Home | History | Annotate | Line # | Download | only in kern
      1 /*	$NetBSD: subr_percpu.c,v 1.26 2026/01/04 03:19:56 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c)2007,2008 YAMAMOTO Takashi,
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * per-cpu storage.
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: subr_percpu.c,v 1.26 2026/01/04 03:19:56 riastradh Exp $");
     35 
     36 #include <sys/param.h>
     37 
     38 #include <sys/cpu.h>
     39 #include <sys/kernel.h>
     40 #include <sys/kmem.h>
     41 #include <sys/mutex.h>
     42 #include <sys/percpu.h>
     43 #include <sys/rwlock.h>
     44 #include <sys/sdt.h>
     45 #include <sys/vmem.h>
     46 #include <sys/xcall.h>
     47 
     48 #define	PERCPU_QUANTUM_SIZE	(ALIGNBYTES + 1)
     49 #define	PERCPU_QCACHE_MAX	0
     50 #define	PERCPU_IMPORT_SIZE	2048
     51 
     52 struct percpu {
     53 	unsigned		pc_offset;
     54 	size_t			pc_size;
     55 	percpu_callback_t	pc_ctor;
     56 	percpu_callback_t	pc_dtor;
     57 	void			*pc_cookie;
     58 	LIST_ENTRY(percpu)	pc_list;
     59 };
     60 
     61 static krwlock_t	percpu_swap_lock	__cacheline_aligned;
     62 static vmem_t *		percpu_offset_arena	__read_mostly;
     63 static struct {
     64 	kmutex_t	lock;
     65 	unsigned int	nextoff;
     66 	LIST_HEAD(, percpu) ctor_list;
     67 	struct lwp	*busy;
     68 	kcondvar_t	cv;
     69 } percpu_allocation __cacheline_aligned;
     70 
     71 static percpu_cpu_t *
     72 cpu_percpu(struct cpu_info *ci)
     73 {
     74 
     75 	return &ci->ci_data.cpu_percpu;
     76 }
     77 
     78 static unsigned int
     79 percpu_offset(percpu_t *pc)
     80 {
     81 	const unsigned int off = pc->pc_offset;
     82 
     83 	KASSERT(off < percpu_allocation.nextoff);
     84 	return off;
     85 }
     86 
     87 /*
     88  * percpu_cpu_swap: crosscall handler for percpu_cpu_enlarge
     89  */
     90 __noubsan
     91 static void
     92 percpu_cpu_swap(void *p1, void *p2)
     93 {
     94 	struct cpu_info * const ci = p1;
     95 	percpu_cpu_t * const newpcc = p2;
     96 	percpu_cpu_t * const pcc = cpu_percpu(ci);
     97 
     98 	KASSERT(ci == curcpu() || !mp_online);
     99 
    100 	/*
    101 	 * swap *pcc and *newpcc unless anyone has beaten us.
    102 	 */
    103 	rw_enter(&percpu_swap_lock, RW_WRITER);
    104 	if (newpcc->pcc_size > pcc->pcc_size) {
    105 		percpu_cpu_t tmp;
    106 		int s;
    107 
    108 		tmp = *pcc;
    109 
    110 		/*
    111 		 * block interrupts so that we don't lose their modifications.
    112 		 */
    113 
    114 		s = splhigh();
    115 
    116 		/*
    117 		 * copy data to new storage.
    118 		 */
    119 
    120 		memcpy(newpcc->pcc_data, pcc->pcc_data, pcc->pcc_size);
    121 
    122 		/*
    123 		 * this assignment needs to be atomic for percpu_getptr_remote.
    124 		 */
    125 
    126 		pcc->pcc_data = newpcc->pcc_data;
    127 
    128 		splx(s);
    129 
    130 		pcc->pcc_size = newpcc->pcc_size;
    131 		*newpcc = tmp;
    132 	}
    133 	rw_exit(&percpu_swap_lock);
    134 }
    135 
    136 /*
    137  * percpu_cpu_enlarge: ensure that percpu_cpu_t of each cpus have enough space
    138  */
    139 
    140 static void
    141 percpu_cpu_enlarge(size_t size)
    142 {
    143 	CPU_INFO_ITERATOR cii;
    144 	struct cpu_info *ci;
    145 
    146 	for (CPU_INFO_FOREACH(cii, ci)) {
    147 		percpu_cpu_t pcc;
    148 
    149 		pcc.pcc_data = kmem_alloc(size, KM_SLEEP); /* XXX cacheline */
    150 		pcc.pcc_size = size;
    151 		if (!mp_online) {
    152 			percpu_cpu_swap(ci, &pcc);
    153 		} else {
    154 			uint64_t where;
    155 
    156 			where = xc_unicast(0, percpu_cpu_swap, ci, &pcc, ci);
    157 			xc_wait(where);
    158 		}
    159 		KASSERT(pcc.pcc_size <= size);
    160 		if (pcc.pcc_data != NULL) {
    161 			kmem_free(pcc.pcc_data, pcc.pcc_size);
    162 		}
    163 	}
    164 }
    165 
    166 /*
    167  * percpu_backend_alloc: vmem import callback for percpu_offset_arena
    168  */
    169 
    170 static int
    171 percpu_backend_alloc(vmem_t *dummy, vmem_size_t size, vmem_size_t *resultsize,
    172     vm_flag_t vmflags, vmem_addr_t *addrp)
    173 {
    174 	unsigned int offset;
    175 	unsigned int nextoff;
    176 
    177 	ASSERT_SLEEPABLE();
    178 	KASSERT(dummy == NULL);
    179 
    180 	if ((vmflags & VM_NOSLEEP) != 0)
    181 		return SET_ERROR(ENOMEM);
    182 
    183 	size = roundup(size, PERCPU_IMPORT_SIZE);
    184 	mutex_enter(&percpu_allocation.lock);
    185 	offset = percpu_allocation.nextoff;
    186 	percpu_allocation.nextoff = nextoff = percpu_allocation.nextoff + size;
    187 	mutex_exit(&percpu_allocation.lock);
    188 
    189 	percpu_cpu_enlarge(nextoff);
    190 
    191 	*resultsize = size;
    192 	*addrp = (vmem_addr_t)offset;
    193 	return 0;
    194 }
    195 
    196 static void
    197 percpu_zero_cb(void *vp, void *vp2, struct cpu_info *ci)
    198 {
    199 	size_t sz = (uintptr_t)vp2;
    200 
    201 	memset(vp, 0, sz);
    202 }
    203 
    204 /*
    205  * percpu_zero: initialize percpu storage with zero.
    206  */
    207 
    208 static void
    209 percpu_zero(percpu_t *pc, size_t sz)
    210 {
    211 
    212 	percpu_foreach(pc, percpu_zero_cb, (void *)(uintptr_t)sz);
    213 }
    214 
    215 /*
    216  * percpu_init: subsystem initialization
    217  */
    218 
    219 void
    220 percpu_init(void)
    221 {
    222 
    223 	ASSERT_SLEEPABLE();
    224 	rw_init(&percpu_swap_lock);
    225 	mutex_init(&percpu_allocation.lock, MUTEX_DEFAULT, IPL_NONE);
    226 	percpu_allocation.nextoff = PERCPU_QUANTUM_SIZE;
    227 	LIST_INIT(&percpu_allocation.ctor_list);
    228 	percpu_allocation.busy = NULL;
    229 	cv_init(&percpu_allocation.cv, "percpu");
    230 
    231 	percpu_offset_arena = vmem_xcreate("percpu", 0, 0, PERCPU_QUANTUM_SIZE,
    232 	    percpu_backend_alloc, NULL, NULL, PERCPU_QCACHE_MAX, VM_SLEEP,
    233 	    IPL_NONE);
    234 }
    235 
    236 /*
    237  * percpu_init_cpu: cpu initialization
    238  *
    239  * => should be called before the cpu appears on the list for CPU_INFO_FOREACH.
    240  * => may be called for static CPUs afterward (typically just primary CPU)
    241  */
    242 
    243 void
    244 percpu_init_cpu(struct cpu_info *ci)
    245 {
    246 	percpu_cpu_t * const pcc = cpu_percpu(ci);
    247 	struct percpu *pc;
    248 	size_t size = percpu_allocation.nextoff; /* XXX racy */
    249 
    250 	ASSERT_SLEEPABLE();
    251 
    252 	/*
    253 	 * For the primary CPU, prior percpu_create may have already
    254 	 * triggered allocation, so there's nothing more for us to do
    255 	 * here.
    256 	 */
    257 	if (pcc->pcc_size)
    258 		return;
    259 	KASSERT(pcc->pcc_data == NULL);
    260 
    261 	/*
    262 	 * Otherwise, allocate storage and, while the constructor list
    263 	 * is locked, run constructors for all percpus on this CPU.
    264 	 */
    265 	pcc->pcc_size = size;
    266 	if (size) {
    267 		pcc->pcc_data = kmem_zalloc(pcc->pcc_size, KM_SLEEP);
    268 		mutex_enter(&percpu_allocation.lock);
    269 		while (percpu_allocation.busy)
    270 			cv_wait(&percpu_allocation.cv,
    271 			    &percpu_allocation.lock);
    272 		percpu_allocation.busy = curlwp;
    273 		LIST_FOREACH(pc, &percpu_allocation.ctor_list, pc_list) {
    274 			KASSERT(pc->pc_ctor);
    275 			mutex_exit(&percpu_allocation.lock);
    276 			(*pc->pc_ctor)((char *)pcc->pcc_data + pc->pc_offset,
    277 			    pc->pc_cookie, ci);
    278 			mutex_enter(&percpu_allocation.lock);
    279 		}
    280 		KASSERT(percpu_allocation.busy == curlwp);
    281 		percpu_allocation.busy = NULL;
    282 		cv_broadcast(&percpu_allocation.cv);
    283 		mutex_exit(&percpu_allocation.lock);
    284 	}
    285 }
    286 
    287 /*
    288  * percpu_alloc: allocate percpu storage
    289  *
    290  * => called in thread context.
    291  * => considered as an expensive and rare operation.
    292  * => allocated storage is initialized with zeros.
    293  */
    294 
    295 percpu_t *
    296 percpu_alloc(size_t size)
    297 {
    298 
    299 	return percpu_create(size, NULL, NULL, NULL);
    300 }
    301 
    302 /*
    303  * percpu_create: allocate percpu storage and associate ctor/dtor with it
    304  *
    305  * => called in thread context.
    306  * => considered as an expensive and rare operation.
    307  * => allocated storage is initialized by ctor, or zeros if ctor is null
    308  * => percpu_free will call dtor first, if dtor is nonnull
    309  * => ctor or dtor may sleep, even on allocation
    310  */
    311 
    312 percpu_t *
    313 percpu_create(size_t size, percpu_callback_t ctor, percpu_callback_t dtor,
    314     void *cookie)
    315 {
    316 	vmem_addr_t offset;
    317 	percpu_t *pc;
    318 
    319 	ASSERT_SLEEPABLE();
    320 	(void)vmem_alloc(percpu_offset_arena, size, VM_SLEEP | VM_BESTFIT,
    321 	    &offset);
    322 
    323 	pc = kmem_alloc(sizeof(*pc), KM_SLEEP);
    324 	pc->pc_offset = offset;
    325 	pc->pc_size = size;
    326 	pc->pc_ctor = ctor;
    327 	pc->pc_dtor = dtor;
    328 	pc->pc_cookie = cookie;
    329 
    330 	if (ctor) {
    331 		CPU_INFO_ITERATOR cii;
    332 		struct cpu_info *ci;
    333 		void *buf;
    334 
    335 		/*
    336 		 * Wait until nobody is using the list of percpus with
    337 		 * constructors.
    338 		 */
    339 		mutex_enter(&percpu_allocation.lock);
    340 		while (percpu_allocation.busy)
    341 			cv_wait(&percpu_allocation.cv,
    342 			    &percpu_allocation.lock);
    343 		percpu_allocation.busy = curlwp;
    344 		mutex_exit(&percpu_allocation.lock);
    345 
    346 		/*
    347 		 * Run the constructor for all CPUs.  We use a
    348 		 * temporary buffer wo that we need not hold the
    349 		 * percpu_swap_lock while running the constructor.
    350 		 */
    351 		buf = kmem_alloc(size, KM_SLEEP);
    352 		for (CPU_INFO_FOREACH(cii, ci)) {
    353 			memset(buf, 0, size);
    354 			(*ctor)(buf, cookie, ci);
    355 			percpu_traverse_enter();
    356 			memcpy(percpu_getptr_remote(pc, ci), buf, size);
    357 			percpu_traverse_exit();
    358 		}
    359 		explicit_memset(buf, 0, size);
    360 		kmem_free(buf, size);
    361 
    362 		/*
    363 		 * Insert the percpu into the list of percpus with
    364 		 * constructors.  We are now done using the list, so it
    365 		 * is safe for concurrent percpu_create or concurrent
    366 		 * percpu_init_cpu to run.
    367 		 */
    368 		mutex_enter(&percpu_allocation.lock);
    369 		KASSERT(percpu_allocation.busy == curlwp);
    370 		percpu_allocation.busy = NULL;
    371 		cv_broadcast(&percpu_allocation.cv);
    372 		LIST_INSERT_HEAD(&percpu_allocation.ctor_list, pc, pc_list);
    373 		mutex_exit(&percpu_allocation.lock);
    374 	} else {
    375 		percpu_zero(pc, size);
    376 	}
    377 
    378 	return pc;
    379 }
    380 
    381 /*
    382  * percpu_free: free percpu storage
    383  *
    384  * => called in thread context.
    385  * => considered as an expensive and rare operation.
    386  */
    387 
    388 void
    389 percpu_free(percpu_t *pc, size_t size)
    390 {
    391 
    392 	ASSERT_SLEEPABLE();
    393 	KASSERT(size == pc->pc_size);
    394 
    395 	/*
    396 	 * If there's a constructor, take the percpu off the list of
    397 	 * percpus with constructors, but first wait until nobody is
    398 	 * using the list.
    399 	 */
    400 	if (pc->pc_ctor) {
    401 		mutex_enter(&percpu_allocation.lock);
    402 		while (percpu_allocation.busy)
    403 			cv_wait(&percpu_allocation.cv,
    404 			    &percpu_allocation.lock);
    405 		LIST_REMOVE(pc, pc_list);
    406 		mutex_exit(&percpu_allocation.lock);
    407 	}
    408 
    409 	/* If there's a destructor, run it now for all CPUs.  */
    410 	if (pc->pc_dtor) {
    411 		CPU_INFO_ITERATOR cii;
    412 		struct cpu_info *ci;
    413 		void *buf;
    414 
    415 		buf = kmem_alloc(size, KM_SLEEP);
    416 		for (CPU_INFO_FOREACH(cii, ci)) {
    417 			percpu_traverse_enter();
    418 			memcpy(buf, percpu_getptr_remote(pc, ci), size);
    419 			explicit_memset(percpu_getptr_remote(pc, ci), 0, size);
    420 			percpu_traverse_exit();
    421 			(*pc->pc_dtor)(buf, pc->pc_cookie, ci);
    422 		}
    423 		explicit_memset(buf, 0, size);
    424 		kmem_free(buf, size);
    425 	}
    426 
    427 	vmem_free(percpu_offset_arena, (vmem_addr_t)percpu_offset(pc), size);
    428 	kmem_free(pc, sizeof(*pc));
    429 }
    430 
    431 /*
    432  * percpu_getref:
    433  *
    434  * => safe to be used in either thread or interrupt context
    435  * => disables preemption; must be bracketed with a percpu_putref()
    436  */
    437 
    438 void *
    439 percpu_getref(percpu_t *pc)
    440 {
    441 
    442 	kpreempt_disable();
    443 	return percpu_getptr_remote(pc, curcpu());
    444 }
    445 
    446 /*
    447  * percpu_putref:
    448  *
    449  * => drops the preemption-disabled count after caller is done with per-cpu
    450  *    data
    451  */
    452 
    453 void
    454 percpu_putref(percpu_t *pc)
    455 {
    456 
    457 	kpreempt_enable();
    458 }
    459 
    460 /*
    461  * percpu_traverse_enter, percpu_traverse_exit, percpu_getptr_remote:
    462  * helpers to access remote cpu's percpu data.
    463  *
    464  * => called in thread context.
    465  * => percpu_traverse_enter can block low-priority xcalls.
    466  * => typical usage would be:
    467  *
    468  *	sum = 0;
    469  *	percpu_traverse_enter();
    470  *	for (CPU_INFO_FOREACH(cii, ci)) {
    471  *		unsigned int *p = percpu_getptr_remote(pc, ci);
    472  *		sum += *p;
    473  *	}
    474  *	percpu_traverse_exit();
    475  */
    476 
    477 void
    478 percpu_traverse_enter(void)
    479 {
    480 
    481 	ASSERT_SLEEPABLE();
    482 	rw_enter(&percpu_swap_lock, RW_READER);
    483 }
    484 
    485 void
    486 percpu_traverse_exit(void)
    487 {
    488 
    489 	rw_exit(&percpu_swap_lock);
    490 }
    491 
    492 void *
    493 percpu_getptr_remote(percpu_t *pc, struct cpu_info *ci)
    494 {
    495 
    496 	return &((char *)cpu_percpu(ci)->pcc_data)[percpu_offset(pc)];
    497 }
    498 
    499 /*
    500  * percpu_foreach: call the specified callback function for each cpus.
    501  *
    502  * => must be called from thread context.
    503  * => callback executes on **current** CPU (or, really, arbitrary CPU,
    504  *    in case of preemption)
    505  * => caller should not rely on the cpu iteration order.
    506  * => the callback function should be minimum because it is executed with
    507  *    holding a global lock, which can block low-priority xcalls.
    508  *    eg. it's illegal for a callback function to sleep for memory allocation.
    509  */
    510 void
    511 percpu_foreach(percpu_t *pc, percpu_callback_t cb, void *arg)
    512 {
    513 	CPU_INFO_ITERATOR cii;
    514 	struct cpu_info *ci;
    515 
    516 	percpu_traverse_enter();
    517 	for (CPU_INFO_FOREACH(cii, ci)) {
    518 		(*cb)(percpu_getptr_remote(pc, ci), arg, ci);
    519 	}
    520 	percpu_traverse_exit();
    521 }
    522 
    523 struct percpu_xcall_ctx {
    524 	percpu_callback_t  ctx_cb;
    525 	void		  *ctx_arg;
    526 };
    527 
    528 static void
    529 percpu_xcfunc(void * const v1, void * const v2)
    530 {
    531 	percpu_t * const pc = v1;
    532 	struct percpu_xcall_ctx * const ctx = v2;
    533 
    534 	(*ctx->ctx_cb)(percpu_getref(pc), ctx->ctx_arg, curcpu());
    535 	percpu_putref(pc);
    536 }
    537 
    538 /*
    539  * percpu_foreach_xcall: call the specified callback function for each
    540  * cpu.  This version uses an xcall to run the callback on each cpu.
    541  *
    542  * => must be called from thread context.
    543  * => callback executes on **remote** CPU in soft-interrupt context
    544  *    (at the specified soft interrupt priority).
    545  * => caller should not rely on the cpu iteration order.
    546  * => the callback function should be minimum because it may be
    547  *    executed in soft-interrupt context.  eg. it's illegal for
    548  *    a callback function to sleep for memory allocation.
    549  */
    550 void
    551 percpu_foreach_xcall(percpu_t *pc, u_int xcflags, percpu_callback_t cb,
    552 		     void *arg)
    553 {
    554 	struct percpu_xcall_ctx ctx = {
    555 		.ctx_cb = cb,
    556 		.ctx_arg = arg,
    557 	};
    558 	CPU_INFO_ITERATOR cii;
    559 	struct cpu_info *ci;
    560 
    561 	for (CPU_INFO_FOREACH(cii, ci)) {
    562 		xc_wait(xc_unicast(xcflags, percpu_xcfunc, pc, &ctx, ci));
    563 	}
    564 }
    565