Home | History | Annotate | Line # | Download | only in npf
      1 /*-
      2  * Copyright (c) 2014-2020 Mindaugas Rasiukevicius <rmind at noxt eu>
      3  * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This material is based upon work partially supported by The
      7  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     20  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     21  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     28  * POSSIBILITY OF SUCH DAMAGE.
     29  */
     30 
     31 /*
     32  * NPF connection tracking for stateful filtering and translation.
     33  *
     34  * Overview
     35  *
     36  *	Packets can be incoming or outgoing with respect to an interface.
     37  *	Connection direction is identified by the direction of its first
     38  *	packet.  The meaning of incoming/outgoing packet in the context of
     39  *	connection direction can be confusing.  Therefore, we will use the
     40  *	terms "forwards stream" and "backwards stream", where packets in
     41  *	the forwards stream mean the packets travelling in the direction
     42  *	as the connection direction.
     43  *
     44  *	All connections have two keys and thus two entries:
     45  *
     46  *	- npf_conn_getforwkey(con)        -- for the forwards stream;
     47  *	- npf_conn_getbackkey(con, alen)  -- for the backwards stream.
     48  *
     49  *	Note: the keys are stored in npf_conn_t::c_keys[], which is used
     50  *	to allocate variable-length npf_conn_t structures based on whether
     51  *	the IPv4 or IPv6 addresses are used.
     52  *
     53  *	The key is an n-tuple used to identify the connection flow: see the
     54  *	npf_connkey.c source file for the description of the key layouts.
     55  *	The key may be formed using translated values in a case of NAT.
     56  *
     57  *	Connections can serve two purposes: for the implicit passing and/or
     58  *	to accommodate the dynamic NAT.  Connections for the former purpose
     59  *	are created by the rules with "stateful" attribute and are used for
     60  *	stateful filtering.  Such connections indicate that the packet of
     61  *	the backwards stream should be passed without inspection of the
     62  *	ruleset.  The other purpose is to associate a dynamic NAT mechanism
     63  *	with a connection.  Such connections are created by the NAT policies
     64  *	and they have a relationship with NAT translation structure via
     65  *	npf_conn_t::c_nat.  A single connection can serve both purposes,
     66  *	which is a common case.
     67  *
     68  * Connection life-cycle
     69  *
     70  *	Connections are established when a packet matches said rule or
     71  *	NAT policy.  Both keys of the established connection are inserted
     72  *	into the connection database.  A garbage collection thread
     73  *	periodically scans all connections and depending on connection
     74  *	properties (e.g. last activity time, protocol) removes connection
     75  *	entries and expires the actual connections.
     76  *
     77  *	Each connection has a reference count.  The reference is acquired
     78  *	on lookup and should be released by the caller.  It guarantees that
     79  *	the connection will not be destroyed, although it may be expired.
     80  *
     81  * Synchronization
     82  *
     83  *	Connection database is accessed in a lock-free manner by the main
     84  *	routines: npf_conn_inspect() and npf_conn_establish().  Since they
     85  *	are always called from a software interrupt, the database is
     86  *	protected using EBR.  The main place which can destroy a connection
     87  *	is npf_conn_worker().  The database itself can be replaced and
     88  *	destroyed in npf_conn_reload().
     89  *
     90  * ALG support
     91  *
     92  *	Application-level gateways (ALGs) can override generic connection
     93  *	inspection (npf_alg_conn() call in npf_conn_inspect() function) by
     94  *	performing their own lookup using different key.  Recursive call
     95  *	to npf_conn_inspect() is not allowed.  The ALGs ought to use the
     96  *	npf_conn_lookup() function for this purpose.
     97  *
     98  * Lock order
     99  *
    100  *	npf_t::config_lock ->
    101  *		conn_lock ->
    102  *			npf_conn_t::c_lock
    103  */
    104 
    105 #ifdef _KERNEL
    106 #include <sys/cdefs.h>
    107 __KERNEL_RCSID(0, "$NetBSD: npf_conn.c,v 1.35 2023/01/22 18:39:35 riastradh Exp $");
    108 
    109 #include <sys/param.h>
    110 #include <sys/types.h>
    111 
    112 #include <netinet/in.h>
    113 #include <netinet/tcp.h>
    114 
    115 #include <sys/atomic.h>
    116 #include <sys/kmem.h>
    117 #include <sys/mutex.h>
    118 #include <net/pfil.h>
    119 #include <sys/pool.h>
    120 #include <sys/queue.h>
    121 #include <sys/systm.h>
    122 #endif
    123 
    124 #define __NPF_CONN_PRIVATE
    125 #include "npf_conn.h"
    126 #include "npf_impl.h"
    127 
    128 /* A helper to select the IPv4 or IPv6 connection cache. */
    129 #define	NPF_CONNCACHE(alen)	(((alen) >> 4) & 0x1)
    130 
    131 /*
    132  * Connection flags: PFIL_IN and PFIL_OUT values are reserved for direction.
    133  */
    134 CTASSERT(PFIL_ALL == (0x001 | 0x002));
    135 #define	CONN_ACTIVE	0x004	/* visible on inspection */
    136 #define	CONN_PASS	0x008	/* perform implicit passing */
    137 #define	CONN_EXPIRE	0x010	/* explicitly expire */
    138 #define	CONN_REMOVED	0x020	/* "forw/back" entries removed */
    139 
    140 enum { CONN_TRACKING_OFF, CONN_TRACKING_ON };
    141 
    142 static int	npf_conn_export(npf_t *, npf_conn_t *, nvlist_t *);
    143 
    144 /*
    145  * npf_conn_sys{init,fini}: initialize/destroy connection tracking.
    146  */
    147 
    148 void
    149 npf_conn_init(npf_t *npf)
    150 {
    151 	npf_conn_params_t *params = npf_param_allocgroup(npf,
    152 	    NPF_PARAMS_CONN, sizeof(npf_conn_params_t));
    153 	npf_param_t param_map[] = {
    154 		{
    155 			"state.key.interface",
    156 			&params->connkey_interface,
    157 			.default_val = 1, // true
    158 			.min = 0, .max = 1
    159 		},
    160 		{
    161 			"state.key.direction",
    162 			&params->connkey_direction,
    163 			.default_val = 1, // true
    164 			.min = 0, .max = 1
    165 		},
    166 	};
    167 	npf_param_register(npf, param_map, __arraycount(param_map));
    168 
    169 	npf->conn_cache[0] = pool_cache_init(
    170 	    offsetof(npf_conn_t, c_keys[NPF_CONNKEY_V4WORDS * 2]),
    171 	    0, 0, 0, "npfcn4pl", NULL, IPL_NET, NULL, NULL, NULL);
    172 	npf->conn_cache[1] = pool_cache_init(
    173 	    offsetof(npf_conn_t, c_keys[NPF_CONNKEY_V6WORDS * 2]),
    174 	    0, 0, 0, "npfcn6pl", NULL, IPL_NET, NULL, NULL, NULL);
    175 
    176 	mutex_init(&npf->conn_lock, MUTEX_DEFAULT, IPL_NONE);
    177 	atomic_store_relaxed(&npf->conn_tracking, CONN_TRACKING_OFF);
    178 	npf->conn_db = npf_conndb_create();
    179 	npf_conndb_sysinit(npf);
    180 
    181 	npf_worker_addfunc(npf, npf_conn_worker);
    182 }
    183 
    184 void
    185 npf_conn_fini(npf_t *npf)
    186 {
    187 	const size_t len = sizeof(npf_conn_params_t);
    188 
    189 	/* Note: the caller should have flushed the connections. */
    190 	KASSERT(atomic_load_relaxed(&npf->conn_tracking) == CONN_TRACKING_OFF);
    191 
    192 	npf_conndb_destroy(npf->conn_db);
    193 	pool_cache_destroy(npf->conn_cache[0]);
    194 	pool_cache_destroy(npf->conn_cache[1]);
    195 	mutex_destroy(&npf->conn_lock);
    196 
    197 	npf_param_freegroup(npf, NPF_PARAMS_CONN, len);
    198 	npf_conndb_sysfini(npf);
    199 }
    200 
    201 /*
    202  * npf_conn_load: perform the load by flushing the current connection
    203  * database and replacing it with the new one or just destroying.
    204  *
    205  * => The caller must disable the connection tracking and ensure that
    206  *    there are no connection database lookups or references in-flight.
    207  */
    208 void
    209 npf_conn_load(npf_t *npf, npf_conndb_t *ndb, bool track)
    210 {
    211 	npf_conndb_t *odb = NULL;
    212 
    213 	KASSERT(npf_config_locked_p(npf));
    214 
    215 	/*
    216 	 * The connection database is in the quiescent state.
    217 	 * Prevent G/C thread from running and install a new database.
    218 	 */
    219 	mutex_enter(&npf->conn_lock);
    220 	if (ndb) {
    221 		KASSERT(atomic_load_relaxed(&npf->conn_tracking)
    222 		    == CONN_TRACKING_OFF);
    223 		odb = atomic_load_relaxed(&npf->conn_db);
    224 		atomic_store_release(&npf->conn_db, ndb);
    225 	}
    226 	if (track) {
    227 		/* After this point lookups start flying in. */
    228 		membar_producer();
    229 		atomic_store_relaxed(&npf->conn_tracking, CONN_TRACKING_ON);
    230 	}
    231 	mutex_exit(&npf->conn_lock);
    232 
    233 	if (odb) {
    234 		/*
    235 		 * Flush all, no sync since the caller did it for us.
    236 		 * Also, release the pool cache memory.
    237 		 */
    238 		npf_conndb_gc(npf, odb, true, false);
    239 		npf_conndb_destroy(odb);
    240 		pool_cache_invalidate(npf->conn_cache[0]);
    241 		pool_cache_invalidate(npf->conn_cache[1]);
    242 	}
    243 }
    244 
    245 /*
    246  * npf_conn_tracking: enable/disable connection tracking.
    247  */
    248 void
    249 npf_conn_tracking(npf_t *npf, bool track)
    250 {
    251 	KASSERT(npf_config_locked_p(npf));
    252 	atomic_store_relaxed(&npf->conn_tracking,
    253 	    track ? CONN_TRACKING_ON : CONN_TRACKING_OFF);
    254 }
    255 
    256 static inline bool
    257 npf_conn_trackable_p(const npf_cache_t *npc)
    258 {
    259 	const npf_t *npf = npc->npc_ctx;
    260 
    261 	/*
    262 	 * Check if connection tracking is on.  Also, if layer 3 and 4 are
    263 	 * not cached - protocol is not supported or packet is invalid.
    264 	 */
    265 	if (atomic_load_relaxed(&npf->conn_tracking) != CONN_TRACKING_ON) {
    266 		return false;
    267 	}
    268 	if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
    269 		return false;
    270 	}
    271 	return true;
    272 }
    273 
    274 static inline void
    275 conn_update_atime(npf_conn_t *con)
    276 {
    277 	struct timespec tsnow;
    278 
    279 	getnanouptime(&tsnow);
    280 	atomic_store_relaxed(&con->c_atime, tsnow.tv_sec);
    281 }
    282 
    283 /*
    284  * npf_conn_check: check that:
    285  *
    286  *	- the connection is active;
    287  *
    288  *	- the packet is travelling in the right direction with the respect
    289  *	  to the connection direction (if interface-id is not zero);
    290  *
    291  *	- the packet is travelling on the same interface as the
    292  *	  connection interface (if interface-id is not zero).
    293  */
    294 static bool
    295 npf_conn_check(const npf_conn_t *con, const nbuf_t *nbuf,
    296     const unsigned di, const npf_flow_t flow)
    297 {
    298 	const uint32_t flags = atomic_load_relaxed(&con->c_flags);
    299 	const unsigned ifid = atomic_load_relaxed(&con->c_ifid);
    300 	bool active;
    301 
    302 	active = (flags & (CONN_ACTIVE | CONN_EXPIRE)) == CONN_ACTIVE;
    303 	if (__predict_false(!active)) {
    304 		return false;
    305 	}
    306 	if (ifid && nbuf) {
    307 		const bool match = (flags & PFIL_ALL) == di;
    308 		npf_flow_t pflow = match ? NPF_FLOW_FORW : NPF_FLOW_BACK;
    309 
    310 		if (__predict_false(flow != pflow)) {
    311 			return false;
    312 		}
    313 		if (__predict_false(ifid != nbuf->nb_ifid)) {
    314 			return false;
    315 		}
    316 	}
    317 	return true;
    318 }
    319 
    320 /*
    321  * npf_conn_lookup: lookup if there is an established connection.
    322  *
    323  * => If found, we will hold a reference for the caller.
    324  */
    325 npf_conn_t *
    326 npf_conn_lookup(const npf_cache_t *npc, const unsigned di, npf_flow_t *flow)
    327 {
    328 	npf_t *npf = npc->npc_ctx;
    329 	const nbuf_t *nbuf = npc->npc_nbuf;
    330 	npf_conn_t *con;
    331 	npf_connkey_t key;
    332 
    333 	/* Construct a key and lookup for a connection in the store. */
    334 	if (!npf_conn_conkey(npc, &key, di, NPF_FLOW_FORW)) {
    335 		return NULL;
    336 	}
    337 	con = npf_conndb_lookup(npf, &key, flow);
    338 	if (con == NULL) {
    339 		return NULL;
    340 	}
    341 	KASSERT(npc->npc_proto == atomic_load_relaxed(&con->c_proto));
    342 
    343 	/* Extra checks for the connection and packet. */
    344 	if (!npf_conn_check(con, nbuf, di, *flow)) {
    345 		atomic_dec_uint(&con->c_refcnt);
    346 		return NULL;
    347 	}
    348 
    349 	/* Update the last activity time. */
    350 	conn_update_atime(con);
    351 	return con;
    352 }
    353 
    354 /*
    355  * npf_conn_inspect: lookup a connection and inspecting the protocol data.
    356  *
    357  * => If found, we will hold a reference for the caller.
    358  */
    359 npf_conn_t *
    360 npf_conn_inspect(npf_cache_t *npc, const unsigned di, int *error)
    361 {
    362 	nbuf_t *nbuf = npc->npc_nbuf;
    363 	npf_flow_t flow;
    364 	npf_conn_t *con;
    365 	bool ok;
    366 
    367 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    368 	if (!npf_conn_trackable_p(npc)) {
    369 		return NULL;
    370 	}
    371 
    372 	/* Query ALG which may lookup connection for us. */
    373 	if ((con = npf_alg_conn(npc, di)) != NULL) {
    374 		/* Note: reference is held. */
    375 		return con;
    376 	}
    377 	if (nbuf_head_mbuf(nbuf) == NULL) {
    378 		*error = ENOMEM;
    379 		return NULL;
    380 	}
    381 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    382 
    383 	/* The main lookup of the connection (acquires a reference). */
    384 	if ((con = npf_conn_lookup(npc, di, &flow)) == NULL) {
    385 		return NULL;
    386 	}
    387 
    388 	/* Inspect the protocol data and handle state changes. */
    389 	mutex_enter(&con->c_lock);
    390 	ok = npf_state_inspect(npc, &con->c_state, flow);
    391 	mutex_exit(&con->c_lock);
    392 
    393 	/* If invalid state: let the rules deal with it. */
    394 	if (__predict_false(!ok)) {
    395 		npf_conn_release(con);
    396 		npf_stats_inc(npc->npc_ctx, NPF_STAT_INVALID_STATE);
    397 		return NULL;
    398 	}
    399 #if 0
    400 	/*
    401 	 * TODO -- determine when this might be wanted/used.
    402 	 *
    403 	 * Note: skipping the connection lookup and ruleset inspection
    404 	 * on other interfaces will also bypass dynamic NAT.
    405 	 */
    406 	if (atomic_load_relaxed(&con->c_flags) & CONN_GPASS) {
    407 		/*
    408 		 * Note: if tagging fails, then give this packet a chance
    409 		 * to go through a regular ruleset.
    410 		 */
    411 		(void)nbuf_add_tag(nbuf, NPF_NTAG_PASS);
    412 	}
    413 #endif
    414 	return con;
    415 }
    416 
    417 /*
    418  * npf_conn_establish: create a new connection, insert into the global list.
    419  *
    420  * => Connection is created with the reference held for the caller.
    421  * => Connection will be activated on the first reference release.
    422  */
    423 npf_conn_t *
    424 npf_conn_establish(npf_cache_t *npc, const unsigned di, bool global)
    425 {
    426 	npf_t *npf = npc->npc_ctx;
    427 	const unsigned alen = npc->npc_alen;
    428 	const unsigned idx = NPF_CONNCACHE(alen);
    429 	const nbuf_t *nbuf = npc->npc_nbuf;
    430 	npf_connkey_t *fw, *bk;
    431 	npf_conndb_t *conn_db;
    432 	npf_conn_t *con;
    433 	int error = 0;
    434 
    435 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    436 
    437 	if (!npf_conn_trackable_p(npc)) {
    438 		return NULL;
    439 	}
    440 
    441 	/* Allocate and initialize the new connection. */
    442 	con = pool_cache_get(npf->conn_cache[idx], PR_NOWAIT);
    443 	if (__predict_false(!con)) {
    444 		npf_worker_signal(npf);
    445 		return NULL;
    446 	}
    447 	NPF_PRINTF(("NPF: create conn %p\n", con));
    448 	npf_stats_inc(npf, NPF_STAT_CONN_CREATE);
    449 
    450 	mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
    451 	atomic_store_relaxed(&con->c_flags, di & PFIL_ALL);
    452 	atomic_store_relaxed(&con->c_refcnt, 0);
    453 	con->c_rproc = NULL;
    454 	con->c_nat = NULL;
    455 
    456 	con->c_proto = npc->npc_proto;
    457 	CTASSERT(sizeof(con->c_proto) >= sizeof(npc->npc_proto));
    458 	con->c_alen = alen;
    459 
    460 	/* Initialize the protocol state. */
    461 	if (!npf_state_init(npc, &con->c_state)) {
    462 		npf_conn_destroy(npf, con);
    463 		return NULL;
    464 	}
    465 	KASSERT(npf_iscached(npc, NPC_IP46));
    466 
    467 	fw = npf_conn_getforwkey(con);
    468 	bk = npf_conn_getbackkey(con, alen);
    469 
    470 	/*
    471 	 * Construct "forwards" and "backwards" keys.  Also, set the
    472 	 * interface ID for this connection (unless it is global).
    473 	 */
    474 	if (!npf_conn_conkey(npc, fw, di, NPF_FLOW_FORW) ||
    475 	    !npf_conn_conkey(npc, bk, di ^ PFIL_ALL, NPF_FLOW_BACK)) {
    476 		npf_conn_destroy(npf, con);
    477 		return NULL;
    478 	}
    479 	con->c_ifid = global ? nbuf->nb_ifid : 0;
    480 
    481 	/*
    482 	 * Set last activity time for a new connection and acquire
    483 	 * a reference for the caller before we make it visible.
    484 	 */
    485 	conn_update_atime(con);
    486 	atomic_store_relaxed(&con->c_refcnt, 1);
    487 
    488 	/*
    489 	 * Insert both keys (entries representing directions) of the
    490 	 * connection.  At this point it becomes visible, but we activate
    491 	 * the connection later.
    492 	 */
    493 	mutex_enter(&con->c_lock);
    494 	conn_db = atomic_load_consume(&npf->conn_db);
    495 	if (!npf_conndb_insert(conn_db, fw, con, NPF_FLOW_FORW)) {
    496 		error = EISCONN;
    497 		goto err;
    498 	}
    499 	if (!npf_conndb_insert(conn_db, bk, con, NPF_FLOW_BACK)) {
    500 		npf_conn_t *ret __diagused;
    501 		ret = npf_conndb_remove(conn_db, fw);
    502 		KASSERT(ret == con);
    503 		error = EISCONN;
    504 		goto err;
    505 	}
    506 err:
    507 	/*
    508 	 * If we have hit the duplicate: mark the connection as expired
    509 	 * and let the G/C thread to take care of it.  We cannot do it
    510 	 * here since there might be references acquired already.
    511 	 */
    512 	if (error) {
    513 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    514 		atomic_dec_uint(&con->c_refcnt);
    515 		npf_stats_inc(npf, NPF_STAT_RACE_CONN);
    516 	} else {
    517 		NPF_PRINTF(("NPF: establish conn %p\n", con));
    518 	}
    519 
    520 	/* Finally, insert into the connection list. */
    521 	npf_conndb_enqueue(conn_db, con);
    522 	mutex_exit(&con->c_lock);
    523 
    524 	return error ? NULL : con;
    525 }
    526 
    527 void
    528 npf_conn_destroy(npf_t *npf, npf_conn_t *con)
    529 {
    530 	const unsigned idx __unused = NPF_CONNCACHE(con->c_alen);
    531 
    532 	KASSERT(atomic_load_relaxed(&con->c_refcnt) == 0);
    533 
    534 	if (con->c_nat) {
    535 		/* Release any NAT structures. */
    536 		npf_nat_destroy(con, con->c_nat);
    537 	}
    538 	if (con->c_rproc) {
    539 		/* Release the rule procedure. */
    540 		npf_rproc_release(con->c_rproc);
    541 	}
    542 
    543 	/* Destroy the state. */
    544 	npf_state_destroy(&con->c_state);
    545 	mutex_destroy(&con->c_lock);
    546 
    547 	/* Free the structure, increase the counter. */
    548 	pool_cache_put(npf->conn_cache[idx], con);
    549 	npf_stats_inc(npf, NPF_STAT_CONN_DESTROY);
    550 	NPF_PRINTF(("NPF: conn %p destroyed\n", con));
    551 }
    552 
    553 /*
    554  * npf_conn_setnat: associate NAT entry with the connection, update and
    555  * re-insert connection entry using the translation values.
    556  *
    557  * => The caller must be holding a reference.
    558  */
    559 int
    560 npf_conn_setnat(const npf_cache_t *npc, npf_conn_t *con,
    561     npf_nat_t *nt, unsigned ntype)
    562 {
    563 	static const unsigned nat_type_which[] = {
    564 		/* See the description in npf_nat_which(). */
    565 		[NPF_NATOUT] = NPF_DST,
    566 		[NPF_NATIN] = NPF_SRC,
    567 	};
    568 	npf_t *npf = npc->npc_ctx;
    569 	npf_conn_t *ret __diagused;
    570 	npf_conndb_t *conn_db;
    571 	npf_connkey_t *bk;
    572 	npf_addr_t *taddr;
    573 	in_port_t tport;
    574 	uint32_t flags;
    575 
    576 	KASSERT(atomic_load_relaxed(&con->c_refcnt) > 0);
    577 
    578 	npf_nat_gettrans(nt, &taddr, &tport);
    579 	KASSERT(ntype == NPF_NATOUT || ntype == NPF_NATIN);
    580 
    581 	/* Acquire the lock and check for the races. */
    582 	mutex_enter(&con->c_lock);
    583 	flags = atomic_load_relaxed(&con->c_flags);
    584 	if (__predict_false(flags & CONN_EXPIRE)) {
    585 		/* The connection got expired. */
    586 		mutex_exit(&con->c_lock);
    587 		return EINVAL;
    588 	}
    589 	KASSERT((flags & CONN_REMOVED) == 0);
    590 
    591 	if (__predict_false(con->c_nat != NULL)) {
    592 		/* Race with a duplicate packet. */
    593 		mutex_exit(&con->c_lock);
    594 		npf_stats_inc(npc->npc_ctx, NPF_STAT_RACE_NAT);
    595 		return EISCONN;
    596 	}
    597 
    598 	/* Remove the "backwards" key. */
    599 	conn_db = atomic_load_consume(&npf->conn_db);
    600 	bk = npf_conn_getbackkey(con, con->c_alen);
    601 	ret = npf_conndb_remove(conn_db, bk);
    602 	KASSERT(ret == con);
    603 
    604 	/* Set the source/destination IDs to the translation values. */
    605 	npf_conn_adjkey(bk, taddr, tport, nat_type_which[ntype]);
    606 
    607 	/* Finally, re-insert the "backwards" key. */
    608 	if (!npf_conndb_insert(conn_db, bk, con, NPF_FLOW_BACK)) {
    609 		/*
    610 		 * Race: we have hit the duplicate, remove the "forwards"
    611 		 * key and expire our connection; it is no longer valid.
    612 		 */
    613 		npf_connkey_t *fw = npf_conn_getforwkey(con);
    614 		ret = npf_conndb_remove(conn_db, fw);
    615 		KASSERT(ret == con);
    616 
    617 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    618 		mutex_exit(&con->c_lock);
    619 
    620 		npf_stats_inc(npc->npc_ctx, NPF_STAT_RACE_NAT);
    621 		return EISCONN;
    622 	}
    623 
    624 	/* Associate the NAT entry and release the lock. */
    625 	con->c_nat = nt;
    626 	mutex_exit(&con->c_lock);
    627 	return 0;
    628 }
    629 
    630 /*
    631  * npf_conn_expire: explicitly mark connection as expired.
    632  *
    633  * => Must be called with: a) reference held  b) the relevant lock held.
    634  *    The relevant lock should prevent from connection destruction, e.g.
    635  *    npf_t::conn_lock or npf_natpolicy_t::n_lock.
    636  */
    637 void
    638 npf_conn_expire(npf_conn_t *con)
    639 {
    640 	atomic_or_uint(&con->c_flags, CONN_EXPIRE);
    641 }
    642 
    643 /*
    644  * npf_conn_pass: return true if connection is "pass" one, otherwise false.
    645  */
    646 bool
    647 npf_conn_pass(const npf_conn_t *con, npf_match_info_t *mi, npf_rproc_t **rp)
    648 {
    649 	KASSERT(atomic_load_relaxed(&con->c_refcnt) > 0);
    650 	if (__predict_true(atomic_load_relaxed(&con->c_flags) & CONN_PASS)) {
    651 		mi->mi_retfl = atomic_load_relaxed(&con->c_retfl);
    652 		mi->mi_rid = con->c_rid;
    653 		*rp = con->c_rproc;
    654 		return true;
    655 	}
    656 	return false;
    657 }
    658 
    659 /*
    660  * npf_conn_setpass: mark connection as a "pass" one and associate the
    661  * rule procedure with it.
    662  */
    663 void
    664 npf_conn_setpass(npf_conn_t *con, const npf_match_info_t *mi, npf_rproc_t *rp)
    665 {
    666 	KASSERT((atomic_load_relaxed(&con->c_flags) & CONN_ACTIVE) == 0);
    667 	KASSERT(atomic_load_relaxed(&con->c_refcnt) > 0);
    668 	KASSERT(con->c_rproc == NULL);
    669 
    670 	/*
    671 	 * No need for atomic since the connection is not yet active.
    672 	 * If rproc is set, the caller transfers its reference to us,
    673 	 * which will be released on npf_conn_destroy().
    674 	 */
    675 	atomic_or_uint(&con->c_flags, CONN_PASS);
    676 	con->c_rproc = rp;
    677 	if (rp) {
    678 		con->c_rid = mi->mi_rid;
    679 		con->c_retfl = mi->mi_retfl;
    680 	}
    681 }
    682 
    683 /*
    684  * npf_conn_release: release a reference, which might allow G/C thread
    685  * to destroy this connection.
    686  */
    687 void
    688 npf_conn_release(npf_conn_t *con)
    689 {
    690 	const unsigned flags = atomic_load_relaxed(&con->c_flags);
    691 
    692 	if ((flags & (CONN_ACTIVE | CONN_EXPIRE)) == 0) {
    693 		/* Activate: after this, connection is globally visible. */
    694 		atomic_or_uint(&con->c_flags, CONN_ACTIVE);
    695 	}
    696 	KASSERT(atomic_load_relaxed(&con->c_refcnt) > 0);
    697 	atomic_dec_uint(&con->c_refcnt);
    698 }
    699 
    700 /*
    701  * npf_conn_getnat: return the associated NAT entry, if any.
    702  */
    703 npf_nat_t *
    704 npf_conn_getnat(const npf_conn_t *con)
    705 {
    706 	return con->c_nat;
    707 }
    708 
    709 /*
    710  * npf_conn_expired: criterion to check if connection is expired.
    711  */
    712 bool
    713 npf_conn_expired(npf_t *npf, const npf_conn_t *con, uint64_t tsnow)
    714 {
    715 	const unsigned flags = atomic_load_relaxed(&con->c_flags);
    716 	const int etime = npf_state_etime(npf, &con->c_state, con->c_proto);
    717 	int elapsed;
    718 
    719 	if (__predict_false(flags & CONN_EXPIRE)) {
    720 		/* Explicitly marked to be expired. */
    721 		return true;
    722 	}
    723 
    724 	/*
    725 	 * Note: another thread may update 'atime' and it might
    726 	 * become greater than 'now'.
    727 	 */
    728 	elapsed = (int64_t)tsnow - atomic_load_relaxed(&con->c_atime);
    729 	return elapsed > etime;
    730 }
    731 
    732 /*
    733  * npf_conn_remove: unlink the connection and mark as expired.
    734  */
    735 void
    736 npf_conn_remove(npf_conndb_t *cd, npf_conn_t *con)
    737 {
    738 	/* Remove both entries of the connection. */
    739 	mutex_enter(&con->c_lock);
    740 	if ((atomic_load_relaxed(&con->c_flags) & CONN_REMOVED) == 0) {
    741 		npf_connkey_t *fw, *bk;
    742 		npf_conn_t *ret __diagused;
    743 
    744 		fw = npf_conn_getforwkey(con);
    745 		ret = npf_conndb_remove(cd, fw);
    746 		KASSERT(ret == con);
    747 
    748 		bk = npf_conn_getbackkey(con, NPF_CONNKEY_ALEN(fw));
    749 		ret = npf_conndb_remove(cd, bk);
    750 		KASSERT(ret == con);
    751 	}
    752 
    753 	/* Flag the removal and expiration. */
    754 	atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    755 	mutex_exit(&con->c_lock);
    756 }
    757 
    758 /*
    759  * npf_conn_worker: G/C to run from a worker thread or via npfk_gc().
    760  */
    761 void
    762 npf_conn_worker(npf_t *npf)
    763 {
    764 	npf_conndb_t *conn_db = atomic_load_consume(&npf->conn_db);
    765 	npf_conndb_gc(npf, conn_db, false, true);
    766 }
    767 
    768 /*
    769  * npf_conndb_export: construct a list of connections prepared for saving.
    770  * Note: this is expected to be an expensive operation.
    771  */
    772 int
    773 npf_conndb_export(npf_t *npf, nvlist_t *nvl)
    774 {
    775 	npf_conn_t *head, *con;
    776 	npf_conndb_t *conn_db;
    777 
    778 	/*
    779 	 * Note: acquire conn_lock to prevent from the database
    780 	 * destruction and G/C thread.
    781 	 */
    782 	mutex_enter(&npf->conn_lock);
    783 	if (atomic_load_relaxed(&npf->conn_tracking) != CONN_TRACKING_ON) {
    784 		mutex_exit(&npf->conn_lock);
    785 		return 0;
    786 	}
    787 	conn_db = atomic_load_relaxed(&npf->conn_db);
    788 	head = npf_conndb_getlist(conn_db);
    789 	con = head;
    790 	while (con) {
    791 		nvlist_t *con_nvl;
    792 
    793 		con_nvl = nvlist_create(0);
    794 		if (npf_conn_export(npf, con, con_nvl) == 0) {
    795 			nvlist_append_nvlist_array(nvl, "conn-list", con_nvl);
    796 		}
    797 		nvlist_destroy(con_nvl);
    798 
    799 		if ((con = npf_conndb_getnext(conn_db, con)) == head) {
    800 			break;
    801 		}
    802 	}
    803 	mutex_exit(&npf->conn_lock);
    804 	return 0;
    805 }
    806 
    807 /*
    808  * npf_conn_export: serialize a single connection.
    809  */
    810 static int
    811 npf_conn_export(npf_t *npf, npf_conn_t *con, nvlist_t *nvl)
    812 {
    813 	nvlist_t *knvl;
    814 	npf_connkey_t *fw, *bk;
    815 	unsigned flags, alen;
    816 
    817 	flags = atomic_load_relaxed(&con->c_flags);
    818 	if ((flags & (CONN_ACTIVE|CONN_EXPIRE)) != CONN_ACTIVE) {
    819 		return ESRCH;
    820 	}
    821 	nvlist_add_number(nvl, "flags", flags);
    822 	nvlist_add_number(nvl, "proto", con->c_proto);
    823 	if (con->c_ifid) {
    824 		char ifname[IFNAMSIZ];
    825 		npf_ifmap_copyname(npf, con->c_ifid, ifname, sizeof(ifname));
    826 		nvlist_add_string(nvl, "ifname", ifname);
    827 	}
    828 	nvlist_add_binary(nvl, "state", &con->c_state, sizeof(npf_state_t));
    829 
    830 	fw = npf_conn_getforwkey(con);
    831 	alen = NPF_CONNKEY_ALEN(fw);
    832 	KASSERT(alen == con->c_alen);
    833 	bk = npf_conn_getbackkey(con, alen);
    834 
    835 	knvl = npf_connkey_export(npf, fw);
    836 	nvlist_move_nvlist(nvl, "forw-key", knvl);
    837 
    838 	knvl = npf_connkey_export(npf, bk);
    839 	nvlist_move_nvlist(nvl, "back-key", knvl);
    840 
    841 	/* Let the address length be based on on first key. */
    842 	nvlist_add_number(nvl, "alen", alen);
    843 
    844 	if (con->c_nat) {
    845 		npf_nat_export(npf, con->c_nat, nvl);
    846 	}
    847 	return 0;
    848 }
    849 
    850 /*
    851  * npf_conn_import: fully reconstruct a single connection from a
    852  * nvlist and insert into the given database.
    853  */
    854 int
    855 npf_conn_import(npf_t *npf, npf_conndb_t *cd, const nvlist_t *cdict,
    856     npf_ruleset_t *natlist)
    857 {
    858 	npf_conn_t *con;
    859 	npf_connkey_t *fw, *bk;
    860 	const nvlist_t *nat, *conkey;
    861 	unsigned flags, alen, idx;
    862 	const char *ifname;
    863 	const void *state;
    864 	size_t len;
    865 
    866 	/*
    867 	 * To determine the length of the connection, which depends
    868 	 * on the address length in the connection keys.
    869 	 */
    870 	alen = dnvlist_get_number(cdict, "alen", 0);
    871 	idx = NPF_CONNCACHE(alen);
    872 
    873 	/* Allocate a connection and initialize it (clear first). */
    874 	con = pool_cache_get(npf->conn_cache[idx], PR_WAITOK);
    875 	memset(con, 0, sizeof(npf_conn_t));
    876 	mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
    877 	npf_stats_inc(npf, NPF_STAT_CONN_CREATE);
    878 
    879 	con->c_proto = dnvlist_get_number(cdict, "proto", 0);
    880 	flags = dnvlist_get_number(cdict, "flags", 0);
    881 	flags &= PFIL_ALL | CONN_ACTIVE | CONN_PASS;
    882 	atomic_store_relaxed(&con->c_flags, flags);
    883 	conn_update_atime(con);
    884 
    885 	ifname = dnvlist_get_string(cdict, "ifname", NULL);
    886 	if (ifname && (con->c_ifid = npf_ifmap_register(npf, ifname)) == 0) {
    887 		goto err;
    888 	}
    889 
    890 	state = dnvlist_get_binary(cdict, "state", &len, NULL, 0);
    891 	if (!state || len != sizeof(npf_state_t)) {
    892 		goto err;
    893 	}
    894 	memcpy(&con->c_state, state, sizeof(npf_state_t));
    895 
    896 	/* Reconstruct NAT association, if any. */
    897 	if ((nat = dnvlist_get_nvlist(cdict, "nat", NULL)) != NULL &&
    898 	    (con->c_nat = npf_nat_import(npf, nat, natlist, con)) == NULL) {
    899 		goto err;
    900 	}
    901 
    902 	/*
    903 	 * Fetch and copy the keys for each direction.
    904 	 */
    905 	fw = npf_conn_getforwkey(con);
    906 	conkey = dnvlist_get_nvlist(cdict, "forw-key", NULL);
    907 	if (conkey == NULL || !npf_connkey_import(npf, conkey, fw)) {
    908 		goto err;
    909 	}
    910 	bk = npf_conn_getbackkey(con, NPF_CONNKEY_ALEN(fw));
    911 	conkey = dnvlist_get_nvlist(cdict, "back-key", NULL);
    912 	if (conkey == NULL || !npf_connkey_import(npf, conkey, bk)) {
    913 		goto err;
    914 	}
    915 
    916 	/* Guard against the contradicting address lengths. */
    917 	if (NPF_CONNKEY_ALEN(fw) != alen || NPF_CONNKEY_ALEN(bk) != alen) {
    918 		goto err;
    919 	}
    920 
    921 	/* Insert the entries and the connection itself. */
    922 	if (!npf_conndb_insert(cd, fw, con, NPF_FLOW_FORW)) {
    923 		goto err;
    924 	}
    925 	if (!npf_conndb_insert(cd, bk, con, NPF_FLOW_BACK)) {
    926 		npf_conndb_remove(cd, fw);
    927 		goto err;
    928 	}
    929 
    930 	NPF_PRINTF(("NPF: imported conn %p\n", con));
    931 	npf_conndb_enqueue(cd, con);
    932 	return 0;
    933 err:
    934 	npf_conn_destroy(npf, con);
    935 	return EINVAL;
    936 }
    937 
    938 /*
    939  * npf_conn_find: lookup a connection in the list of connections
    940  */
    941 int
    942 npf_conn_find(npf_t *npf, const nvlist_t *req, nvlist_t *resp)
    943 {
    944 	const nvlist_t *key_nv;
    945 	npf_conn_t *con;
    946 	npf_connkey_t key;
    947 	npf_flow_t flow;
    948 	int error;
    949 
    950 	key_nv = dnvlist_get_nvlist(req, "key", NULL);
    951 	if (!key_nv || !npf_connkey_import(npf, key_nv, &key)) {
    952 		return EINVAL;
    953 	}
    954 	con = npf_conndb_lookup(npf, &key, &flow);
    955 	if (con == NULL) {
    956 		return ESRCH;
    957 	}
    958 	if (!npf_conn_check(con, NULL, 0, NPF_FLOW_FORW)) {
    959 		atomic_dec_uint(&con->c_refcnt);
    960 		return ESRCH;
    961 	}
    962 	error = npf_conn_export(npf, con, resp);
    963 	nvlist_add_number(resp, "flow", flow);
    964 	atomic_dec_uint(&con->c_refcnt);
    965 	return error;
    966 }
    967 
    968 #if defined(DDB) || defined(_NPF_TESTING)
    969 
    970 void
    971 npf_conn_print(npf_conn_t *con)
    972 {
    973 	const npf_connkey_t *fw = npf_conn_getforwkey(con);
    974 	const npf_connkey_t *bk = npf_conn_getbackkey(con, NPF_CONNKEY_ALEN(fw));
    975 	const unsigned flags = atomic_load_relaxed(&con->c_flags);
    976 	const unsigned proto = con->c_proto;
    977 	struct timespec tspnow;
    978 
    979 	getnanouptime(&tspnow);
    980 	printf("%p:\n\tproto %d flags 0x%x tsdiff %ld etime %d\n", con,
    981 	    proto, flags, (long)(tspnow.tv_sec - con->c_atime),
    982 	    npf_state_etime(npf_getkernctx(), &con->c_state, proto));
    983 	npf_connkey_print(fw);
    984 	npf_connkey_print(bk);
    985 	npf_state_dump(&con->c_state);
    986 	if (con->c_nat) {
    987 		npf_nat_dump(con->c_nat);
    988 	}
    989 }
    990 
    991 #endif
    992