Home | History | Annotate | Line # | Download | only in net
      1 /*	$NetBSD: pktqueue.c,v 1.22 2023/05/28 08:09:34 andvar Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2014 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Mindaugas Rasiukevicius.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * The packet queue (pktqueue) interface is a lockless IP input queue
     34  * which also abstracts and handles network ISR scheduling.  It provides
     35  * a mechanism to enable receiver-side packet steering (RPS).
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: pktqueue.c,v 1.22 2023/05/28 08:09:34 andvar Exp $");
     40 
     41 #ifdef _KERNEL_OPT
     42 #include "opt_net_mpsafe.h"
     43 #endif
     44 
     45 #include <sys/param.h>
     46 #include <sys/types.h>
     47 
     48 #include <sys/atomic.h>
     49 #include <sys/cpu.h>
     50 #include <sys/pcq.h>
     51 #include <sys/intr.h>
     52 #include <sys/mbuf.h>
     53 #include <sys/proc.h>
     54 #include <sys/percpu.h>
     55 #include <sys/xcall.h>
     56 #include <sys/once.h>
     57 #include <sys/queue.h>
     58 #include <sys/rwlock.h>
     59 
     60 #include <net/pktqueue.h>
     61 #include <net/rss_config.h>
     62 
     63 #include <netinet/in.h>
     64 #include <netinet/ip.h>
     65 #include <netinet/ip6.h>
     66 
     67 struct pktqueue {
     68 	/*
     69 	 * The lock used for a barrier mechanism.  The barrier counter,
     70 	 * as well as the drop counter, are managed atomically though.
     71 	 * Ensure this group is in a separate cache line.
     72 	 */
     73 	union {
     74 		struct {
     75 			kmutex_t	pq_lock;
     76 			volatile u_int	pq_barrier;
     77 		};
     78 		uint8_t	 _pad[COHERENCY_UNIT];
     79 	};
     80 
     81 	/* The size of the queue, counters and the interrupt handler. */
     82 	u_int		pq_maxlen;
     83 	percpu_t *	pq_counters;
     84 	void *		pq_sih;
     85 
     86 	/* The per-CPU queues. */
     87 	struct percpu *	pq_pcq;	/* struct pcq * */
     88 
     89 	/* The linkage on the list of all pktqueues. */
     90 	LIST_ENTRY(pktqueue) pq_list;
     91 };
     92 
     93 /* The counters of the packet queue. */
     94 #define	PQCNT_ENQUEUE	0
     95 #define	PQCNT_DEQUEUE	1
     96 #define	PQCNT_DROP	2
     97 #define	PQCNT_NCOUNTERS	3
     98 
     99 typedef struct {
    100 	uint64_t	count[PQCNT_NCOUNTERS];
    101 } pktq_counters_t;
    102 
    103 /* Special marker value used by pktq_barrier() mechanism. */
    104 #define	PKTQ_MARKER	((void *)(~0ULL))
    105 
    106 /*
    107  * This is a list of all pktqueues.  This list is used by
    108  * pktq_ifdetach() to issue a barrier on every pktqueue.
    109  *
    110  * The r/w lock is acquired for writing in pktq_create() and
    111  * pktq_destroy(), and for reading in pktq_ifdetach().
    112  *
    113  * This list is not performance critical, and will seldom be
    114  * accessed.
    115  */
    116 static LIST_HEAD(, pktqueue) pktqueue_list	__read_mostly;
    117 static krwlock_t pktqueue_list_lock		__read_mostly;
    118 static once_t pktqueue_list_init_once		__read_mostly;
    119 
    120 static int
    121 pktqueue_list_init(void)
    122 {
    123 	LIST_INIT(&pktqueue_list);
    124 	rw_init(&pktqueue_list_lock);
    125 	return 0;
    126 }
    127 
    128 static void
    129 pktq_init_cpu(void *vqp, void *vpq, struct cpu_info *ci)
    130 {
    131 	struct pcq **qp = vqp;
    132 	struct pktqueue *pq = vpq;
    133 
    134 	*qp = pcq_create(pq->pq_maxlen, KM_SLEEP);
    135 }
    136 
    137 static void
    138 pktq_fini_cpu(void *vqp, void *vpq, struct cpu_info *ci)
    139 {
    140 	struct pcq **qp = vqp, *q = *qp;
    141 
    142 	KASSERT(pcq_peek(q) == NULL);
    143 	pcq_destroy(q);
    144 	*qp = NULL;		/* paranoia */
    145 }
    146 
    147 static struct pcq *
    148 pktq_pcq(struct pktqueue *pq, struct cpu_info *ci)
    149 {
    150 	struct pcq **qp, *q;
    151 
    152 	/*
    153 	 * As long as preemption is disabled, the xcall to swap percpu
    154 	 * buffers can't complete, so it is safe to read the pointer.
    155 	 */
    156 	KASSERT(kpreempt_disabled());
    157 
    158 	qp = percpu_getptr_remote(pq->pq_pcq, ci);
    159 	q = *qp;
    160 
    161 	return q;
    162 }
    163 
    164 pktqueue_t *
    165 pktq_create(size_t maxlen, void (*intrh)(void *), void *sc)
    166 {
    167 	const u_int sflags = SOFTINT_NET | SOFTINT_MPSAFE | SOFTINT_RCPU;
    168 	pktqueue_t *pq;
    169 	percpu_t *pc;
    170 	void *sih;
    171 
    172 	RUN_ONCE(&pktqueue_list_init_once, pktqueue_list_init);
    173 
    174 	pc = percpu_alloc(sizeof(pktq_counters_t));
    175 	if ((sih = softint_establish(sflags, intrh, sc)) == NULL) {
    176 		percpu_free(pc, sizeof(pktq_counters_t));
    177 		return NULL;
    178 	}
    179 
    180 	pq = kmem_zalloc(sizeof(*pq), KM_SLEEP);
    181 	mutex_init(&pq->pq_lock, MUTEX_DEFAULT, IPL_NONE);
    182 	pq->pq_maxlen = maxlen;
    183 	pq->pq_counters = pc;
    184 	pq->pq_sih = sih;
    185 	pq->pq_pcq = percpu_create(sizeof(struct pcq *),
    186 	    pktq_init_cpu, pktq_fini_cpu, pq);
    187 
    188 	rw_enter(&pktqueue_list_lock, RW_WRITER);
    189 	LIST_INSERT_HEAD(&pktqueue_list, pq, pq_list);
    190 	rw_exit(&pktqueue_list_lock);
    191 
    192 	return pq;
    193 }
    194 
    195 void
    196 pktq_destroy(pktqueue_t *pq)
    197 {
    198 
    199 	KASSERT(pktqueue_list_init_once.o_status == ONCE_DONE);
    200 
    201 	rw_enter(&pktqueue_list_lock, RW_WRITER);
    202 	LIST_REMOVE(pq, pq_list);
    203 	rw_exit(&pktqueue_list_lock);
    204 
    205 	percpu_free(pq->pq_pcq, sizeof(struct pcq *));
    206 	percpu_free(pq->pq_counters, sizeof(pktq_counters_t));
    207 	softint_disestablish(pq->pq_sih);
    208 	mutex_destroy(&pq->pq_lock);
    209 	kmem_free(pq, sizeof(*pq));
    210 }
    211 
    212 /*
    213  * - pktq_inc_counter: increment the counter given an ID.
    214  * - pktq_collect_counts: handler to sum up the counts from each CPU.
    215  * - pktq_getcount: return the effective count given an ID.
    216  */
    217 
    218 static inline void
    219 pktq_inc_count(pktqueue_t *pq, u_int i)
    220 {
    221 	percpu_t *pc = pq->pq_counters;
    222 	pktq_counters_t *c;
    223 
    224 	c = percpu_getref(pc);
    225 	c->count[i]++;
    226 	percpu_putref(pc);
    227 }
    228 
    229 static void
    230 pktq_collect_counts(void *mem, void *arg, struct cpu_info *ci)
    231 {
    232 	const pktq_counters_t *c = mem;
    233 	pktq_counters_t *sum = arg;
    234 
    235 	int s = splnet();
    236 
    237 	for (u_int i = 0; i < PQCNT_NCOUNTERS; i++) {
    238 		sum->count[i] += c->count[i];
    239 	}
    240 
    241 	splx(s);
    242 }
    243 
    244 static uint64_t
    245 pktq_get_count(pktqueue_t *pq, pktq_count_t c)
    246 {
    247 	pktq_counters_t sum;
    248 
    249 	if (c != PKTQ_MAXLEN) {
    250 		memset(&sum, 0, sizeof(sum));
    251 		percpu_foreach_xcall(pq->pq_counters,
    252 		    XC_HIGHPRI_IPL(IPL_SOFTNET), pktq_collect_counts, &sum);
    253 	}
    254 	switch (c) {
    255 	case PKTQ_NITEMS:
    256 		return sum.count[PQCNT_ENQUEUE] - sum.count[PQCNT_DEQUEUE];
    257 	case PKTQ_DROPS:
    258 		return sum.count[PQCNT_DROP];
    259 	case PKTQ_MAXLEN:
    260 		return pq->pq_maxlen;
    261 	}
    262 	return 0;
    263 }
    264 
    265 uint32_t
    266 pktq_rps_hash(const pktq_rps_hash_func_t *funcp, const struct mbuf *m)
    267 {
    268 	pktq_rps_hash_func_t func = atomic_load_relaxed(funcp);
    269 
    270 	KASSERT(func != NULL);
    271 
    272 	return (*func)(m);
    273 }
    274 
    275 static uint32_t
    276 pktq_rps_hash_zero(const struct mbuf *m __unused)
    277 {
    278 
    279 	return 0;
    280 }
    281 
    282 static uint32_t
    283 pktq_rps_hash_curcpu(const struct mbuf *m __unused)
    284 {
    285 
    286 	return cpu_index(curcpu());
    287 }
    288 
    289 static uint32_t
    290 pktq_rps_hash_toeplitz(const struct mbuf *m)
    291 {
    292 	struct ip *ip;
    293 	/*
    294 	 * Disable UDP port - IP fragments aren't currently being handled
    295 	 * and so we end up with a mix of 2-tuple and 4-tuple
    296 	 * traffic.
    297 	 */
    298 	const u_int flag = RSS_TOEPLITZ_USE_TCP_PORT;
    299 
    300 	/* glance IP version */
    301 	if ((m->m_flags & M_PKTHDR) == 0)
    302 		return 0;
    303 
    304 	ip = mtod(m, struct ip *);
    305 	if (ip->ip_v == IPVERSION) {
    306 		if (__predict_false(m->m_len < sizeof(struct ip)))
    307 			return 0;
    308 		return rss_toeplitz_hash_from_mbuf_ipv4(m, flag);
    309 	} else if (ip->ip_v == 6) {
    310 		if (__predict_false(m->m_len < sizeof(struct ip6_hdr)))
    311 			return 0;
    312 		return rss_toeplitz_hash_from_mbuf_ipv6(m, flag);
    313 	}
    314 
    315 	return 0;
    316 }
    317 
    318 /*
    319  * toeplitz without curcpu.
    320  * Generally, this has better performance than toeplitz.
    321  */
    322 static uint32_t
    323 pktq_rps_hash_toeplitz_othercpus(const struct mbuf *m)
    324 {
    325 	uint32_t hash;
    326 
    327 	if (ncpu == 1)
    328 		return 0;
    329 
    330 	hash = pktq_rps_hash_toeplitz(m);
    331 	hash %= ncpu - 1;
    332 	if (hash >= cpu_index(curcpu()))
    333 		return hash + 1;
    334 	else
    335 		return hash;
    336 }
    337 
    338 static struct pktq_rps_hash_table {
    339 	const char* prh_type;
    340 	pktq_rps_hash_func_t prh_func;
    341 } const pktq_rps_hash_tab[] = {
    342 	{ "zero", pktq_rps_hash_zero },
    343 	{ "curcpu", pktq_rps_hash_curcpu },
    344 	{ "toeplitz", pktq_rps_hash_toeplitz },
    345 	{ "toeplitz-othercpus", pktq_rps_hash_toeplitz_othercpus },
    346 };
    347 const pktq_rps_hash_func_t pktq_rps_hash_default =
    348 #ifdef NET_MPSAFE
    349 	pktq_rps_hash_curcpu;
    350 #else
    351 	pktq_rps_hash_zero;
    352 #endif
    353 
    354 static const char *
    355 pktq_get_rps_hash_type(pktq_rps_hash_func_t func)
    356 {
    357 
    358 	for (int i = 0; i < __arraycount(pktq_rps_hash_tab); i++) {
    359 		if (func == pktq_rps_hash_tab[i].prh_func) {
    360 			return pktq_rps_hash_tab[i].prh_type;
    361 		}
    362 	}
    363 
    364 	return NULL;
    365 }
    366 
    367 static int
    368 pktq_set_rps_hash_type(pktq_rps_hash_func_t *func, const char *type)
    369 {
    370 
    371 	if (strcmp(type, pktq_get_rps_hash_type(*func)) == 0)
    372 		return 0;
    373 
    374 	for (int i = 0; i < __arraycount(pktq_rps_hash_tab); i++) {
    375 		if (strcmp(type, pktq_rps_hash_tab[i].prh_type) == 0) {
    376 			atomic_store_relaxed(func, pktq_rps_hash_tab[i].prh_func);
    377 			return 0;
    378 		}
    379 	}
    380 
    381 	return ENOENT;
    382 }
    383 
    384 int
    385 sysctl_pktq_rps_hash_handler(SYSCTLFN_ARGS)
    386 {
    387 	struct sysctlnode node;
    388 	pktq_rps_hash_func_t *func;
    389 	int error;
    390 	char type[PKTQ_RPS_HASH_NAME_LEN];
    391 
    392 	node = *rnode;
    393 	func = node.sysctl_data;
    394 
    395 	strlcpy(type, pktq_get_rps_hash_type(*func), PKTQ_RPS_HASH_NAME_LEN);
    396 
    397 	node.sysctl_data = &type;
    398 	node.sysctl_size = sizeof(type);
    399 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    400 	if (error || newp == NULL)
    401 		return error;
    402 
    403 	error = pktq_set_rps_hash_type(func, type);
    404 
    405 	return error;
    406  }
    407 
    408 /*
    409  * pktq_enqueue: inject the packet into the end of the queue.
    410  *
    411  * => Must be called from the interrupt or with the preemption disabled.
    412  * => Consumes the packet and returns true on success.
    413  * => Returns false on failure; caller is responsible to free the packet.
    414  */
    415 bool
    416 pktq_enqueue(pktqueue_t *pq, struct mbuf *m, const u_int hash __unused)
    417 {
    418 #if defined(_RUMPKERNEL) || defined(_RUMP_NATIVE_ABI)
    419 	struct cpu_info *ci = curcpu();
    420 #else
    421 	struct cpu_info *ci = cpu_lookup(hash % ncpu);
    422 #endif
    423 
    424 	KASSERT(kpreempt_disabled());
    425 
    426 	if (__predict_false(!pcq_put(pktq_pcq(pq, ci), m))) {
    427 		pktq_inc_count(pq, PQCNT_DROP);
    428 		return false;
    429 	}
    430 	softint_schedule_cpu(pq->pq_sih, ci);
    431 	pktq_inc_count(pq, PQCNT_ENQUEUE);
    432 	return true;
    433 }
    434 
    435 /*
    436  * pktq_dequeue: take a packet from the queue.
    437  *
    438  * => Must be called with preemption disabled.
    439  * => Must ensure there are not concurrent dequeue calls.
    440  */
    441 struct mbuf *
    442 pktq_dequeue(pktqueue_t *pq)
    443 {
    444 	struct cpu_info *ci = curcpu();
    445 	struct mbuf *m;
    446 
    447 	KASSERT(kpreempt_disabled());
    448 
    449 	m = pcq_get(pktq_pcq(pq, ci));
    450 	if (__predict_false(m == PKTQ_MARKER)) {
    451 		/* Note the marker entry. */
    452 		atomic_inc_uint(&pq->pq_barrier);
    453 
    454 		/* Get the next queue entry. */
    455 		m = pcq_get(pktq_pcq(pq, ci));
    456 
    457 		/*
    458 		 * There can only be one barrier operation pending
    459 		 * on a pktqueue at any given time, so we can assert
    460 		 * that the next item is not a marker.
    461 		 */
    462 		KASSERT(m != PKTQ_MARKER);
    463 	}
    464 	if (__predict_true(m != NULL)) {
    465 		pktq_inc_count(pq, PQCNT_DEQUEUE);
    466 	}
    467 	return m;
    468 }
    469 
    470 /*
    471  * pktq_barrier: waits for a grace period when all packets enqueued at
    472  * the moment of calling this routine will be processed.  This is used
    473  * to ensure that e.g. packets referencing some interface were drained.
    474  */
    475 void
    476 pktq_barrier(pktqueue_t *pq)
    477 {
    478 	CPU_INFO_ITERATOR cii;
    479 	struct cpu_info *ci;
    480 	u_int pending = 0;
    481 
    482 	mutex_enter(&pq->pq_lock);
    483 	KASSERT(pq->pq_barrier == 0);
    484 
    485 	for (CPU_INFO_FOREACH(cii, ci)) {
    486 		struct pcq *q;
    487 
    488 		kpreempt_disable();
    489 		q = pktq_pcq(pq, ci);
    490 		kpreempt_enable();
    491 
    492 		/* If the queue is empty - nothing to do. */
    493 		if (pcq_peek(q) == NULL) {
    494 			continue;
    495 		}
    496 		/* Otherwise, put the marker and entry. */
    497 		while (!pcq_put(q, PKTQ_MARKER)) {
    498 			kpause("pktqsync", false, 1, NULL);
    499 		}
    500 		kpreempt_disable();
    501 		softint_schedule_cpu(pq->pq_sih, ci);
    502 		kpreempt_enable();
    503 		pending++;
    504 	}
    505 
    506 	/* Wait for each queue to process the markers. */
    507 	while (pq->pq_barrier != pending) {
    508 		kpause("pktqsync", false, 1, NULL);
    509 	}
    510 	pq->pq_barrier = 0;
    511 	mutex_exit(&pq->pq_lock);
    512 }
    513 
    514 /*
    515  * pktq_ifdetach: issue a barrier on all pktqueues when a network
    516  * interface is detached.
    517  */
    518 void
    519 pktq_ifdetach(void)
    520 {
    521 	pktqueue_t *pq;
    522 
    523 	/* Just in case no pktqueues have been created yet... */
    524 	RUN_ONCE(&pktqueue_list_init_once, pktqueue_list_init);
    525 
    526 	rw_enter(&pktqueue_list_lock, RW_READER);
    527 	LIST_FOREACH(pq, &pktqueue_list, pq_list) {
    528 		pktq_barrier(pq);
    529 	}
    530 	rw_exit(&pktqueue_list_lock);
    531 }
    532 
    533 /*
    534  * pktq_flush: free mbufs in all queues.
    535  *
    536  * => The caller must ensure there are no concurrent writers or flush calls.
    537  */
    538 void
    539 pktq_flush(pktqueue_t *pq)
    540 {
    541 	CPU_INFO_ITERATOR cii;
    542 	struct cpu_info *ci;
    543 	struct mbuf *m, *m0 = NULL;
    544 
    545 	ASSERT_SLEEPABLE();
    546 
    547 	/*
    548 	 * Run a dummy softint at IPL_SOFTNET on all CPUs to ensure that any
    549 	 * already running handler for this pktqueue is no longer running.
    550 	 */
    551 	xc_barrier(XC_HIGHPRI_IPL(IPL_SOFTNET));
    552 
    553 	/*
    554 	 * Acquire the barrier lock.  While the caller ensures that
    555 	 * no explicit pktq_barrier() calls will be issued, this holds
    556 	 * off any implicit pktq_barrier() calls that would happen
    557 	 * as the result of pktq_ifdetach().
    558 	 */
    559 	mutex_enter(&pq->pq_lock);
    560 
    561 	for (CPU_INFO_FOREACH(cii, ci)) {
    562 		struct pcq *q;
    563 
    564 		kpreempt_disable();
    565 		q = pktq_pcq(pq, ci);
    566 		kpreempt_enable();
    567 
    568 		/*
    569 		 * Pull the packets off the pcq and chain them into
    570 		 * a list to be freed later.
    571 		 */
    572 		while ((m = pcq_get(q)) != NULL) {
    573 			pktq_inc_count(pq, PQCNT_DEQUEUE);
    574 			m->m_nextpkt = m0;
    575 			m0 = m;
    576 		}
    577 	}
    578 
    579 	mutex_exit(&pq->pq_lock);
    580 
    581 	/* Free the packets now that the critical section is over. */
    582 	while ((m = m0) != NULL) {
    583 		m0 = m->m_nextpkt;
    584 		m_freem(m);
    585 	}
    586 }
    587 
    588 static void
    589 pktq_set_maxlen_cpu(void *vpq, void *vqs)
    590 {
    591 	struct pktqueue *pq = vpq;
    592 	struct pcq **qp, *q, **qs = vqs;
    593 	unsigned i = cpu_index(curcpu());
    594 	int s;
    595 
    596 	s = splnet();
    597 	qp = percpu_getref(pq->pq_pcq);
    598 	q = *qp;
    599 	*qp = qs[i];
    600 	qs[i] = q;
    601 	percpu_putref(pq->pq_pcq);
    602 	splx(s);
    603 }
    604 
    605 /*
    606  * pktq_set_maxlen: create per-CPU queues using a new size and replace
    607  * the existing queues without losing any packets.
    608  *
    609  * XXX ncpu must remain stable throughout.
    610  */
    611 int
    612 pktq_set_maxlen(pktqueue_t *pq, size_t maxlen)
    613 {
    614 	const u_int slotbytes = ncpu * sizeof(pcq_t *);
    615 	pcq_t **qs;
    616 
    617 	if (!maxlen || maxlen > PCQ_MAXLEN)
    618 		return EINVAL;
    619 	if (pq->pq_maxlen == maxlen)
    620 		return 0;
    621 
    622 	/* First, allocate the new queues. */
    623 	qs = kmem_zalloc(slotbytes, KM_SLEEP);
    624 	for (u_int i = 0; i < ncpu; i++) {
    625 		qs[i] = pcq_create(maxlen, KM_SLEEP);
    626 	}
    627 
    628 	/*
    629 	 * Issue an xcall to replace the queue pointers on each CPU.
    630 	 * This implies all the necessary memory barriers.
    631 	 */
    632 	mutex_enter(&pq->pq_lock);
    633 	xc_wait(xc_broadcast(XC_HIGHPRI, pktq_set_maxlen_cpu, pq, qs));
    634 	pq->pq_maxlen = maxlen;
    635 	mutex_exit(&pq->pq_lock);
    636 
    637 	/*
    638 	 * At this point, the new packets are flowing into the new
    639 	 * queues.  However, the old queues may have some packets
    640 	 * present which are no longer being processed.  We are going
    641 	 * to re-enqueue them.  This may change the order of packet
    642 	 * arrival, but it is not considered an issue.
    643 	 *
    644 	 * There may be in-flight interrupts calling pktq_dequeue()
    645 	 * which reference the old queues.  Issue a barrier to ensure
    646 	 * that we are going to be the only pcq_get() callers on the
    647 	 * old queues.
    648 	 */
    649 	pktq_barrier(pq);
    650 
    651 	for (u_int i = 0; i < ncpu; i++) {
    652 		struct pcq *q;
    653 		struct mbuf *m;
    654 
    655 		kpreempt_disable();
    656 		q = pktq_pcq(pq, cpu_lookup(i));
    657 		kpreempt_enable();
    658 
    659 		while ((m = pcq_get(qs[i])) != NULL) {
    660 			while (!pcq_put(q, m)) {
    661 				kpause("pktqrenq", false, 1, NULL);
    662 			}
    663 		}
    664 		pcq_destroy(qs[i]);
    665 	}
    666 
    667 	/* Well, that was fun. */
    668 	kmem_free(qs, slotbytes);
    669 	return 0;
    670 }
    671 
    672 static int
    673 sysctl_pktq_maxlen(SYSCTLFN_ARGS)
    674 {
    675 	struct sysctlnode node = *rnode;
    676 	pktqueue_t * const pq = node.sysctl_data;
    677 	u_int nmaxlen = pktq_get_count(pq, PKTQ_MAXLEN);
    678 	int error;
    679 
    680 	node.sysctl_data = &nmaxlen;
    681 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    682 	if (error || newp == NULL)
    683 		return error;
    684 	return pktq_set_maxlen(pq, nmaxlen);
    685 }
    686 
    687 static int
    688 sysctl_pktq_count(SYSCTLFN_ARGS, u_int count_id)
    689 {
    690 	struct sysctlnode node = *rnode;
    691 	pktqueue_t * const pq = node.sysctl_data;
    692 	uint64_t count = pktq_get_count(pq, count_id);
    693 
    694 	node.sysctl_data = &count;
    695 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    696 }
    697 
    698 static int
    699 sysctl_pktq_nitems(SYSCTLFN_ARGS)
    700 {
    701 	return sysctl_pktq_count(SYSCTLFN_CALL(rnode), PKTQ_NITEMS);
    702 }
    703 
    704 static int
    705 sysctl_pktq_drops(SYSCTLFN_ARGS)
    706 {
    707 	return sysctl_pktq_count(SYSCTLFN_CALL(rnode), PKTQ_DROPS);
    708 }
    709 
    710 /*
    711  * pktqueue_sysctl_setup: set up the sysctl nodes for a pktqueue
    712  * using standardized names at the specified parent node and
    713  * node ID (or CTL_CREATE).
    714  */
    715 void
    716 pktq_sysctl_setup(pktqueue_t * const pq, struct sysctllog ** const clog,
    717 		  const struct sysctlnode * const parent_node, const int qid)
    718 {
    719 	const struct sysctlnode *rnode = parent_node, *cnode;
    720 
    721 	KASSERT(pq != NULL);
    722 	KASSERT(parent_node != NULL);
    723 	KASSERT(qid == CTL_CREATE || qid >= 0);
    724 
    725 	/* Create the "ifq" node below the parent node. */
    726 	sysctl_createv(clog, 0, &rnode, &cnode,
    727 		       CTLFLAG_PERMANENT,
    728 		       CTLTYPE_NODE, "ifq",
    729 		       SYSCTL_DESCR("Protocol input queue controls"),
    730 		       NULL, 0, NULL, 0,
    731 		       qid, CTL_EOL);
    732 
    733 	/* Now create the standard child nodes below "ifq". */
    734 	rnode = cnode;
    735 
    736 	sysctl_createv(clog, 0, &rnode, &cnode,
    737 		       CTLFLAG_PERMANENT,
    738 		       CTLTYPE_QUAD, "len",
    739 		       SYSCTL_DESCR("Current input queue length"),
    740 		       sysctl_pktq_nitems, 0, (void *)pq, 0,
    741 		       IFQCTL_LEN, CTL_EOL);
    742 	sysctl_createv(clog, 0, &rnode, &cnode,
    743 		       CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    744 		       CTLTYPE_INT, "maxlen",
    745 		       SYSCTL_DESCR("Maximum allowed input queue length"),
    746 		       sysctl_pktq_maxlen, 0, (void *)pq, 0,
    747 		       IFQCTL_MAXLEN, CTL_EOL);
    748 	sysctl_createv(clog, 0, &rnode, &cnode,
    749 		       CTLFLAG_PERMANENT,
    750 		       CTLTYPE_QUAD, "drops",
    751 		       SYSCTL_DESCR("Packets dropped due to full input queue"),
    752 		       sysctl_pktq_drops, 0, (void *)pq, 0,
    753 		       IFQCTL_DROPS, CTL_EOL);
    754 }
    755