Home | History | Annotate | Line # | Download | only in dev
      1 /*	$NetBSD: if_emac.c,v 1.59 2024/02/10 09:30:05 andvar Exp $	*/
      2 
      3 /*
      4  * Copyright 2001, 2002 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Simon Burge and Jason Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * emac(4) supports following ibm4xx's EMACs.
     40  *   XXXX: ZMII and 'TCP Accelaration Hardware' not support yet...
     41  *
     42  *            tested
     43  *            ------
     44  * 405EP	-  10/100 x2
     45  * 405EX/EXr	o  10/100/1000 x2 (EXr x1), STA v2, 256bit hash-Table, RGMII
     46  * 405GP/GPr	o  10/100
     47  * 440EP	-  10/100 x2, ZMII
     48  * 440GP	-  10/100 x2, ZMII
     49  * 440GX	-  10/100/1000 x4, ZMII/RGMII(ch 2, 3), TAH(ch 2, 3)
     50  * 440SP	-  10/100/1000
     51  * 440SPe	-  10/100/1000, STA v2
     52  */
     53 
     54 #include <sys/cdefs.h>
     55 __KERNEL_RCSID(0, "$NetBSD: if_emac.c,v 1.59 2024/02/10 09:30:05 andvar Exp $");
     56 
     57 #ifdef _KERNEL_OPT
     58 #include "opt_emac.h"
     59 #endif
     60 
     61 #include <sys/param.h>
     62 #include <sys/systm.h>
     63 #include <sys/mbuf.h>
     64 #include <sys/kernel.h>
     65 #include <sys/socket.h>
     66 #include <sys/ioctl.h>
     67 #include <sys/cpu.h>
     68 #include <sys/device.h>
     69 
     70 #include <sys/rndsource.h>
     71 
     72 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     73 
     74 #include <net/if.h>
     75 #include <net/if_dl.h>
     76 #include <net/if_media.h>
     77 #include <net/if_ether.h>
     78 
     79 #include <net/bpf.h>
     80 
     81 #include <powerpc/ibm4xx/cpu.h>
     82 #include <powerpc/ibm4xx/dcr4xx.h>
     83 #include <powerpc/ibm4xx/mal405gp.h>
     84 #include <powerpc/ibm4xx/dev/emacreg.h>
     85 #include <powerpc/ibm4xx/dev/if_emacreg.h>
     86 #include <powerpc/ibm4xx/dev/if_emacvar.h>
     87 #include <powerpc/ibm4xx/dev/malvar.h>
     88 #include <powerpc/ibm4xx/dev/opbreg.h>
     89 #include <powerpc/ibm4xx/dev/opbvar.h>
     90 #include <powerpc/ibm4xx/dev/plbvar.h>
     91 #if defined(EMAC_ZMII_PHY) || defined(EMAC_RGMII_PHY)
     92 #include <powerpc/ibm4xx/dev/rmiivar.h>
     93 #endif
     94 
     95 #include <dev/mii/miivar.h>
     96 
     97 #include "locators.h"
     98 
     99 
    100 /*
    101  * Transmit descriptor list size.  There are two Tx channels, each with
    102  * up to 256 hardware descriptors available.  We currently use one Tx
    103  * channel.  We tell the upper layers that they can queue a lot of
    104  * packets, and we go ahead and manage up to 64 of them at a time.  We
    105  * allow up to 16 DMA segments per packet.
    106  */
    107 #define	EMAC_NTXSEGS		16
    108 #define	EMAC_TXQUEUELEN		64
    109 #define	EMAC_TXQUEUELEN_MASK	(EMAC_TXQUEUELEN - 1)
    110 #define	EMAC_TXQUEUE_GC		(EMAC_TXQUEUELEN / 4)
    111 #define	EMAC_NTXDESC		256
    112 #define	EMAC_NTXDESC_MASK	(EMAC_NTXDESC - 1)
    113 #define	EMAC_NEXTTX(x)		(((x) + 1) & EMAC_NTXDESC_MASK)
    114 #define	EMAC_NEXTTXS(x)		(((x) + 1) & EMAC_TXQUEUELEN_MASK)
    115 
    116 /*
    117  * Receive descriptor list size.  There is one Rx channel with up to 256
    118  * hardware descriptors available.  We allocate 64 receive descriptors,
    119  * each with a 2k buffer (MCLBYTES).
    120  */
    121 #define	EMAC_NRXDESC		64
    122 #define	EMAC_NRXDESC_MASK	(EMAC_NRXDESC - 1)
    123 #define	EMAC_NEXTRX(x)		(((x) + 1) & EMAC_NRXDESC_MASK)
    124 #define	EMAC_PREVRX(x)		(((x) - 1) & EMAC_NRXDESC_MASK)
    125 
    126 /*
    127  * Transmit/receive descriptors that are DMA'd to the EMAC.
    128  */
    129 struct emac_control_data {
    130 	struct mal_descriptor ecd_txdesc[EMAC_NTXDESC];
    131 	struct mal_descriptor ecd_rxdesc[EMAC_NRXDESC];
    132 };
    133 
    134 #define	EMAC_CDOFF(x)		offsetof(struct emac_control_data, x)
    135 #define	EMAC_CDTXOFF(x)		EMAC_CDOFF(ecd_txdesc[(x)])
    136 #define	EMAC_CDRXOFF(x)		EMAC_CDOFF(ecd_rxdesc[(x)])
    137 
    138 /*
    139  * Software state for transmit jobs.
    140  */
    141 struct emac_txsoft {
    142 	struct mbuf *txs_mbuf;		/* head of mbuf chain */
    143 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    144 	int txs_firstdesc;		/* first descriptor in packet */
    145 	int txs_lastdesc;		/* last descriptor in packet */
    146 	int txs_ndesc;			/* # of descriptors used */
    147 };
    148 
    149 /*
    150  * Software state for receive descriptors.
    151  */
    152 struct emac_rxsoft {
    153 	struct mbuf *rxs_mbuf;		/* head of mbuf chain */
    154 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    155 };
    156 
    157 /*
    158  * Software state per device.
    159  */
    160 struct emac_softc {
    161 	device_t sc_dev;		/* generic device information */
    162 	int sc_instance;		/* instance no. */
    163 	bus_space_tag_t sc_st;		/* bus space tag */
    164 	bus_space_handle_t sc_sh;	/* bus space handle */
    165 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    166 	struct ethercom sc_ethercom;	/* ethernet common data */
    167 	void *sc_sdhook;		/* shutdown hook */
    168 	void *sc_powerhook;		/* power management hook */
    169 
    170 	struct mii_data sc_mii;		/* MII/media information */
    171 	struct callout sc_callout;	/* tick callout */
    172 
    173 	uint32_t sc_mr1;		/* copy of Mode Register 1 */
    174 	uint32_t sc_stacr_read;		/* Read opcode of STAOPC of STACR */
    175 	uint32_t sc_stacr_write;	/* Write opcode of STAOPC of STACR */
    176 	uint32_t sc_stacr_bits;		/* misc bits of STACR */
    177 	bool sc_stacr_completed;	/* Operation completed of STACR */
    178 	int sc_htsize;			/* Hash Table size */
    179 
    180 	bus_dmamap_t sc_cddmamap;	/* control data dma map */
    181 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    182 
    183 	/* Software state for transmit/receive descriptors. */
    184 	struct emac_txsoft sc_txsoft[EMAC_TXQUEUELEN];
    185 	struct emac_rxsoft sc_rxsoft[EMAC_NRXDESC];
    186 
    187 	/* Control data structures. */
    188 	struct emac_control_data *sc_control_data;
    189 #define	sc_txdescs	sc_control_data->ecd_txdesc
    190 #define	sc_rxdescs	sc_control_data->ecd_rxdesc
    191 
    192 #ifdef EMAC_EVENT_COUNTERS
    193 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    194 	struct evcnt sc_ev_txintr;	/* Tx interrupts */
    195 	struct evcnt sc_ev_rxde;	/* Rx descriptor interrupts */
    196 	struct evcnt sc_ev_txde;	/* Tx descriptor interrupts */
    197 	struct evcnt sc_ev_intr;	/* General EMAC interrupts */
    198 
    199 	struct evcnt sc_ev_txreap;	/* Calls to Tx descriptor reaper */
    200 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    201 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    202 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    203 	struct evcnt sc_ev_tu;		/* Tx underrun */
    204 #endif /* EMAC_EVENT_COUNTERS */
    205 
    206 	int sc_txfree;			/* number of free Tx descriptors */
    207 	int sc_txnext;			/* next ready Tx descriptor */
    208 
    209 	int sc_txsfree;			/* number of free Tx jobs */
    210 	int sc_txsnext;			/* next ready Tx job */
    211 	int sc_txsdirty;		/* dirty Tx jobs */
    212 
    213 	int sc_rxptr;			/* next ready RX descriptor/descsoft */
    214 
    215 	krndsource_t rnd_source;	/* random source */
    216 
    217 	void (*sc_rmii_enable)(device_t, int);		/* reduced MII enable */
    218 	void (*sc_rmii_disable)(device_t, int);		/* reduced MII disable*/
    219 	void (*sc_rmii_speed)(device_t, int, int);	/* reduced MII speed */
    220 };
    221 
    222 #ifdef EMAC_EVENT_COUNTERS
    223 #define	EMAC_EVCNT_INCR(ev)	(ev)->ev_count++
    224 #else
    225 #define	EMAC_EVCNT_INCR(ev)	/* nothing */
    226 #endif
    227 
    228 #define	EMAC_CDTXADDR(sc, x)	((sc)->sc_cddma + EMAC_CDTXOFF((x)))
    229 #define	EMAC_CDRXADDR(sc, x)	((sc)->sc_cddma + EMAC_CDRXOFF((x)))
    230 
    231 #define	EMAC_CDTXSYNC(sc, x, n, ops)					\
    232 do {									\
    233 	int __x, __n;							\
    234 									\
    235 	__x = (x);							\
    236 	__n = (n);							\
    237 									\
    238 	/* If it will wrap around, sync to the end of the ring. */	\
    239 	if ((__x + __n) > EMAC_NTXDESC) {				\
    240 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    241 		    EMAC_CDTXOFF(__x), sizeof(struct mal_descriptor) *	\
    242 		    (EMAC_NTXDESC - __x), (ops));			\
    243 		__n -= (EMAC_NTXDESC - __x);				\
    244 		__x = 0;						\
    245 	}								\
    246 									\
    247 	/* Now sync whatever is left. */				\
    248 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    249 	    EMAC_CDTXOFF(__x), sizeof(struct mal_descriptor) * __n, (ops)); \
    250 } while (/*CONSTCOND*/0)
    251 
    252 #define	EMAC_CDRXSYNC(sc, x, ops)					\
    253 do {									\
    254 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    255 	    EMAC_CDRXOFF((x)), sizeof(struct mal_descriptor), (ops));	\
    256 } while (/*CONSTCOND*/0)
    257 
    258 #define	EMAC_INIT_RXDESC(sc, x)						\
    259 do {									\
    260 	struct emac_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    261 	struct mal_descriptor *__rxd = &(sc)->sc_rxdescs[(x)];		\
    262 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    263 									\
    264 	/*								\
    265 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    266 	 * so that the payload after the Ethernet header is aligned	\
    267 	 * to a 4-byte boundary.					\
    268 	 */								\
    269 	__m->m_data = __m->m_ext.ext_buf + 2;				\
    270 									\
    271 	__rxd->md_data = __rxs->rxs_dmamap->dm_segs[0].ds_addr + 2;	\
    272 	__rxd->md_data_len = __m->m_ext.ext_size - 2;			\
    273 	__rxd->md_stat_ctrl = MAL_RX_EMPTY | MAL_RX_INTERRUPT |		\
    274 	    /* Set wrap on last descriptor. */				\
    275 	    (((x) == EMAC_NRXDESC - 1) ? MAL_RX_WRAP : 0);		\
    276 	EMAC_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
    277 } while (/*CONSTCOND*/0)
    278 
    279 #define	EMAC_WRITE(sc, reg, val) \
    280 	bus_space_write_stream_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    281 #define	EMAC_READ(sc, reg) \
    282 	bus_space_read_stream_4((sc)->sc_st, (sc)->sc_sh, (reg))
    283 
    284 #define	EMAC_SET_FILTER(aht, crc) \
    285 do {									\
    286 	(aht)[3 - (((crc) >> 26) >> 4)] |= 1 << (((crc) >> 26) & 0xf);	\
    287 } while (/*CONSTCOND*/0)
    288 #define	EMAC_SET_FILTER256(aht, crc) \
    289 do {									\
    290 	(aht)[7 - (((crc) >> 24) >> 5)] |= 1 << (((crc) >> 24) & 0x1f);	\
    291 } while (/*CONSTCOND*/0)
    292 
    293 static int	emac_match(device_t, cfdata_t, void *);
    294 static void	emac_attach(device_t, device_t, void *);
    295 
    296 static int	emac_intr(void *);
    297 static void	emac_shutdown(void *);
    298 
    299 static void	emac_start(struct ifnet *);
    300 static int	emac_ioctl(struct ifnet *, u_long, void *);
    301 static int	emac_init(struct ifnet *);
    302 static void	emac_stop(struct ifnet *, int);
    303 static void	emac_watchdog(struct ifnet *);
    304 
    305 static int	emac_add_rxbuf(struct emac_softc *, int);
    306 static void	emac_rxdrain(struct emac_softc *);
    307 static int	emac_set_filter(struct emac_softc *);
    308 static int	emac_txreap(struct emac_softc *);
    309 
    310 static void	emac_soft_reset(struct emac_softc *);
    311 static void	emac_smart_reset(struct emac_softc *);
    312 
    313 static int	emac_mii_readreg(device_t, int, int, uint16_t *);
    314 static int	emac_mii_writereg(device_t, int, int, uint16_t);
    315 static void	emac_mii_statchg(struct ifnet *);
    316 static uint32_t	emac_mii_wait(struct emac_softc *);
    317 static void	emac_mii_tick(void *);
    318 
    319 int		emac_copy_small = 0;
    320 
    321 CFATTACH_DECL_NEW(emac, sizeof(struct emac_softc),
    322     emac_match, emac_attach, NULL, NULL);
    323 
    324 
    325 static int
    326 emac_match(device_t parent, cfdata_t cf, void *aux)
    327 {
    328 	struct opb_attach_args *oaa = aux;
    329 
    330 	/* match only on-chip ethernet devices */
    331 	if (strcmp(oaa->opb_name, cf->cf_name) == 0)
    332 		return 1;
    333 
    334 	return 0;
    335 }
    336 
    337 static void
    338 emac_attach(device_t parent, device_t self, void *aux)
    339 {
    340 	struct opb_attach_args *oaa = aux;
    341 	struct emac_softc *sc = device_private(self);
    342 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    343 	struct mii_data *mii = &sc->sc_mii;
    344 	const char * xname = device_xname(self);
    345 	bus_dma_segment_t seg;
    346 	int error, i, nseg, opb_freq, opbc, mii_phy = MII_PHY_ANY;
    347 	const uint8_t *enaddr;
    348 	prop_dictionary_t dict = device_properties(self);
    349 	prop_data_t ea;
    350 
    351 	bus_space_map(oaa->opb_bt, oaa->opb_addr, EMAC_NREG, 0, &sc->sc_sh);
    352 
    353 	sc->sc_dev = self;
    354 	sc->sc_instance = oaa->opb_instance;
    355 	sc->sc_st = oaa->opb_bt;
    356 	sc->sc_dmat = oaa->opb_dmat;
    357 
    358 	callout_init(&sc->sc_callout, 0);
    359 
    360 	aprint_naive("\n");
    361 	aprint_normal(": Ethernet Media Access Controller\n");
    362 
    363 	/* Fetch the Ethernet address. */
    364 	ea = prop_dictionary_get(dict, "mac-address");
    365 	if (ea == NULL) {
    366 		aprint_error_dev(self, "unable to get mac-address property\n");
    367 		return;
    368 	}
    369 	KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
    370 	KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
    371 	enaddr = prop_data_data_nocopy(ea);
    372 	aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(enaddr));
    373 
    374 #if defined(EMAC_ZMII_PHY) || defined(EMAC_RGMII_PHY)
    375 	/* Fetch the MII offset. */
    376 	prop_dictionary_get_uint32(dict, "mii-phy", &mii_phy);
    377 
    378 #ifdef EMAC_ZMII_PHY
    379 	if (oaa->opb_flags & OPB_FLAGS_EMAC_RMII_ZMII)
    380 		zmii_attach(parent, sc->sc_instance, &sc->sc_rmii_enable,
    381 		    &sc->sc_rmii_disable, &sc->sc_rmii_speed);
    382 #endif
    383 #ifdef EMAC_RGMII_PHY
    384 	if (oaa->opb_flags & OPB_FLAGS_EMAC_RMII_RGMII)
    385 		rgmii_attach(parent, sc->sc_instance, &sc->sc_rmii_enable,
    386 		    &sc->sc_rmii_disable, &sc->sc_rmii_speed);
    387 #endif
    388 #endif
    389 
    390 	/*
    391 	 * Allocate the control data structures, and create and load the
    392 	 * DMA map for it.
    393 	 */
    394 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    395 	    sizeof(struct emac_control_data), 0, 0, &seg, 1, &nseg, 0)) != 0) {
    396 		aprint_error_dev(self,
    397 		    "unable to allocate control data, error = %d\n", error);
    398 		goto fail_0;
    399 	}
    400 
    401 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
    402 	    sizeof(struct emac_control_data), (void **)&sc->sc_control_data,
    403 	    BUS_DMA_COHERENT)) != 0) {
    404 		aprint_error_dev(self,
    405 		    "unable to map control data, error = %d\n", error);
    406 		goto fail_1;
    407 	}
    408 
    409 	if ((error = bus_dmamap_create(sc->sc_dmat,
    410 	    sizeof(struct emac_control_data), 1,
    411 	    sizeof(struct emac_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    412 		aprint_error_dev(self,
    413 		    "unable to create control data DMA map, error = %d\n",
    414 		    error);
    415 		goto fail_2;
    416 	}
    417 
    418 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    419 	    sc->sc_control_data, sizeof(struct emac_control_data), NULL,
    420 	    0)) != 0) {
    421 		aprint_error_dev(self,
    422 		    "unable to load control data DMA map, error = %d\n", error);
    423 		goto fail_3;
    424 	}
    425 
    426 	/*
    427 	 * Create the transmit buffer DMA maps.
    428 	 */
    429 	for (i = 0; i < EMAC_TXQUEUELEN; i++) {
    430 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    431 		    EMAC_NTXSEGS, MCLBYTES, 0, 0,
    432 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    433 			aprint_error_dev(self,
    434 			    "unable to create tx DMA map %d, error = %d\n",
    435 			    i, error);
    436 			goto fail_4;
    437 		}
    438 	}
    439 
    440 	/*
    441 	 * Create the receive buffer DMA maps.
    442 	 */
    443 	for (i = 0; i < EMAC_NRXDESC; i++) {
    444 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    445 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    446 			aprint_error_dev(self,
    447 			    "unable to create rx DMA map %d, error = %d\n",
    448 			    i, error);
    449 			goto fail_5;
    450 		}
    451 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    452 	}
    453 
    454 	/* Soft Reset the EMAC.  The chip to a known state. */
    455 	emac_soft_reset(sc);
    456 
    457 	opb_freq = opb_get_frequency();
    458 	switch (opb_freq) {
    459 	case  33333333: opbc =  STACR_OPBC_33MHZ; break;
    460 	case  50000000: opbc =  STACR_OPBC_50MHZ; break;
    461 	case  66666666: opbc =  STACR_OPBC_66MHZ; break;
    462 	case  83333333: opbc =  STACR_OPBC_83MHZ; break;
    463 	case 100000000: opbc = STACR_OPBC_100MHZ; break;
    464 
    465 	default:
    466 		if (opb_freq > 100000000) {
    467 			opbc = STACR_OPBC_A100MHZ;
    468 			break;
    469 		}
    470 		aprint_error_dev(self, "unsupported OPB frequency %dMHz\n",
    471 		    opb_freq / 1000 / 1000);
    472 		goto fail_5;
    473 	}
    474 	if (oaa->opb_flags & OPB_FLAGS_EMAC_GBE) {
    475 		sc->sc_mr1 =
    476 		    MR1_RFS_GBE(MR1__FS_16KB)	|
    477 		    MR1_TFS_GBE(MR1__FS_16KB)	|
    478 		    MR1_TR0_MULTIPLE		|
    479 		    MR1_OBCI(opbc);
    480 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
    481 
    482 		if (oaa->opb_flags & OPB_FLAGS_EMAC_STACV2) {
    483 			sc->sc_stacr_read = STACR_STAOPC_READ;
    484 			sc->sc_stacr_write = STACR_STAOPC_WRITE;
    485 			sc->sc_stacr_bits = STACR_OC;
    486 			sc->sc_stacr_completed = false;
    487 		} else {
    488 			sc->sc_stacr_read = STACR_READ;
    489 			sc->sc_stacr_write = STACR_WRITE;
    490 			sc->sc_stacr_completed = true;
    491 		}
    492 	} else {
    493 		/*
    494 		 * Set up Mode Register 1 - set receive and transmit FIFOs to
    495 		 * maximum size, allow transmit of multiple packets (only
    496 		 * channel 0 is used).
    497 		 *
    498 		 * XXX: Allow pause packets??
    499 		 */
    500 		sc->sc_mr1 =
    501 		    MR1_RFS(MR1__FS_4KB) |
    502 		    MR1_TFS(MR1__FS_2KB) |
    503 		    MR1_TR0_MULTIPLE;
    504 
    505 		sc->sc_stacr_read = STACR_READ;
    506 		sc->sc_stacr_write = STACR_WRITE;
    507 		sc->sc_stacr_bits = STACR_OPBC(opbc);
    508 		sc->sc_stacr_completed = true;
    509 	}
    510 
    511 	intr_establish_xname(oaa->opb_irq, IST_LEVEL, IPL_NET, emac_intr, sc,
    512 	    device_xname(self));
    513 	mal_intr_establish(sc->sc_instance, sc);
    514 
    515 	if (oaa->opb_flags & OPB_FLAGS_EMAC_HT256)
    516 		sc->sc_htsize = 256;
    517 	else
    518 		sc->sc_htsize = 64;
    519 
    520 	/* Clear all interrupts */
    521 	EMAC_WRITE(sc, EMAC_ISR, ISR_ALL);
    522 
    523 	/*
    524 	 * Initialise the media structures.
    525 	 */
    526 	mii->mii_ifp = ifp;
    527 	mii->mii_readreg = emac_mii_readreg;
    528 	mii->mii_writereg = emac_mii_writereg;
    529 	mii->mii_statchg = emac_mii_statchg;
    530 
    531 	sc->sc_ethercom.ec_mii = mii;
    532 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
    533 	mii_attach(self, mii, 0xffffffff, mii_phy, MII_OFFSET_ANY,
    534 	    MIIF_DOPAUSE);
    535 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    536 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
    537 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
    538 	} else
    539 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    540 
    541 	ifp = &sc->sc_ethercom.ec_if;
    542 	strcpy(ifp->if_xname, xname);
    543 	ifp->if_softc = sc;
    544 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    545 	ifp->if_start = emac_start;
    546 	ifp->if_ioctl = emac_ioctl;
    547 	ifp->if_init = emac_init;
    548 	ifp->if_stop = emac_stop;
    549 	ifp->if_watchdog = emac_watchdog;
    550 	IFQ_SET_READY(&ifp->if_snd);
    551 
    552 	/*
    553 	 * We can support 802.1Q VLAN-sized frames.
    554 	 */
    555 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    556 
    557 	/*
    558 	 * Attach the interface.
    559 	 */
    560 	if_attach(ifp);
    561 	if_deferred_start_init(ifp, NULL);
    562 	ether_ifattach(ifp, enaddr);
    563 
    564 	rnd_attach_source(&sc->rnd_source, xname, RND_TYPE_NET,
    565 	    RND_FLAG_DEFAULT);
    566 
    567 #ifdef EMAC_EVENT_COUNTERS
    568 	/*
    569 	 * Attach the event counters.
    570 	 */
    571 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
    572 	    NULL, xname, "txintr");
    573 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    574 	    NULL, xname, "rxintr");
    575 	evcnt_attach_dynamic(&sc->sc_ev_txde, EVCNT_TYPE_INTR,
    576 	    NULL, xname, "txde");
    577 	evcnt_attach_dynamic(&sc->sc_ev_rxde, EVCNT_TYPE_INTR,
    578 	    NULL, xname, "rxde");
    579 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
    580 	    NULL, xname, "intr");
    581 
    582 	evcnt_attach_dynamic(&sc->sc_ev_txreap, EVCNT_TYPE_MISC,
    583 	    NULL, xname, "txreap");
    584 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
    585 	    NULL, xname, "txsstall");
    586 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
    587 	    NULL, xname, "txdstall");
    588 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
    589 	    NULL, xname, "txdrop");
    590 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
    591 	    NULL, xname, "tu");
    592 #endif /* EMAC_EVENT_COUNTERS */
    593 
    594 	/*
    595 	 * Make sure the interface is shutdown during reboot.
    596 	 */
    597 	sc->sc_sdhook = shutdownhook_establish(emac_shutdown, sc);
    598 	if (sc->sc_sdhook == NULL)
    599 		aprint_error_dev(self,
    600 		    "WARNING: unable to establish shutdown hook\n");
    601 
    602 	return;
    603 
    604 	/*
    605 	 * Free any resources we've allocated during the failed attach
    606 	 * attempt.  Do this in reverse order and fall through.
    607 	 */
    608 fail_5:
    609 	for (i = 0; i < EMAC_NRXDESC; i++) {
    610 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    611 			bus_dmamap_destroy(sc->sc_dmat,
    612 			    sc->sc_rxsoft[i].rxs_dmamap);
    613 	}
    614 fail_4:
    615 	for (i = 0; i < EMAC_TXQUEUELEN; i++) {
    616 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    617 			bus_dmamap_destroy(sc->sc_dmat,
    618 			    sc->sc_txsoft[i].txs_dmamap);
    619 	}
    620 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    621 fail_3:
    622 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    623 fail_2:
    624 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    625 	    sizeof(struct emac_control_data));
    626 fail_1:
    627 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
    628 fail_0:
    629 	return;
    630 }
    631 
    632 /*
    633  * EMAC General interrupt handler
    634  */
    635 static int
    636 emac_intr(void *arg)
    637 {
    638 	struct emac_softc *sc = arg;
    639 	uint32_t status;
    640 
    641 	EMAC_EVCNT_INCR(&sc->sc_ev_intr);
    642 	status = EMAC_READ(sc, EMAC_ISR);
    643 
    644 	/* Clear the interrupt status bits. */
    645 	EMAC_WRITE(sc, EMAC_ISR, status);
    646 
    647 	return 1;
    648 }
    649 
    650 static void
    651 emac_shutdown(void *arg)
    652 {
    653 	struct emac_softc *sc = arg;
    654 
    655 	emac_stop(&sc->sc_ethercom.ec_if, 0);
    656 }
    657 
    658 
    659 /*
    660  * ifnet interface functions
    661  */
    662 
    663 static void
    664 emac_start(struct ifnet *ifp)
    665 {
    666 	struct emac_softc *sc = ifp->if_softc;
    667 	struct mbuf *m0;
    668 	struct emac_txsoft *txs;
    669 	bus_dmamap_t dmamap;
    670 	int error, firsttx, nexttx, lasttx, ofree, seg;
    671 
    672 	lasttx = 0;	/* XXX gcc */
    673 
    674 	if ((ifp->if_flags & IFF_RUNNING) == 0)
    675 		return;
    676 
    677 	/*
    678 	 * Remember the previous number of free descriptors.
    679 	 */
    680 	ofree = sc->sc_txfree;
    681 
    682 	/*
    683 	 * Loop through the send queue, setting up transmit descriptors
    684 	 * until we drain the queue, or use up all available transmit
    685 	 * descriptors.
    686 	 */
    687 	for (;;) {
    688 		/* Grab a packet off the queue. */
    689 		IFQ_POLL(&ifp->if_snd, m0);
    690 		if (m0 == NULL)
    691 			break;
    692 
    693 		/*
    694 		 * Get a work queue entry.  Reclaim used Tx descriptors if
    695 		 * we are running low.
    696 		 */
    697 		if (sc->sc_txsfree < EMAC_TXQUEUE_GC) {
    698 			emac_txreap(sc);
    699 			if (sc->sc_txsfree == 0) {
    700 				EMAC_EVCNT_INCR(&sc->sc_ev_txsstall);
    701 				break;
    702 			}
    703 		}
    704 
    705 		txs = &sc->sc_txsoft[sc->sc_txsnext];
    706 		dmamap = txs->txs_dmamap;
    707 
    708 		/*
    709 		 * Load the DMA map.  If this fails, the packet either
    710 		 * didn't fit in the allotted number of segments, or we
    711 		 * were short on resources.  In this case, we'll copy
    712 		 * and try again.
    713 		 */
    714 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    715 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
    716 		if (error) {
    717 			if (error == EFBIG) {
    718 				EMAC_EVCNT_INCR(&sc->sc_ev_txdrop);
    719 				aprint_error_ifnet(ifp,
    720 				    "Tx packet consumes too many "
    721 				    "DMA segments, dropping...\n");
    722 				    IFQ_DEQUEUE(&ifp->if_snd, m0);
    723 				    m_freem(m0);
    724 				    continue;
    725 			}
    726 			/* Short on resources, just stop for now. */
    727 			break;
    728 		}
    729 
    730 		/*
    731 		 * Ensure we have enough descriptors free to describe
    732 		 * the packet.
    733 		 */
    734 		if (dmamap->dm_nsegs > sc->sc_txfree) {
    735 			/*
    736 			 * Not enough free descriptors to transmit this
    737 			 * packet.  We haven't committed anything yet,
    738 			 * so just unload the DMA map, put the packet
    739 			 * back on the queue, and punt.  Notify the upper
    740 			 * layer that there are not more slots left.
    741 			 *
    742 			 */
    743 			bus_dmamap_unload(sc->sc_dmat, dmamap);
    744 			EMAC_EVCNT_INCR(&sc->sc_ev_txdstall);
    745 			break;
    746 		}
    747 
    748 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    749 
    750 		/*
    751 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    752 		 */
    753 
    754 		/* Sync the DMA map. */
    755 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    756 		    BUS_DMASYNC_PREWRITE);
    757 
    758 		/*
    759 		 * Store a pointer to the packet so that we can free it
    760 		 * later.
    761 		 */
    762 		txs->txs_mbuf = m0;
    763 		txs->txs_firstdesc = sc->sc_txnext;
    764 		txs->txs_ndesc = dmamap->dm_nsegs;
    765 
    766 		/*
    767 		 * Initialize the transmit descriptor.
    768 		 */
    769 		firsttx = sc->sc_txnext;
    770 		for (nexttx = sc->sc_txnext, seg = 0;
    771 		     seg < dmamap->dm_nsegs;
    772 		     seg++, nexttx = EMAC_NEXTTX(nexttx)) {
    773 			struct mal_descriptor *txdesc =
    774 			    &sc->sc_txdescs[nexttx];
    775 
    776 			/*
    777 			 * If this is the first descriptor we're
    778 			 * enqueueing, don't set the TX_READY bit just
    779 			 * yet.  That could cause a race condition.
    780 			 * We'll do it below.
    781 			 */
    782 			txdesc->md_data = dmamap->dm_segs[seg].ds_addr;
    783 			txdesc->md_data_len = dmamap->dm_segs[seg].ds_len;
    784 			txdesc->md_stat_ctrl =
    785 			    (txdesc->md_stat_ctrl & MAL_TX_WRAP) |
    786 			    (nexttx == firsttx ? 0 : MAL_TX_READY) |
    787 			    EMAC_TXC_GFCS | EMAC_TXC_GPAD;
    788 			lasttx = nexttx;
    789 		}
    790 
    791 		/* Set the LAST bit on the last segment. */
    792 		sc->sc_txdescs[lasttx].md_stat_ctrl |= MAL_TX_LAST;
    793 
    794 		/*
    795 		 * Set up last segment descriptor to send an interrupt after
    796 		 * that descriptor is transmitted, and bypass existing Tx
    797 		 * descriptor reaping method (for now...).
    798 		 */
    799 		sc->sc_txdescs[lasttx].md_stat_ctrl |= MAL_TX_INTERRUPT;
    800 
    801 
    802 		txs->txs_lastdesc = lasttx;
    803 
    804 		/* Sync the descriptors we're using. */
    805 		EMAC_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
    806 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    807 
    808 		/*
    809 		 * The entire packet chain is set up.  Give the
    810 		 * first descriptor to the chip now.
    811 		 */
    812 		sc->sc_txdescs[firsttx].md_stat_ctrl |= MAL_TX_READY;
    813 		EMAC_CDTXSYNC(sc, firsttx, 1,
    814 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    815 		/*
    816 		 * Tell the EMAC that a new packet is available.
    817 		 */
    818 		EMAC_WRITE(sc, EMAC_TMR0, TMR0_GNP0 | TMR0_TFAE_2);
    819 
    820 		/* Advance the tx pointer. */
    821 		sc->sc_txfree -= txs->txs_ndesc;
    822 		sc->sc_txnext = nexttx;
    823 
    824 		sc->sc_txsfree--;
    825 		sc->sc_txsnext = EMAC_NEXTTXS(sc->sc_txsnext);
    826 
    827 		/*
    828 		 * Pass the packet to any BPF listeners.
    829 		 */
    830 		bpf_mtap(ifp, m0, BPF_D_OUT);
    831 	}
    832 
    833 	if (sc->sc_txfree != ofree)
    834 		/* Set a watchdog timer in case the chip flakes out. */
    835 		ifp->if_timer = 5;
    836 }
    837 
    838 static int
    839 emac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    840 {
    841 	struct emac_softc *sc = ifp->if_softc;
    842 	int s, error;
    843 
    844 	s = splnet();
    845 
    846 	switch (cmd) {
    847 	case SIOCSIFMTU:
    848 	{
    849 		struct ifreq *ifr = (struct ifreq *)data;
    850 		int maxmtu;
    851 
    852 		if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU)
    853 			maxmtu = EMAC_MAX_MTU;
    854 		else
    855 			maxmtu = ETHERMTU;
    856 
    857 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu)
    858 			error = EINVAL;
    859 		else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
    860 			break;
    861 		else if (ifp->if_flags & IFF_UP)
    862 			error = emac_init(ifp);
    863 		else
    864 			error = 0;
    865 		break;
    866 	}
    867 
    868 	default:
    869 		error = ether_ioctl(ifp, cmd, data);
    870 		if (error == ENETRESET) {
    871 			/*
    872 			 * Multicast list has changed; set the hardware filter
    873 			 * accordingly.
    874 			 */
    875 			if (ifp->if_flags & IFF_RUNNING)
    876 				error = emac_set_filter(sc);
    877 			else
    878 				error = 0;
    879 		}
    880 	}
    881 
    882 	/* try to get more packets going */
    883 	emac_start(ifp);
    884 
    885 	splx(s);
    886 	return error;
    887 }
    888 
    889 static int
    890 emac_init(struct ifnet *ifp)
    891 {
    892 	struct emac_softc *sc = ifp->if_softc;
    893 	struct emac_rxsoft *rxs;
    894 	const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
    895 	int error, i;
    896 
    897 	error = 0;
    898 
    899 	/* Cancel any pending I/O. */
    900 	emac_stop(ifp, 0);
    901 
    902 	/* Reset the chip to a known state. */
    903 	emac_soft_reset(sc);
    904 
    905 	/*
    906 	 * Initialise the transmit descriptor ring.
    907 	 */
    908 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    909 	/* set wrap on last descriptor */
    910 	sc->sc_txdescs[EMAC_NTXDESC - 1].md_stat_ctrl |= MAL_TX_WRAP;
    911 	EMAC_CDTXSYNC(sc, 0, EMAC_NTXDESC,
    912 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    913 	sc->sc_txfree = EMAC_NTXDESC;
    914 	sc->sc_txnext = 0;
    915 
    916 	/*
    917 	 * Initialise the transmit job descriptors.
    918 	 */
    919 	for (i = 0; i < EMAC_TXQUEUELEN; i++)
    920 		sc->sc_txsoft[i].txs_mbuf = NULL;
    921 	sc->sc_txsfree = EMAC_TXQUEUELEN;
    922 	sc->sc_txsnext = 0;
    923 	sc->sc_txsdirty = 0;
    924 
    925 	/*
    926 	 * Initialise the receiver descriptor and receive job
    927 	 * descriptor rings.
    928 	 */
    929 	for (i = 0; i < EMAC_NRXDESC; i++) {
    930 		rxs = &sc->sc_rxsoft[i];
    931 		if (rxs->rxs_mbuf == NULL) {
    932 			if ((error = emac_add_rxbuf(sc, i)) != 0) {
    933 				aprint_error_ifnet(ifp,
    934 				    "unable to allocate or map rx buffer %d,"
    935 				    " error = %d\n",
    936 				    i, error);
    937 				/*
    938 				 * XXX Should attempt to run with fewer receive
    939 				 * XXX buffers instead of just failing.
    940 				 */
    941 				emac_rxdrain(sc);
    942 				goto out;
    943 			}
    944 		} else
    945 			EMAC_INIT_RXDESC(sc, i);
    946 	}
    947 	sc->sc_rxptr = 0;
    948 
    949 	/*
    950 	 * Set the current media.
    951 	 */
    952 	if ((error = ether_mediachange(ifp)) != 0)
    953 		goto out;
    954 
    955 	/*
    956 	 * Load the MAC address.
    957 	 */
    958 	EMAC_WRITE(sc, EMAC_IAHR, enaddr[0] << 8 | enaddr[1]);
    959 	EMAC_WRITE(sc, EMAC_IALR,
    960 	    enaddr[2] << 24 | enaddr[3] << 16 | enaddr[4] << 8 | enaddr[5]);
    961 
    962 	/* Enable the transmit and receive channel on the MAL. */
    963 	error = mal_start(sc->sc_instance,
    964 	    EMAC_CDTXADDR(sc, 0), EMAC_CDRXADDR(sc, 0));
    965 	if (error)
    966 		goto out;
    967 
    968 	sc->sc_mr1 &= ~MR1_JPSM;
    969 	if (ifp->if_mtu > ETHERMTU)
    970 		/* Enable Jumbo Packet Support Mode */
    971 		sc->sc_mr1 |= MR1_JPSM;
    972 
    973 	/* Set fifos, media modes. */
    974 	EMAC_WRITE(sc, EMAC_MR1, sc->sc_mr1);
    975 
    976 	/*
    977 	 * Enable Individual and (possibly) Broadcast Address modes,
    978 	 * runt packets, and strip padding.
    979 	 */
    980 	EMAC_WRITE(sc, EMAC_RMR, RMR_IAE | RMR_RRP | RMR_SP | RMR_TFAE_2 |
    981 	    (ifp->if_flags & IFF_PROMISC ? RMR_PME : 0) |
    982 	    (ifp->if_flags & IFF_BROADCAST ? RMR_BAE : 0));
    983 
    984 	/*
    985 	 * Set multicast filter.
    986 	 */
    987 	emac_set_filter(sc);
    988 
    989 	/*
    990 	 * Set low- and urgent-priority request thresholds.
    991 	 */
    992 	EMAC_WRITE(sc, EMAC_TMR1,
    993 	    ((7 << TMR1_TLR_SHIFT) & TMR1_TLR_MASK) | /* 16 word burst */
    994 	    ((15 << TMR1_TUR_SHIFT) & TMR1_TUR_MASK));
    995 	/*
    996 	 * Set Transmit Request Threshold Register.
    997 	 */
    998 	EMAC_WRITE(sc, EMAC_TRTR, TRTR_256);
    999 
   1000 	/*
   1001 	 * Set high and low receive watermarks.
   1002 	 */
   1003 	EMAC_WRITE(sc, EMAC_RWMR,
   1004 	    30 << RWMR_RLWM_SHIFT | 64 << RWMR_RLWM_SHIFT);
   1005 
   1006 	/*
   1007 	 * Set frame gap.
   1008 	 */
   1009 	EMAC_WRITE(sc, EMAC_IPGVR, 8);
   1010 
   1011 	/*
   1012 	 * Set interrupt status enable bits for EMAC.
   1013 	 */
   1014 	EMAC_WRITE(sc, EMAC_ISER,
   1015 	    ISR_TXPE |		/* TX Parity Error */
   1016 	    ISR_RXPE |		/* RX Parity Error */
   1017 	    ISR_TXUE |		/* TX Underrun Event */
   1018 	    ISR_RXOE |		/* RX Overrun Event */
   1019 	    ISR_OVR  |		/* Overrun Error */
   1020 	    ISR_PP   |		/* Pause Packet */
   1021 	    ISR_BP   |		/* Bad Packet */
   1022 	    ISR_RP   |		/* Runt Packet */
   1023 	    ISR_SE   |		/* Short Event */
   1024 	    ISR_ALE  |		/* Alignment Error */
   1025 	    ISR_BFCS |		/* Bad FCS */
   1026 	    ISR_PTLE |		/* Packet Too Long Error */
   1027 	    ISR_ORE  |		/* Out of Range Error */
   1028 	    ISR_IRE  |		/* In Range Error */
   1029 	    ISR_SE0  |		/* Signal Quality Error 0 (SQE) */
   1030 	    ISR_TE0  |		/* Transmit Error 0 */
   1031 	    ISR_MOS  |		/* MMA Operation Succeeded */
   1032 	    ISR_MOF);		/* MMA Operation Failed */
   1033 
   1034 	/*
   1035 	 * Enable the transmit and receive channel on the EMAC.
   1036 	 */
   1037 	EMAC_WRITE(sc, EMAC_MR0, MR0_TXE | MR0_RXE);
   1038 
   1039 	/*
   1040 	 * Start the one second MII clock.
   1041 	 */
   1042 	callout_reset(&sc->sc_callout, hz, emac_mii_tick, sc);
   1043 
   1044 	/*
   1045 	 * ... all done!
   1046 	 */
   1047 	ifp->if_flags |= IFF_RUNNING;
   1048 
   1049  out:
   1050 	if (error) {
   1051 		ifp->if_flags &= ~IFF_RUNNING;
   1052 		ifp->if_timer = 0;
   1053 		aprint_error_ifnet(ifp, "interface not running\n");
   1054 	}
   1055 	return error;
   1056 }
   1057 
   1058 static void
   1059 emac_stop(struct ifnet *ifp, int disable)
   1060 {
   1061 	struct emac_softc *sc = ifp->if_softc;
   1062 	struct emac_txsoft *txs;
   1063 	int i;
   1064 
   1065 	/* Stop the one second clock. */
   1066 	callout_stop(&sc->sc_callout);
   1067 
   1068 	/* Down the MII */
   1069 	mii_down(&sc->sc_mii);
   1070 
   1071 	/* Disable interrupts. */
   1072 	EMAC_WRITE(sc, EMAC_ISER, 0);
   1073 
   1074 	/* Disable the receive and transmit channels. */
   1075 	mal_stop(sc->sc_instance);
   1076 
   1077 	/* Disable the transmit enable and receive MACs. */
   1078 	EMAC_WRITE(sc, EMAC_MR0,
   1079 	    EMAC_READ(sc, EMAC_MR0) & ~(MR0_TXE | MR0_RXE));
   1080 
   1081 	/* Release any queued transmit buffers. */
   1082 	for (i = 0; i < EMAC_TXQUEUELEN; i++) {
   1083 		txs = &sc->sc_txsoft[i];
   1084 		if (txs->txs_mbuf != NULL) {
   1085 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1086 			m_freem(txs->txs_mbuf);
   1087 			txs->txs_mbuf = NULL;
   1088 		}
   1089 	}
   1090 
   1091 	if (disable)
   1092 		emac_rxdrain(sc);
   1093 
   1094 	/*
   1095 	 * Mark the interface down and cancel the watchdog timer.
   1096 	 */
   1097 	ifp->if_flags &= ~IFF_RUNNING;
   1098 	ifp->if_timer = 0;
   1099 }
   1100 
   1101 static void
   1102 emac_watchdog(struct ifnet *ifp)
   1103 {
   1104 	struct emac_softc *sc = ifp->if_softc;
   1105 
   1106 	/*
   1107 	 * Since we're not interrupting every packet, sweep
   1108 	 * up before we report an error.
   1109 	 */
   1110 	emac_txreap(sc);
   1111 
   1112 	if (sc->sc_txfree != EMAC_NTXDESC) {
   1113 		aprint_error_ifnet(ifp,
   1114 		    "device timeout (txfree %d txsfree %d txnext %d)\n",
   1115 		    sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
   1116 		if_statinc(ifp, if_oerrors);
   1117 
   1118 		/* Reset the interface. */
   1119 		(void)emac_init(ifp);
   1120 	} else if (ifp->if_flags & IFF_DEBUG)
   1121 		aprint_error_ifnet(ifp, "recovered from device timeout\n");
   1122 
   1123 	/* try to get more packets going */
   1124 	emac_start(ifp);
   1125 }
   1126 
   1127 static int
   1128 emac_add_rxbuf(struct emac_softc *sc, int idx)
   1129 {
   1130 	struct emac_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1131 	struct mbuf *m;
   1132 	int error;
   1133 
   1134 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1135 	if (m == NULL)
   1136 		return ENOBUFS;
   1137 
   1138 	MCLGET(m, M_DONTWAIT);
   1139 	if ((m->m_flags & M_EXT) == 0) {
   1140 		m_freem(m);
   1141 		return ENOBUFS;
   1142 	}
   1143 
   1144 	if (rxs->rxs_mbuf != NULL)
   1145 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1146 
   1147 	rxs->rxs_mbuf = m;
   1148 
   1149 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   1150 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1151 	if (error) {
   1152 		aprint_error_dev(sc->sc_dev,
   1153 		    "can't load rx DMA map %d, error = %d\n", idx, error);
   1154 		panic("emac_add_rxbuf");		/* XXX */
   1155 	}
   1156 
   1157 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1158 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1159 
   1160 	EMAC_INIT_RXDESC(sc, idx);
   1161 
   1162 	return 0;
   1163 }
   1164 
   1165 static void
   1166 emac_rxdrain(struct emac_softc *sc)
   1167 {
   1168 	struct emac_rxsoft *rxs;
   1169 	int i;
   1170 
   1171 	for (i = 0; i < EMAC_NRXDESC; i++) {
   1172 		rxs = &sc->sc_rxsoft[i];
   1173 		if (rxs->rxs_mbuf != NULL) {
   1174 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1175 			m_freem(rxs->rxs_mbuf);
   1176 			rxs->rxs_mbuf = NULL;
   1177 		}
   1178 	}
   1179 }
   1180 
   1181 static int
   1182 emac_set_filter(struct emac_softc *sc)
   1183 {
   1184 	struct ethercom *ec = &sc->sc_ethercom;
   1185 	struct ether_multistep step;
   1186 	struct ether_multi *enm;
   1187 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1188 	uint32_t rmr, crc, mask, tmp, reg, gaht[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   1189 	int regs, cnt = 0, i;
   1190 
   1191 	if (sc->sc_htsize == 256) {
   1192 		reg = EMAC_GAHT256(0);
   1193 		regs = 8;
   1194 	} else {
   1195 		reg = EMAC_GAHT64(0);
   1196 		regs = 4;
   1197 	}
   1198 	mask = (1ULL << (sc->sc_htsize / regs)) - 1;
   1199 
   1200 	rmr = EMAC_READ(sc, EMAC_RMR);
   1201 	rmr &= ~(RMR_PMME | RMR_MAE);
   1202 	ifp->if_flags &= ~IFF_ALLMULTI;
   1203 
   1204 	ETHER_LOCK(ec);
   1205 	ETHER_FIRST_MULTI(step, ec, enm);
   1206 	while (enm != NULL) {
   1207 		if (memcmp(enm->enm_addrlo,
   1208 		    enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
   1209 			/*
   1210 			 * We must listen to a range of multicast addresses.
   1211 			 * For now, just accept all multicasts, rather than
   1212 			 * trying to set only those filter bits needed to match
   1213 			 * the range.  (At this time, the only use of address
   1214 			 * ranges is for IP multicast routing, for which the
   1215 			 * range is big enough to require all bits set.)
   1216 			 */
   1217 			gaht[0] = gaht[1] = gaht[2] = gaht[3] =
   1218 			    gaht[4] = gaht[5] = gaht[6] = gaht[7] = mask;
   1219 			break;
   1220 		}
   1221 
   1222 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1223 
   1224 		if (sc->sc_htsize == 256)
   1225 			EMAC_SET_FILTER256(gaht, crc);
   1226 		else
   1227 			EMAC_SET_FILTER(gaht, crc);
   1228 
   1229 		ETHER_NEXT_MULTI(step, enm);
   1230 		cnt++;
   1231 	}
   1232 	ETHER_UNLOCK(ec);
   1233 
   1234 	for (i = 1, tmp = gaht[0]; i < regs; i++)
   1235 		tmp &= gaht[i];
   1236 	if (tmp == mask) {
   1237 		/* All categories are true. */
   1238 		ifp->if_flags |= IFF_ALLMULTI;
   1239 		rmr |= RMR_PMME;
   1240 	} else if (cnt != 0) {
   1241 		/* Some categories are true. */
   1242 		for (i = 0; i < regs; i++)
   1243 			EMAC_WRITE(sc, reg + (i << 2), gaht[i]);
   1244 		rmr |= RMR_MAE;
   1245 	}
   1246 	EMAC_WRITE(sc, EMAC_RMR, rmr);
   1247 
   1248 	return 0;
   1249 }
   1250 
   1251 /*
   1252  * Reap completed Tx descriptors.
   1253  */
   1254 static int
   1255 emac_txreap(struct emac_softc *sc)
   1256 {
   1257 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1258 	struct emac_txsoft *txs;
   1259 	int handled, i;
   1260 	uint32_t txstat, count;
   1261 
   1262 	EMAC_EVCNT_INCR(&sc->sc_ev_txreap);
   1263 	handled = 0;
   1264 
   1265 	count = 0;
   1266 	/*
   1267 	 * Go through our Tx list and free mbufs for those
   1268 	 * frames that have been transmitted.
   1269 	 */
   1270 	for (i = sc->sc_txsdirty; sc->sc_txsfree != EMAC_TXQUEUELEN;
   1271 	    i = EMAC_NEXTTXS(i), sc->sc_txsfree++) {
   1272 		txs = &sc->sc_txsoft[i];
   1273 
   1274 		EMAC_CDTXSYNC(sc, txs->txs_lastdesc,
   1275 		    txs->txs_dmamap->dm_nsegs,
   1276 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1277 
   1278 		txstat = sc->sc_txdescs[txs->txs_lastdesc].md_stat_ctrl;
   1279 		if (txstat & MAL_TX_READY)
   1280 			break;
   1281 
   1282 		handled = 1;
   1283 
   1284 		/*
   1285 		 * Check for errors and collisions.
   1286 		 */
   1287 		if (txstat & (EMAC_TXS_UR | EMAC_TXS_ED))
   1288 			if_statinc(ifp, if_oerrors);
   1289 
   1290 #ifdef EMAC_EVENT_COUNTERS
   1291 		if (txstat & EMAC_TXS_UR)
   1292 			EMAC_EVCNT_INCR(&sc->sc_ev_tu);
   1293 #endif /* EMAC_EVENT_COUNTERS */
   1294 
   1295 		if (txstat &
   1296 		    (EMAC_TXS_EC | EMAC_TXS_MC | EMAC_TXS_SC | EMAC_TXS_LC)) {
   1297 			if (txstat & EMAC_TXS_EC)
   1298 				if_statadd(ifp, if_collisions, 16);
   1299 			else if (txstat & EMAC_TXS_MC)
   1300 				if_statadd(ifp, if_collisions, 2); /* XXX? */
   1301 			else if (txstat & EMAC_TXS_SC)
   1302 				if_statinc(ifp, if_collisions);
   1303 			if (txstat & EMAC_TXS_LC)
   1304 				if_statinc(ifp, if_collisions);
   1305 		} else
   1306 			if_statinc(ifp, if_opackets);
   1307 
   1308 		if (ifp->if_flags & IFF_DEBUG) {
   1309 			if (txstat & EMAC_TXS_ED)
   1310 				aprint_error_ifnet(ifp, "excessive deferral\n");
   1311 			if (txstat & EMAC_TXS_EC)
   1312 				aprint_error_ifnet(ifp,
   1313 				    "excessive collisions\n");
   1314 		}
   1315 
   1316 		sc->sc_txfree += txs->txs_ndesc;
   1317 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1318 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1319 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1320 		m_freem(txs->txs_mbuf);
   1321 		txs->txs_mbuf = NULL;
   1322 
   1323 		count++;
   1324 	}
   1325 
   1326 	/* Update the dirty transmit buffer pointer. */
   1327 	sc->sc_txsdirty = i;
   1328 
   1329 	/*
   1330 	 * If there are no more pending transmissions, cancel the watchdog
   1331 	 * timer.
   1332 	 */
   1333 	if (sc->sc_txsfree == EMAC_TXQUEUELEN)
   1334 		ifp->if_timer = 0;
   1335 
   1336 	if (count != 0)
   1337 		rnd_add_uint32(&sc->rnd_source, count);
   1338 
   1339 	return handled;
   1340 }
   1341 
   1342 
   1343 /*
   1344  * Reset functions
   1345  */
   1346 
   1347 static void
   1348 emac_soft_reset(struct emac_softc *sc)
   1349 {
   1350 	uint32_t sdr;
   1351 	int t = 0;
   1352 
   1353 	/*
   1354 	 * The PHY must provide a TX Clk in order perform a soft reset the
   1355 	 * EMAC.  If none is present, select the internal clock,
   1356 	 * SDR0_MFR[E0CS, E1CS].  After the soft reset, select the external
   1357 	 * clock.
   1358 	 */
   1359 
   1360 	sdr = mfsdr(DCR_SDR0_MFR);
   1361 	sdr |= SDR0_MFR_ECS(sc->sc_instance);
   1362 	mtsdr(DCR_SDR0_MFR, sdr);
   1363 
   1364 	EMAC_WRITE(sc, EMAC_MR0, MR0_SRST);
   1365 
   1366 	sdr = mfsdr(DCR_SDR0_MFR);
   1367 	sdr &= ~SDR0_MFR_ECS(sc->sc_instance);
   1368 	mtsdr(DCR_SDR0_MFR, sdr);
   1369 
   1370 	delay(5);
   1371 
   1372 	/* wait finish */
   1373 	while (EMAC_READ(sc, EMAC_MR0) & MR0_SRST) {
   1374 		if (++t == 1000000 /* 1sec XXXXX */) {
   1375 			aprint_error_dev(sc->sc_dev, "Soft Reset failed\n");
   1376 			return;
   1377 		}
   1378 		delay(1);
   1379 	}
   1380 }
   1381 
   1382 static void
   1383 emac_smart_reset(struct emac_softc *sc)
   1384 {
   1385 	uint32_t mr0;
   1386 	int t = 0;
   1387 
   1388 	mr0 = EMAC_READ(sc, EMAC_MR0);
   1389 	if (mr0 & (MR0_TXE | MR0_RXE)) {
   1390 		mr0 &= ~(MR0_TXE | MR0_RXE);
   1391 		EMAC_WRITE(sc, EMAC_MR0, mr0);
   1392 
   1393 		/* wait idel state */
   1394 		while ((EMAC_READ(sc, EMAC_MR0) & (MR0_TXI | MR0_RXI)) !=
   1395 		    (MR0_TXI | MR0_RXI)) {
   1396 			if (++t == 1000000 /* 1sec XXXXX */) {
   1397 				aprint_error_dev(sc->sc_dev,
   1398 				    "Smart Reset failed\n");
   1399 				return;
   1400 			}
   1401 			delay(1);
   1402 		}
   1403 	}
   1404 }
   1405 
   1406 
   1407 /*
   1408  * MII related functions
   1409  */
   1410 
   1411 static int
   1412 emac_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   1413 {
   1414 	struct emac_softc *sc = device_private(self);
   1415 	uint32_t sta_reg;
   1416 	int rv;
   1417 
   1418 	if (sc->sc_rmii_enable)
   1419 		sc->sc_rmii_enable(device_parent(self), sc->sc_instance);
   1420 
   1421 	/* wait for PHY data transfer to complete */
   1422 	if ((rv = emac_mii_wait(sc)) != 0)
   1423 		goto fail;
   1424 
   1425 	sta_reg =
   1426 	    sc->sc_stacr_read		|
   1427 	    (reg << STACR_PRA_SHIFT)	|
   1428 	    (phy << STACR_PCDA_SHIFT)	|
   1429 	    sc->sc_stacr_bits;
   1430 	EMAC_WRITE(sc, EMAC_STACR, sta_reg);
   1431 
   1432 	if ((rv = emac_mii_wait(sc)) != 0)
   1433 		goto fail;
   1434 	sta_reg = EMAC_READ(sc, EMAC_STACR);
   1435 
   1436 	if (sta_reg & STACR_PHYE) {
   1437 		rv = -1;
   1438 		goto fail;
   1439 	}
   1440 	*val = sta_reg >> STACR_PHYD_SHIFT;
   1441 
   1442 fail:
   1443 	if (sc->sc_rmii_disable)
   1444 		sc->sc_rmii_disable(device_parent(self), sc->sc_instance);
   1445 	return rv;
   1446 }
   1447 
   1448 static int
   1449 emac_mii_writereg(device_t self, int phy, int reg, uint16_t val)
   1450 {
   1451 	struct emac_softc *sc = device_private(self);
   1452 	uint32_t sta_reg;
   1453 	int rv;
   1454 
   1455 	if (sc->sc_rmii_enable)
   1456 		sc->sc_rmii_enable(device_parent(self), sc->sc_instance);
   1457 
   1458 	/* wait for PHY data transfer to complete */
   1459 	if ((rv = emac_mii_wait(sc)) != 0)
   1460 		goto out;
   1461 
   1462 	sta_reg =
   1463 	    (val << STACR_PHYD_SHIFT)	|
   1464 	    sc->sc_stacr_write		|
   1465 	    (reg << STACR_PRA_SHIFT)	|
   1466 	    (phy << STACR_PCDA_SHIFT)	|
   1467 	    sc->sc_stacr_bits;
   1468 	EMAC_WRITE(sc, EMAC_STACR, sta_reg);
   1469 
   1470 	if ((rv = emac_mii_wait(sc)) != 0)
   1471 		goto out;
   1472 	if (EMAC_READ(sc, EMAC_STACR) & STACR_PHYE) {
   1473 		aprint_error_dev(sc->sc_dev, "MII PHY Error\n");
   1474 		rv = -1;
   1475 	}
   1476 
   1477 out:
   1478 	if (sc->sc_rmii_disable)
   1479 		sc->sc_rmii_disable(device_parent(self), sc->sc_instance);
   1480 
   1481 	return rv;
   1482 }
   1483 
   1484 static void
   1485 emac_mii_statchg(struct ifnet *ifp)
   1486 {
   1487 	struct emac_softc *sc = ifp->if_softc;
   1488 	struct mii_data *mii = &sc->sc_mii;
   1489 
   1490 	/*
   1491 	 * MR1 can only be written immediately after a reset...
   1492 	 */
   1493 	emac_smart_reset(sc);
   1494 
   1495 	sc->sc_mr1 &= ~(MR1_FDE | MR1_ILE | MR1_EIFC | MR1_MF_MASK | MR1_IST);
   1496 	if (mii->mii_media_active & IFM_FDX)
   1497 		sc->sc_mr1 |= (MR1_FDE | MR1_EIFC | MR1_IST);
   1498 	if (mii->mii_media_active & IFM_FLOW)
   1499 		sc->sc_mr1 |= MR1_EIFC;
   1500 	if (mii->mii_media_active & IFM_LOOP)
   1501 		sc->sc_mr1 |= MR1_ILE;
   1502 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1503 	case IFM_1000_T:
   1504 		sc->sc_mr1 |= (MR1_MF_1000MBS | MR1_IST);
   1505 		break;
   1506 
   1507 	case IFM_100_TX:
   1508 		sc->sc_mr1 |= (MR1_MF_100MBS | MR1_IST);
   1509 		break;
   1510 
   1511 	case IFM_10_T:
   1512 		sc->sc_mr1 |= MR1_MF_10MBS;
   1513 		break;
   1514 
   1515 	case IFM_NONE:
   1516 		break;
   1517 
   1518 	default:
   1519 		aprint_error_dev(sc->sc_dev, "unknown sub-type %d\n",
   1520 		    IFM_SUBTYPE(mii->mii_media_active));
   1521 		break;
   1522 	}
   1523 	if (sc->sc_rmii_speed)
   1524 		sc->sc_rmii_speed(device_parent(sc->sc_dev), sc->sc_instance,
   1525 		    IFM_SUBTYPE(mii->mii_media_active));
   1526 
   1527 	EMAC_WRITE(sc, EMAC_MR1, sc->sc_mr1);
   1528 
   1529 	/* Enable TX and RX if already RUNNING */
   1530 	if (ifp->if_flags & IFF_RUNNING)
   1531 		EMAC_WRITE(sc, EMAC_MR0, MR0_TXE | MR0_RXE);
   1532 }
   1533 
   1534 static uint32_t
   1535 emac_mii_wait(struct emac_softc *sc)
   1536 {
   1537 	int i;
   1538 	uint32_t oc;
   1539 
   1540 	/* wait for PHY data transfer to complete */
   1541 	i = 0;
   1542 	oc = EMAC_READ(sc, EMAC_STACR) & STACR_OC;
   1543 	while ((oc == STACR_OC) != sc->sc_stacr_completed) {
   1544 		delay(7);
   1545 		if (i++ > 5) {
   1546 			aprint_error_dev(sc->sc_dev, "MII timed out\n");
   1547 			return ETIMEDOUT;
   1548 		}
   1549 		oc = EMAC_READ(sc, EMAC_STACR) & STACR_OC;
   1550 	}
   1551 	return 0;
   1552 }
   1553 
   1554 static void
   1555 emac_mii_tick(void *arg)
   1556 {
   1557 	struct emac_softc *sc = arg;
   1558 	int s;
   1559 
   1560 	if (!device_is_active(sc->sc_dev))
   1561 		return;
   1562 
   1563 	s = splnet();
   1564 	mii_tick(&sc->sc_mii);
   1565 	splx(s);
   1566 
   1567 	callout_reset(&sc->sc_callout, hz, emac_mii_tick, sc);
   1568 }
   1569 
   1570 int
   1571 emac_txeob_intr(void *arg)
   1572 {
   1573 	struct emac_softc *sc = arg;
   1574 	int handled = 0;
   1575 
   1576 	EMAC_EVCNT_INCR(&sc->sc_ev_txintr);
   1577 	handled |= emac_txreap(sc);
   1578 
   1579 	/* try to get more packets going */
   1580 	if_schedule_deferred_start(&sc->sc_ethercom.ec_if);
   1581 
   1582 	return handled;
   1583 }
   1584 
   1585 int
   1586 emac_rxeob_intr(void *arg)
   1587 {
   1588 	struct emac_softc *sc = arg;
   1589 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1590 	struct emac_rxsoft *rxs;
   1591 	struct mbuf *m;
   1592 	uint32_t rxstat, count;
   1593 	int i, len;
   1594 
   1595 	EMAC_EVCNT_INCR(&sc->sc_ev_rxintr);
   1596 
   1597 	count = 0;
   1598 	for (i = sc->sc_rxptr; ; i = EMAC_NEXTRX(i)) {
   1599 		rxs = &sc->sc_rxsoft[i];
   1600 
   1601 		EMAC_CDRXSYNC(sc, i,
   1602 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1603 
   1604 		rxstat = sc->sc_rxdescs[i].md_stat_ctrl;
   1605 
   1606 		if (rxstat & MAL_RX_EMPTY) {
   1607 			/*
   1608 			 * We have processed all of the receive buffers.
   1609 			 */
   1610 			/* Flush current empty descriptor */
   1611 			EMAC_CDRXSYNC(sc, i,
   1612 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1613 			break;
   1614 		}
   1615 
   1616 		/*
   1617 		 * If an error occurred, update stats, clear the status
   1618 		 * word, and leave the packet buffer in place.  It will
   1619 		 * simply be reused the next time the ring comes around.
   1620 		 */
   1621 		if (rxstat & (EMAC_RXS_OE | EMAC_RXS_BP | EMAC_RXS_SE |
   1622 		    EMAC_RXS_AE | EMAC_RXS_BFCS | EMAC_RXS_PTL | EMAC_RXS_ORE |
   1623 		    EMAC_RXS_IRE)) {
   1624 #define	PRINTERR(bit, str)					\
   1625 			if (rxstat & (bit))			\
   1626 				aprint_error_ifnet(ifp,		\
   1627 				    "receive error: %s\n", str)
   1628 			if_statinc(ifp, if_ierrors);
   1629 			PRINTERR(EMAC_RXS_OE, "overrun error");
   1630 			PRINTERR(EMAC_RXS_BP, "bad packet");
   1631 			PRINTERR(EMAC_RXS_RP, "runt packet");
   1632 			PRINTERR(EMAC_RXS_SE, "short event");
   1633 			PRINTERR(EMAC_RXS_AE, "alignment error");
   1634 			PRINTERR(EMAC_RXS_BFCS, "bad FCS");
   1635 			PRINTERR(EMAC_RXS_PTL, "packet too long");
   1636 			PRINTERR(EMAC_RXS_ORE, "out of range error");
   1637 			PRINTERR(EMAC_RXS_IRE, "in range error");
   1638 #undef PRINTERR
   1639 			EMAC_INIT_RXDESC(sc, i);
   1640 			continue;
   1641 		}
   1642 
   1643 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1644 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1645 
   1646 		/*
   1647 		 * No errors; receive the packet.  Note, the 405GP emac
   1648 		 * includes the CRC with every packet.
   1649 		 */
   1650 		len = sc->sc_rxdescs[i].md_data_len - ETHER_CRC_LEN;
   1651 
   1652 		/*
   1653 		 * If the packet is small enough to fit in a
   1654 		 * single header mbuf, allocate one and copy
   1655 		 * the data into it.  This greatly reduces
   1656 		 * memory consumption when we receive lots
   1657 		 * of small packets.
   1658 		 *
   1659 		 * Otherwise, we add a new buffer to the receive
   1660 		 * chain.  If this fails, we drop the packet and
   1661 		 * recycle the old buffer.
   1662 		 */
   1663 		if (emac_copy_small != 0 && len <= MHLEN) {
   1664 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1665 			if (m == NULL)
   1666 				goto dropit;
   1667 			memcpy(mtod(m, void *),
   1668 			    mtod(rxs->rxs_mbuf, void *), len);
   1669 			EMAC_INIT_RXDESC(sc, i);
   1670 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1671 			    rxs->rxs_dmamap->dm_mapsize,
   1672 			    BUS_DMASYNC_PREREAD);
   1673 		} else {
   1674 			m = rxs->rxs_mbuf;
   1675 			if (emac_add_rxbuf(sc, i) != 0) {
   1676  dropit:
   1677 				if_statinc(ifp, if_ierrors);
   1678 				EMAC_INIT_RXDESC(sc, i);
   1679 				bus_dmamap_sync(sc->sc_dmat,
   1680 				    rxs->rxs_dmamap, 0,
   1681 				    rxs->rxs_dmamap->dm_mapsize,
   1682 				    BUS_DMASYNC_PREREAD);
   1683 				continue;
   1684 			}
   1685 		}
   1686 
   1687 		m_set_rcvif(m, ifp);
   1688 		m->m_pkthdr.len = m->m_len = len;
   1689 
   1690 		/* Pass it on. */
   1691 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1692 
   1693 		count++;
   1694 	}
   1695 
   1696 	/* Update the receive pointer. */
   1697 	sc->sc_rxptr = i;
   1698 
   1699 	if (count != 0)
   1700 		rnd_add_uint32(&sc->rnd_source, count);
   1701 
   1702 	return 1;
   1703 }
   1704 
   1705 int
   1706 emac_txde_intr(void *arg)
   1707 {
   1708 	struct emac_softc *sc = arg;
   1709 
   1710 	EMAC_EVCNT_INCR(&sc->sc_ev_txde);
   1711 	aprint_error_dev(sc->sc_dev, "emac_txde_intr\n");
   1712 	return 1;
   1713 }
   1714 
   1715 int
   1716 emac_rxde_intr(void *arg)
   1717 {
   1718 	struct emac_softc *sc = arg;
   1719 	int i;
   1720 
   1721 	EMAC_EVCNT_INCR(&sc->sc_ev_rxde);
   1722 	aprint_error_dev(sc->sc_dev, "emac_rxde_intr\n");
   1723 	/*
   1724 	 * XXX!
   1725 	 * This is a bit drastic; we just drop all descriptors that aren't
   1726 	 * "clean".  We should probably send any that are up the stack.
   1727 	 */
   1728 	for (i = 0; i < EMAC_NRXDESC; i++) {
   1729 		EMAC_CDRXSYNC(sc, i,
   1730 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1731 
   1732 		if (sc->sc_rxdescs[i].md_data_len != MCLBYTES)
   1733 			EMAC_INIT_RXDESC(sc, i);
   1734 	}
   1735 
   1736 	return 1;
   1737 }
   1738