx, type, ipl, (uintptr_t)__builtin_return_address(0));
    381 }
    382 
    383 /*
    384  * mutex_destroy:
    385  *
    386  *	Tear down a mutex.
    387  */
    388 void
    389 mutex_destroy(kmutex_t *mtx)
    390 {
    391 	uintptr_t owner = mtx->mtx_owner;
    392 
    393 	if (MUTEX_ADAPTIVE_P(owner)) {
    394 		MUTEX_ASSERT(mtx, !MUTEX_OWNED(owner));
    395 		MUTEX_ASSERT(mtx, !MUTEX_HAS_WAITERS(mtx));
    396 	} else {
    397 		MUTEX_ASSERT(mtx, !MUTEX_SPINBIT_LOCKED_P(mtx));
    398 	}
    399 
    400 	LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
    401 	MUTEX_DESTROY(mtx);
    402 }
    403 
    404 #ifdef MULTIPROCESSOR
    405 /*
    406  * mutex_oncpu:
    407  *
    408  *	Return true if an adaptive mutex owner is running on a CPU in the
    409  *	system.  If the target is waiting on the kernel big lock, then we
    410  *	must release it.  This is necessary to avoid deadlock.
    411  */
    412 static bool
    413 mutex_oncpu(uintptr_t owner)
    414 {
    415 	struct cpu_info *ci;
    416 	lwp_t *l;
    417 
    418 	KASSERT(kpreempt_disabled());
    419 
    420 	if (!MUTEX_OWNED(owner)) {
    421 		return false;
    422 	}
    423 
    424 	/*
    425 	 * See lwp_dtor() why dereference of the LWP pointer is safe.
    426 	 * We must have kernel preemption disabled for that.
    427 	 */
    428 	l = (lwp_t *)MUTEX_OWNER(owner);
    429 	ci = l->l_cpu;
    430 
    431 	if (ci && ci->ci_curlwp == l) {
    432 		/* Target is running; do we need to block? */
    433 		return (atomic_load_relaxed(&ci->ci_biglock_wanted) != l);
    434 	}
    435 
    436 	/* Not running.  It may be safe to block now. */
    437 	return false;
    438 }
    439 #endif	/* MULTIPROCESSOR */
    440 
    441 /*
    442  * mutex_vector_enter:
    443  *
    444  *	Support routine for mutex_enter() that must handle all cases.  In
    445  *	the LOCKDEBUG case, mutex_enter() is always aliased here, even if
    446  *	fast-path stubs are available.  If a mutex_spin_enter() stub is
    447  *	not available, then it is also aliased directly here.
    448  */
    449 void
    450 mutex_vector_enter(kmutex_t *mtx)
    451 {
    452 	uintptr_t owner, curthread;
    453 	turnstile_t *ts;
    454 #ifdef MULTIPROCESSOR
    455 	u_int count;
    456 #endif
    457 	LOCKSTAT_COUNTER(spincnt);
    458 	LOCKSTAT_COUNTER(slpcnt);
    459 	LOCKSTAT_TIMER(spintime);
    460 	LOCKSTAT_TIMER(slptime);
    461 	LOCKSTAT_FLAG(lsflag);
    462 
    463 	/*
    464 	 * Handle spin mutexes.
    465 	 */
    466 	KPREEMPT_DISABLE(curlwp);
    467 	owner = mtx->mtx_owner;
    468 	if (MUTEX_SPIN_P(owner)) {
    469 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
    470 		u_int spins = 0;
    471 #endif
    472 		KPREEMPT_ENABLE(curlwp);
    473 		MUTEX_SPIN_SPLRAISE(mtx);
    474 		MUTEX_WANTLOCK(mtx);
    475 #ifdef FULL
    476 		if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
    477 			MUTEX_LOCKED(mtx);
    478 			return;
    479 		}
    480 #if !defined(MULTIPROCESSOR)
    481 		MUTEX_ABORT(mtx, "locking against myself");
    482 #else /* !MULTIPROCESSOR */
    483 
    484 		LOCKSTAT_ENTER(lsflag);
    485 		LOCKSTAT_START_TIMER(lsflag, spintime);
    486 		count = SPINLOCK_BACKOFF_MIN;
    487 
    488 		/*
    489 		 * Spin testing the lock word and do exponential backoff
    490 		 * to reduce cache line ping-ponging between CPUs.
    491 		 */
    492 		do {
    493 			while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
    494 				SPINLOCK_SPIN_HOOK;
    495 				SPINLOCK_BACKOFF(count);
    496 #ifdef LOCKDEBUG
    497 				if (SPINLOCK_SPINOUT(spins))
    498 					MUTEX_ABORT(mtx, "spinout");
    499 #endif	/* LOCKDEBUG */
    500 			}
    501 		} while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
    502 
    503 		if (count != SPINLOCK_BACKOFF_MIN) {
    504 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    505 			LOCKSTAT_EVENT(lsflag, mtx,
    506 			    LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    507 		}
    508 		LOCKSTAT_EXIT(lsflag);
    509 #endif	/* !MULTIPROCESSOR */
    510 #endif	/* FULL */
    511 		MUTEX_LOCKED(mtx);
    512 		return;
    513 	}
    514 
    515 	curthread = (uintptr_t)curlwp;
    516 
    517 	MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(owner));
    518 	MUTEX_ASSERT(mtx, curthread != 0);
    519 	MUTEX_ASSERT(mtx, !cpu_intr_p());
    520 	MUTEX_WANTLOCK(mtx);
    521 
    522 	if (__predict_true(panicstr == NULL)) {
    523 		KDASSERT(pserialize_not_in_read_section());
    524 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    525 	}
    526 
    527 	LOCKSTAT_ENTER(lsflag);
    528 
    529 	/*
    530 	 * Adaptive mutex; spin trying to acquire the mutex.  If we
    531 	 * determine that the owner is not running on a processor,
    532 	 * then we stop spinning, and sleep instead.
    533 	 */
    534 	for (;;) {
    535 		if (!MUTEX_OWNED(owner)) {
    536 			/*
    537 			 * Mutex owner clear could mean two things:
    538 			 *
    539 			 *	* The mutex has been released.
    540 			 *	* The owner field hasn't been set yet.
    541 			 *
    542 			 * Try to acquire it again.  If that fails,
    543 			 * we'll just loop again.
    544 			 */
    545 			if (MUTEX_ACQUIRE(mtx, curthread))
    546 				break;
    547 			owner = mtx->mtx_owner;
    548 			continue;
    549 		}
    550 		if (__predict_false(MUTEX_OWNER(owner) == curthread)) {
    551 			MUTEX_ABORT(mtx, "locking against myself");
    552 		}
    553 #ifdef MULTIPROCESSOR
    554 		/*
    555 		 * Check to see if the owner is running on a processor.
    556 		 * If so, then we should just spin, as the owner will
    557 		 * likely release the lock very soon.
    558 		 */
    559 		if (mutex_oncpu(owner)) {
    560 			LOCKSTAT_START_TIMER(lsflag, spintime);
    561 			count = SPINLOCK_BACKOFF_MIN;
    562 			do {
    563 				KPREEMPT_ENABLE(curlwp);
    564 				SPINLOCK_BACKOFF(count);
    565 				KPREEMPT_DISABLE(curlwp);
    566 				owner = mtx->mtx_owner;
    567 			} while (mutex_oncpu(owner));
    568 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    569 			LOCKSTAT_COUNT(spincnt, 1);
    570 			if (!MUTEX_OWNED(owner))
    571 				continue;
    572 		}
    573 #endif
    574 
    575 		ts = turnstile_lookup(mtx);
    576 
    577 		/*
    578 		 * Once we have the turnstile chain interlock, mark the
    579 		 * mutex as having waiters.  If that fails, spin again:
    580 		 * chances are that the mutex has been released.
    581 		 */
    582 		if (!MUTEX_SET_WAITERS(mtx, owner)) {
    583 			turnstile_exit(mtx);
    584 			owner = mtx->mtx_owner;
    585 			continue;
    586 		}
    587 
    588 #ifdef MULTIPROCESSOR
    589 		/*
    590 		 * mutex_exit() is permitted to release the mutex without
    591 		 * any interlocking instructions, and the following can
    592 		 * occur as a result:
    593 		 *
    594 		 *  CPU 1: MUTEX_SET_WAITERS()      CPU2: mutex_exit()
    595 		 * ---------------------------- ----------------------------
    596 		 *		..		load mtx->mtx_owner
    597 		 *		..		see has-waiters bit clear
    598 		 *	set has-waiters bit  	           ..
    599 		 *		..		store mtx->mtx_owner := 0
    600 		 *	  return success
    601 		 *
    602 		 * There is another race that can occur: a third CPU could
    603 		 * acquire the mutex as soon as it is released.  Since
    604 		 * adaptive mutexes are primarily spin mutexes, this is not
    605 		 * something that we need to worry about too much.  What we
    606 		 * do need to ensure is that the waiters bit gets set.
    607 		 *
    608 		 * To allow the unlocked release, we need to make some
    609 		 * assumptions here:
    610 		 *
    611 		 * o Release is the only non-atomic/unlocked operation
    612 		 *   that can be performed on the mutex.  (It must still
    613 		 *   be atomic on the local CPU, e.g. in case interrupted
    614 		 *   or preempted).
    615 		 *
    616 		 * o At any given time on each mutex, MUTEX_SET_WAITERS()
    617 		 *   can only ever be in progress on one CPU in the
    618 		 *   system - guaranteed by the turnstile chain lock.
    619 		 *
    620 		 * o No other operations other than MUTEX_SET_WAITERS()
    621 		 *   and release can modify a mutex with a non-zero
    622 		 *   owner field.
    623 		 *
    624 		 * o If the holding LWP switches away, it posts a store
    625 		 *   fence before changing curlwp, ensuring that any
    626 		 *   overwrite of the mutex waiters flag by mutex_exit()
    627 		 *   completes before the modification of curlwp becomes
    628 		 *   visible to this CPU.
    629 		 *
    630 		 * o cpu_switchto() posts a store fence after setting curlwp
    631 		 *   and before resuming execution of an LWP.
    632 		 *
    633 		 * o _kernel_lock() posts a store fence before setting
    634 		 *   curcpu()->ci_biglock_wanted, and after clearing it.
    635 		 *   This ensures that any overwrite of the mutex waiters
    636 		 *   flag by mutex_exit() completes before the modification
    637 		 *   of ci_biglock_wanted becomes visible.
    638 		 *
    639 		 * After MUTEX_SET_WAITERS() succeeds, simultaneously
    640 		 * confirming that the same LWP still holds the mutex
    641 		 * since we took the turnstile lock and notifying it that
    642 		 * we're waiting, we check the lock holder's status again.
    643 		 * Some of the possible outcomes (not an exhaustive list;
    644 		 * XXX this should be made exhaustive):
    645 		 *
    646 		 * 1. The on-CPU check returns true: the holding LWP is
    647 		 *    running again.  The lock may be released soon and
    648 		 *    we should spin.  Importantly, we can't trust the
    649 		 *    value of the waiters flag.
    650 		 *
    651 		 * 2. The on-CPU check returns false: the holding LWP is
    652 		 *    not running.  We now have the opportunity to check
    653 		 *    if mutex_exit() has blatted the modifications made
    654 		 *    by MUTEX_SET_WAITERS().
    655 		 *
    656 		 * 3. The on-CPU check returns false: the holding LWP may
    657 		 *    or may not be running.  It has context switched at
    658 		 *    some point during our check.  Again, we have the
    659 		 *    chance to see if the waiters bit is still set or
    660 		 *    has been overwritten.
    661 		 *
    662 		 * 4. The on-CPU check returns false: the holding LWP is
    663 		 *    running on a CPU, but wants the big lock.  It's OK
    664 		 *    to check the waiters field in this case.
    665 		 *
    666 		 * 5. The has-waiters check fails: the mutex has been
    667 		 *    released, the waiters flag cleared and another LWP
    668 		 *    now owns the mutex.
    669 		 *
    670 		 * 6. The has-waiters check fails: the mutex has been
    671 		 *    released.
    672 		 *
    673 		 * If the waiters bit is not set it's unsafe to go asleep,
    674 		 * as we might never be awoken.
    675 		 */
    676 		if (mutex_oncpu(owner)) {
    677 			turnstile_exit(mtx);
    678 			owner = mtx->mtx_owner;
    679 			continue;
    680 		}
    681 		membar_consumer();
    682 		if (!MUTEX_HAS_WAITERS(mtx)) {
    683 			turnstile_exit(mtx);
    684 			owner = mtx->mtx_owner;
    685 			continue;
    686 		}
    687 #endif	/* MULTIPROCESSOR */
    688 
    689 		LOCKSTAT_START_TIMER(lsflag, slptime);
    690 
    691 		turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
    692 
    693 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    694 		LOCKSTAT_COUNT(slpcnt, 1);
    695 
    696 		owner = mtx->mtx_owner;
    697 	}
    698 	KPREEMPT_ENABLE(curlwp);
    699 
    700 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
    701 	    slpcnt, slptime);
    702 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
    703 	    spincnt, spintime);
    704 	LOCKSTAT_EXIT(lsflag);
    705 
    706 	MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    707 	MUTEX_LOCKED(mtx);
    708 }
    709 
    710 /*
    711  * mutex_vector_exit:
    712  *
    713  *	Support routine for mutex_exit() that handles all cases.
    714  */
    715 void
    716 mutex_vector_exit(kmutex_t *mtx)
    717 {
    718 	turnstile_t *ts;
    719 	uintptr_t curthread;
    720 
    721 	if (MUTEX_SPIN_P(mtx->mtx_owner)) {
    722 #ifdef FULL
    723 		if (__predict_false(!MUTEX_SPINBIT_LOCKED_P(mtx))) {
    724 			MUTEX_ABORT(mtx, "exiting unheld spin mutex");
    725 		}
    726 		MUTEX_UNLOCKED(mtx);
    727 		MUTEX_SPINBIT_LOCK_UNLOCK(mtx);
    728 #endif
    729 		MUTEX_SPIN_SPLRESTORE(mtx);
    730 		return;
    731 	}
    732 
    733 #ifndef __HAVE_MUTEX_STUBS
    734 	/*
    735 	 * On some architectures without mutex stubs, we can enter here to
    736 	 * release mutexes before interrupts and whatnot are up and running.
    737 	 * We need this hack to keep them sweet.
    738 	 */
    739 	if (__predict_false(cold)) {
    740 		MUTEX_UNLOCKED(mtx);
    741 		MUTEX_RELEASE(mtx);
    742 		return;
    743 	}
    744 #endif
    745 
    746 	curthread = (uintptr_t)curlwp;
    747 	MUTEX_DASSERT(mtx, curthread != 0);
    748 	MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    749 	MUTEX_UNLOCKED(mtx);
    750 #if !defined(LOCKDEBUG)
    751 	__USE(curthread);
    752 #endif
    753 
    754 #ifdef LOCKDEBUG
    755 	/*
    756 	 * Avoid having to take the turnstile chain lock every time
    757 	 * around.  Raise the priority level to splhigh() in order
    758 	 * to disable preemption and so make the following atomic.
    759 	 * This also blocks out soft interrupts that could set the
    760 	 * waiters bit.
    761 	 */
    762 	{
    763 		int s = splhigh();
    764 		if (!MUTEX_HAS_WAITERS(mtx)) {
    765 			MUTEX_RELEASE(mtx);
    766 			splx(s);
    767 			return;
    768 		}
    769 		splx(s);
    770 	}
    771 #endif
    772 
    773 	/*
    774 	 * Get this lock's turnstile.  This gets the interlock on
    775 	 * the sleep queue.  Once we have that, we can clear the
    776 	 * lock.  If there was no turnstile for the lock, there
    777 	 * were no waiters remaining.
    778 	 */
    779 	ts = turnstile_lookup(mtx);
    780 
    781 	if (ts == NULL) {
    782 		MUTEX_RELEASE(mtx);
    783 		turnstile_exit(mtx);
    784 	} else {
    785 		MUTEX_RELEASE(mtx);
    786 		turnstile_wakeup(ts, TS_WRITER_Q,
    787 		    TS_WAITERS(ts, TS_WRITER_Q), NULL);
    788 	}
    789 }
    790 
    791 #ifndef __HAVE_SIMPLE_MUTEXES
    792 /*
    793  * mutex_wakeup:
    794  *
    795  *	Support routine for mutex_exit() that wakes up all waiters.
    796  *	We assume that the mutex has been released, but it need not
    797  *	be.
    798  */
    799 void
    800 mutex_wakeup(kmutex_t *mtx)
    801 {
    802 	turnstile_t *ts;
    803 
    804 	ts = turnstile_lookup(mtx);
    805 	if (ts == NULL) {
    806 		turnstile_exit(mtx);
    807 		return;
    808 	}
    809 	MUTEX_CLEAR_WAITERS(mtx);
    810 	turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
    811 }
    812 #endif	/* !__HAVE_SIMPLE_MUTEXES */
    813 
    814 /*
    815  * mutex_owned:
    816  *
    817  *	Return true if the current LWP (adaptive) or CPU (spin)
    818  *	holds the mutex.
    819  */
    820 int
    821 mutex_owned(const kmutex_t *mtx)
    822 {
    823 
    824 	if (mtx == NULL)
    825 		return 0;
    826 	if (MUTEX_ADAPTIVE_P(mtx->mtx_owner))
    827 		return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
    828 #ifdef FULL
    829 	return MUTEX_SPINBIT_LOCKED_P(mtx);
    830 #else
    831 	return 1;
    832 #endif
    833 }
    834 
    835 /*
    836  * mutex_owner:
    837  *
    838  *	Return the current owner of an adaptive mutex.  Used for
    839  *	priority inheritance.
    840  */
    841 static lwp_t *
    842 mutex_owner(wchan_t wchan)
    843 {
    844 	volatile const kmutex_t *mtx = wchan;
    845 
    846 	MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx->mtx_owner));
    847 	return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
    848 }
    849 
    850 /*
    851  * mutex_ownable:
    852  *
    853  *	When compiled with DEBUG and LOCKDEBUG defined, ensure that
    854  *	the mutex is available.  We cannot use !mutex_owned() since
    855  *	that won't work correctly for spin mutexes.
    856  */
    857 int
    858 mutex_ownable(const kmutex_t *mtx)
    859 {
    860 
    861 #ifdef LOCKDEBUG
    862 	MUTEX_TESTLOCK(mtx);
    863 #endif
    864 	return 1;
    865 }
    866 
    867 /*
    868  * mutex_tryenter:
    869  *
    870  *	Try to acquire the mutex; return non-zero if we did.
    871  */
    872 int
    873 mutex_tryenter(kmutex_t *mtx)
    874 {
    875 	uintptr_t curthread;
    876 
    877 	/*
    878 	 * Handle spin mutexes.
    879 	 */
    880 	if (MUTEX_SPIN_P(mtx->mtx_owner)) {
    881 		MUTEX_SPIN_SPLRAISE(mtx);
    882 #ifdef FULL
    883 		if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
    884 			MUTEX_WANTLOCK(mtx);
    885 			MUTEX_LOCKED(mtx);
    886 			return 1;
    887 		}
    888 		MUTEX_SPIN_SPLRESTORE(mtx);
    889 #else
    890 		MUTEX_WANTLOCK(mtx);
    891 		MUTEX_LOCKED(mtx);
    892 		return 1;
    893 #endif
    894 	} else {
    895 		curthread = (uintptr_t)curlwp;
    896 		MUTEX_ASSERT(mtx, curthread != 0);
    897 		if (MUTEX_ACQUIRE(mtx, curthread)) {
    898 			MUTEX_WANTLOCK(mtx);
    899 			MUTEX_LOCKED(mtx);
    900 			MUTEX_DASSERT(mtx,
    901 			    MUTEX_OWNER(mtx->mtx_owner) == curthread);
    902 			return 1;
    903 		}
    904 	}
    905 
    906 	return 0;
    907 }
    908 
    909 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
    910 /*
    911  * mutex_spin_retry:
    912  *
    913  *	Support routine for mutex_spin_enter().  Assumes that the caller
    914  *	has already raised the SPL, and adjusted counters.
    915  */
    916 void
    917 mutex_spin_retry(kmutex_t *mtx)
    918 {
    919 #ifdef MULTIPROCESSOR
    920 	u_int count;
    921 	LOCKSTAT_TIMER(spintime);
    922 	LOCKSTAT_FLAG(lsflag);
    923 #ifdef LOCKDEBUG
    924 	u_int spins = 0;
    925 #endif	/* LOCKDEBUG */
    926 
    927 	MUTEX_WANTLOCK(mtx);
    928 
    929 	LOCKSTAT_ENTER(lsflag);
    930 	LOCKSTAT_START_TIMER(lsflag, spintime);
    931 	count = SPINLOCK_BACKOFF_MIN;
    932 
    933 	/*
    934 	 * Spin testing the lock word and do exponential backoff
    935 	 * to reduce cache line ping-ponging between CPUs.
    936 	 */
    937 	do {
    938 		while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
    939 			SPINLOCK_BACKOFF(count);
    940 #ifdef LOCKDEBUG
    941 			if (SPINLOCK_SPINOUT(spins))
    942 				MUTEX_ABORT(mtx, "spinout");
    943 #endif	/* LOCKDEBUG */
    944 		}
    945 	} while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
    946 
    947 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
    948 	LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    949 	LOCKSTAT_EXIT(lsflag);
    950 
    951 	MUTEX_LOCKED(mtx);
    952 #else	/* MULTIPROCESSOR */
    953 	MUTEX_ABORT(mtx, "locking against myself");
    954 #endif	/* MULTIPROCESSOR */
    955 }
    956 #endif	/* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
    957