Home | History | Annotate | Line # | Download | only in include
      1 /*	$NetBSD: pmap.h,v 1.98 2024/03/23 18:48:31 andvar Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996
      5  * 	The President and Fellows of Harvard College. All rights reserved.
      6  * Copyright (c) 1992, 1993
      7  *	The Regents of the University of California.  All rights reserved.
      8  *
      9  * This software was developed by the Computer Systems Engineering group
     10  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     11  * contributed to Berkeley.
     12  *
     13  * All advertising materials mentioning features or use of this software
     14  * must display the following acknowledgement:
     15  *	This product includes software developed by Aaron Brown and
     16  *	Harvard University.
     17  *	This product includes software developed by the University of
     18  *	California, Lawrence Berkeley Laboratory.
     19  *
     20  * @InsertRedistribution@
     21  * 3. All advertising materials mentioning features or use of this software
     22  *    must display the following acknowledgement:
     23  *	This product includes software developed by Aaron Brown and
     24  *	Harvard University.
     25  *	This product includes software developed by the University of
     26  *	California, Berkeley and its contributors.
     27  * 4. Neither the name of the University nor the names of its contributors
     28  *    may be used to endorse or promote products derived from this software
     29  *    without specific prior written permission.
     30  *
     31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     41  * SUCH DAMAGE.
     42  *
     43  *	@(#)pmap.h	8.1 (Berkeley) 6/11/93
     44  */
     45 
     46 #ifndef	_SPARC_PMAP_H_
     47 #define _SPARC_PMAP_H_
     48 
     49 #if defined(_KERNEL_OPT)
     50 #include "opt_sparc_arch.h"
     51 #endif
     52 
     53 struct vm_page;
     54 
     55 #include <uvm/uvm_prot.h>
     56 #include <uvm/uvm_pmap.h>
     57 
     58 #include <sparc/pte.h>
     59 
     60 /*
     61  * Pmap structure.
     62  *
     63  * The pmap structure really comes in two variants, one---a single
     64  * instance---for kernel virtual memory and the other---up to nproc
     65  * instances---for user virtual memory.  Unfortunately, we have to mash
     66  * both into the same structure.  Fortunately, they are almost the same.
     67  *
     68  * The kernel begins at 0xf8000000 and runs to 0xffffffff (although
     69  * some of this is not actually used).  Kernel space, including DVMA
     70  * space (for now?), is mapped identically into all user contexts.
     71  * There is no point in duplicating this mapping in each user process
     72  * so they do not appear in the user structures.
     73  *
     74  * User space begins at 0x00000000 and runs through 0x1fffffff,
     75  * then has a `hole', then resumes at 0xe0000000 and runs until it
     76  * hits the kernel space at 0xf8000000.  This can be mapped
     77  * contiguously by ignoring the top two bits and pretending the
     78  * space goes from 0 to 37ffffff.  Typically the lower range is
     79  * used for text+data and the upper for stack, but the code here
     80  * makes no such distinction.
     81  *
     82  * Since each virtual segment covers 256 kbytes, the user space
     83  * requires 3584 segments, while the kernel (including DVMA) requires
     84  * only 512 segments.
     85  *
     86  *
     87  ** FOR THE SUN4/SUN4C
     88  *
     89  * The segment map entry for virtual segment vseg is offset in
     90  * pmap->pm_rsegmap by 0 if pmap is not the kernel pmap, or by
     91  * NUSEG if it is.  We keep a pointer called pmap->pm_segmap
     92  * pre-offset by this value.  pmap->pm_segmap thus contains the
     93  * values to be loaded into the user portion of the hardware segment
     94  * map so as to reach the proper PMEGs within the MMU.  The kernel
     95  * mappings are `set early' and are always valid in every context
     96  * (every change is always propagated immediately).
     97  *
     98  * The PMEGs within the MMU are loaded `on demand'; when a PMEG is
     99  * taken away from context `c', the pmap for context c has its
    100  * corresponding pm_segmap[vseg] entry marked invalid (the MMU segment
    101  * map entry is also made invalid at the same time).  Thus
    102  * pm_segmap[vseg] is the `invalid pmeg' number (127 or 511) whenever
    103  * the corresponding PTEs are not actually in the MMU.  On the other
    104  * hand, pm_pte[vseg] is NULL only if no pages in that virtual segment
    105  * are in core; otherwise it points to a copy of the 32 or 64 PTEs that
    106  * must be loaded in the MMU in order to reach those pages.
    107  * pm_npte[vseg] counts the number of valid pages in each vseg.
    108  *
    109  * XXX performance: faster to count valid bits?
    110  *
    111  * The kernel pmap cannot malloc() PTEs since malloc() will sometimes
    112  * allocate a new virtual segment.  Since kernel mappings are never
    113  * `stolen' out of the MMU, we just keep all its PTEs there, and have
    114  * no software copies.  Its mmu entries are nonetheless kept on lists
    115  * so that the code that fiddles with mmu lists has something to fiddle.
    116  *
    117  ** FOR THE SUN4M/SUN4D
    118  *
    119  * On this architecture, the virtual-to-physical translation (page) tables
    120  * are *not* stored within the MMU as they are in the earlier Sun architect-
    121  * ures; instead, they are maintained entirely within physical memory (there
    122  * is a TLB cache to prevent the high performance hit from keeping all page
    123  * tables in core). Thus there is no need to dynamically allocate PMEGs or
    124  * SMEGs; only contexts must be shared.
    125  *
    126  * We maintain two parallel sets of tables: one is the actual MMU-edible
    127  * hierarchy of page tables in allocated kernel memory; these tables refer
    128  * to each other by physical address pointers in SRMMU format (thus they
    129  * are not very useful to the kernel's management routines). The other set
    130  * of tables is similar to those used for the Sun4/100's 3-level MMU; it
    131  * is a hierarchy of regmap and segmap structures which contain kernel virtual
    132  * pointers to each other. These must (unfortunately) be kept in sync.
    133  *
    134  */
    135 #define NKREG	((int)((-(unsigned)KERNBASE) / NBPRG))	/* i.e., 8 */
    136 #define NUREG	(256 - NKREG)				/* i.e., 248 */
    137 
    138 TAILQ_HEAD(mmuhd,mmuentry);
    139 
    140 /*
    141  * data appearing in both user and kernel pmaps
    142  *
    143  * note: if we want the same binaries to work on the 4/4c and 4m, we have to
    144  *       include the fields for both to make sure that the struct kproc
    145  * 	 is the same size.
    146  */
    147 struct pmap {
    148 	union	ctxinfo *pm_ctx;	/* current context, if any */
    149 	int	pm_ctxnum;		/* current context's number */
    150 	u_int	pm_cpuset;		/* CPU's this pmap has context on */
    151 	int	pm_refcount;		/* just what it says */
    152 
    153 	struct mmuhd	pm_reglist;	/* MMU regions on this pmap (4/4c) */
    154 	struct mmuhd	pm_seglist;	/* MMU segments on this pmap (4/4c) */
    155 
    156 	struct regmap	*pm_regmap;
    157 
    158 	int		**pm_reg_ptps;	/* SRMMU-edible region tables for 4m */
    159 	int		*pm_reg_ptps_pa;/* _Physical_ address of pm_reg_ptps */
    160 
    161 	int		pm_gap_start;	/* Starting with this vreg there's */
    162 	int		pm_gap_end;	/* no valid mapping until here */
    163 
    164 	struct pmap_statistics	pm_stats;	/* pmap statistics */
    165 	u_int		pm_flags;
    166 #define PMAP_USERCACHECLEAN	1
    167 };
    168 
    169 struct regmap {
    170 	struct segmap	*rg_segmap;	/* point to NSGPRG PMEGs */
    171 	int		*rg_seg_ptps; 	/* SRMMU-edible segment tables (NULL
    172 					 * indicates invalid region (4m) */
    173 	smeg_t		rg_smeg;	/* the MMU region number (4c) */
    174 	u_char		rg_nsegmap;	/* number of valid PMEGS */
    175 };
    176 
    177 struct segmap {
    178 	uint64_t sg_wiremap;		/* per-page wire bits (4m) */
    179 	int	*sg_pte;		/* points to NPTESG PTEs */
    180 	pmeg_t	sg_pmeg;		/* the MMU segment number (4c) */
    181 	u_char	sg_npte;		/* number of valid PTEs in sg_pte
    182 					 * (not used for 4m/4d kernel_map) */
    183 	int8_t	sg_nwired;		/* number of wired pages */
    184 };
    185 
    186 #ifdef _KERNEL
    187 
    188 #define PMAP_NULL	((pmap_t)0)
    189 
    190 /* Mostly private data exported for a few key consumers. */
    191 struct memarr;
    192 extern struct memarr *pmemarr;
    193 extern int npmemarr;
    194 extern vaddr_t prom_vstart;
    195 extern vaddr_t prom_vend;
    196 
    197 /*
    198  * Bounds on managed physical addresses. Used by (MD) users
    199  * of uvm_pglistalloc() to provide search hints.
    200  */
    201 extern paddr_t		vm_first_phys, vm_last_phys;
    202 extern psize_t		vm_num_phys;
    203 
    204 /*
    205  * Since PTEs also contain type bits, we have to have some way
    206  * to tell pmap_enter `this is an IO page' or `this is not to
    207  * be cached'.  Since physical addresses are always aligned, we
    208  * can do this with the low order bits.
    209  *
    210  * The ordering below is important: PMAP_PGTYPE << PG_TNC must give
    211  * exactly the PG_NC and PG_TYPE bits.
    212  */
    213 #define	PMAP_OBIO	1		/* tells pmap_enter to use PG_OBIO */
    214 #define	PMAP_VME16	2		/* etc */
    215 #define	PMAP_VME32	3		/* etc */
    216 #define	PMAP_NC		4		/* tells pmap_enter to set PG_NC */
    217 #define	PMAP_TNC_4	7		/* mask to get PG_TYPE & PG_NC */
    218 
    219 #define	PMAP_T2PTE_4(x)		(((x) & PMAP_TNC_4) << PG_TNC_SHIFT)
    220 #define	PMAP_IOENC_4(io)	(io)
    221 
    222 /*
    223  * On a SRMMU machine, the iospace is encoded in bits [3-6] of the
    224  * physical address passed to pmap_enter().
    225  */
    226 #define PMAP_TYPE_SRMMU		0x78	/* mask to get 4m page type */
    227 #define PMAP_PTESHFT_SRMMU	25	/* right shift to put type in pte */
    228 #define PMAP_SHFT_SRMMU		3	/* left shift to extract iospace */
    229 #define	PMAP_TNC_SRMMU		127	/* mask to get PG_TYPE & PG_NC */
    230 
    231 /*#define PMAP_IOC      0x00800000      -* IO cacheable, NOT shifted */
    232 
    233 #define PMAP_T2PTE_SRMMU(x)	(((x) & PMAP_TYPE_SRMMU) << PMAP_PTESHFT_SRMMU)
    234 #define PMAP_IOENC_SRMMU(io)	((io) << PMAP_SHFT_SRMMU)
    235 
    236 /* Encode IO space for pmap_enter() */
    237 #define PMAP_IOENC(io)	(CPU_HAS_SRMMU ? PMAP_IOENC_SRMMU(io) \
    238 				       : PMAP_IOENC_4(io))
    239 
    240 int	pmap_dumpsize(void);
    241 int	pmap_dumpmmu(int (*)(dev_t, daddr_t, void *, size_t), daddr_t);
    242 
    243 #define	pmap_resident_count(pm)	((pm)->pm_stats.resident_count)
    244 #define	pmap_wired_count(pm)	((pm)->pm_stats.wired_count)
    245 
    246 #define PMAP_PREFER(fo, ap, sz, td)	pmap_prefer((fo), (ap), (sz), (td))
    247 
    248 #define PMAP_EXCLUDE_DECLS	/* tells MI pmap.h *not* to include decls */
    249 
    250 /* FUNCTION DECLARATIONS FOR COMMON PMAP MODULE */
    251 
    252 void		pmap_activate(struct lwp *);
    253 void		pmap_deactivate(struct lwp *);
    254 void		pmap_bootstrap(int nmmu, int nctx, int nregion);
    255 void		pmap_prefer(vaddr_t, vaddr_t *, size_t, int);
    256 int		pmap_pa_exists(paddr_t);
    257 void		pmap_unwire(pmap_t, vaddr_t);
    258 void		pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
    259 pmap_t		pmap_create(void);
    260 void		pmap_destroy(pmap_t);
    261 void		pmap_init(void);
    262 vaddr_t		pmap_map(vaddr_t, paddr_t, paddr_t, int);
    263 #define		pmap_phys_address(x) (x)
    264 void		pmap_reference(pmap_t);
    265 void		pmap_remove(pmap_t, vaddr_t, vaddr_t);
    266 #define		pmap_update(pmap)		__USE(pmap)
    267 void		pmap_virtual_space(vaddr_t *, vaddr_t *);
    268 #ifdef PMAP_GROWKERNEL
    269 vaddr_t		pmap_growkernel(vaddr_t);
    270 #endif
    271 void		pmap_redzone(void);
    272 void		kvm_uncache(char *, int);
    273 int		mmu_pagein(struct pmap *pm, vaddr_t, int);
    274 void		pmap_writetext(unsigned char *, int);
    275 void		pmap_globalize_boot_cpuinfo(struct cpu_info *);
    276 bool		pmap_remove_all(struct pmap *pm);
    277 #define 	pmap_mmap_flags(x)	0	/* dummy so far */
    278 
    279 /* SUN4/SUN4C SPECIFIC DECLARATIONS */
    280 
    281 #if defined(SUN4) || defined(SUN4C)
    282 bool		pmap_clear_modify4_4c(struct vm_page *);
    283 bool		pmap_clear_reference4_4c(struct vm_page *);
    284 void		pmap_copy_page4_4c(paddr_t, paddr_t);
    285 int		pmap_enter4_4c(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
    286 bool		pmap_extract4_4c(pmap_t, vaddr_t, paddr_t *);
    287 bool		pmap_is_modified4_4c(struct vm_page *);
    288 bool		pmap_is_referenced4_4c(struct vm_page *);
    289 void		pmap_kenter_pa4_4c(vaddr_t, paddr_t, vm_prot_t, u_int);
    290 void		pmap_kremove4_4c(vaddr_t, vsize_t);
    291 void		pmap_kprotect4_4c(vaddr_t, vsize_t, vm_prot_t);
    292 void		pmap_page_protect4_4c(struct vm_page *, vm_prot_t);
    293 void		pmap_protect4_4c(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
    294 void		pmap_zero_page4_4c(paddr_t);
    295 #endif /* defined SUN4 || defined SUN4C */
    296 
    297 /* SIMILAR DECLARATIONS FOR SUN4M/SUN4D MODULE */
    298 
    299 #if defined(SUN4M) || defined(SUN4D)
    300 bool		pmap_clear_modify4m(struct vm_page *);
    301 bool		pmap_clear_reference4m(struct vm_page *);
    302 void		pmap_copy_page4m(paddr_t, paddr_t);
    303 void		pmap_copy_page_viking_mxcc(paddr_t, paddr_t);
    304 void		pmap_copy_page_hypersparc(paddr_t, paddr_t);
    305 int		pmap_enter4m(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
    306 bool		pmap_extract4m(pmap_t, vaddr_t, paddr_t *);
    307 bool		pmap_is_modified4m(struct vm_page *);
    308 bool		pmap_is_referenced4m(struct vm_page *);
    309 void		pmap_kenter_pa4m(vaddr_t, paddr_t, vm_prot_t, u_int);
    310 void		pmap_kremove4m(vaddr_t, vsize_t);
    311 void		pmap_kprotect4m(vaddr_t, vsize_t, vm_prot_t);
    312 void		pmap_page_protect4m(struct vm_page *, vm_prot_t);
    313 void		pmap_protect4m(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
    314 void		pmap_zero_page4m(paddr_t);
    315 void		pmap_zero_page_viking_mxcc(paddr_t);
    316 void		pmap_zero_page_hypersparc(paddr_t);
    317 #endif /* defined SUN4M || defined SUN4D */
    318 
    319 #if !(defined(SUN4M) || defined(SUN4D)) && (defined(SUN4) || defined(SUN4C))
    320 
    321 #define		pmap_clear_modify	pmap_clear_modify4_4c
    322 #define		pmap_clear_reference	pmap_clear_reference4_4c
    323 #define		pmap_enter		pmap_enter4_4c
    324 #define		pmap_extract		pmap_extract4_4c
    325 #define		pmap_is_modified	pmap_is_modified4_4c
    326 #define		pmap_is_referenced	pmap_is_referenced4_4c
    327 #define		pmap_kenter_pa		pmap_kenter_pa4_4c
    328 #define		pmap_kremove		pmap_kremove4_4c
    329 #define		pmap_kprotect		pmap_kprotect4_4c
    330 #define		pmap_page_protect	pmap_page_protect4_4c
    331 #define		pmap_protect		pmap_protect4_4c
    332 
    333 #elif (defined(SUN4M) || defined(SUN4D)) && !(defined(SUN4) || defined(SUN4C))
    334 
    335 #define		pmap_clear_modify	pmap_clear_modify4m
    336 #define		pmap_clear_reference	pmap_clear_reference4m
    337 #define		pmap_enter		pmap_enter4m
    338 #define		pmap_extract		pmap_extract4m
    339 #define		pmap_is_modified	pmap_is_modified4m
    340 #define		pmap_is_referenced	pmap_is_referenced4m
    341 #define		pmap_kenter_pa		pmap_kenter_pa4m
    342 #define		pmap_kremove		pmap_kremove4m
    343 #define		pmap_kprotect		pmap_kprotect4m
    344 #define		pmap_page_protect	pmap_page_protect4m
    345 #define		pmap_protect		pmap_protect4m
    346 
    347 #else  /* must use function pointers */
    348 
    349 extern bool	(*pmap_clear_modify_p)(struct vm_page *);
    350 extern bool	(*pmap_clear_reference_p)(struct vm_page *);
    351 extern int	(*pmap_enter_p)(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
    352 extern bool	 (*pmap_extract_p)(pmap_t, vaddr_t, paddr_t *);
    353 extern bool	(*pmap_is_modified_p)(struct vm_page *);
    354 extern bool	(*pmap_is_referenced_p)(struct vm_page *);
    355 extern void	(*pmap_kenter_pa_p)(vaddr_t, paddr_t, vm_prot_t, u_int);
    356 extern void	(*pmap_kremove_p)(vaddr_t, vsize_t);
    357 extern void	(*pmap_kprotect_p)(vaddr_t, vsize_t, vm_prot_t);
    358 extern void	(*pmap_page_protect_p)(struct vm_page *, vm_prot_t);
    359 extern void	(*pmap_protect_p)(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
    360 
    361 #define		pmap_clear_modify	(*pmap_clear_modify_p)
    362 #define		pmap_clear_reference	(*pmap_clear_reference_p)
    363 #define		pmap_enter		(*pmap_enter_p)
    364 #define		pmap_extract		(*pmap_extract_p)
    365 #define		pmap_is_modified	(*pmap_is_modified_p)
    366 #define		pmap_is_referenced	(*pmap_is_referenced_p)
    367 #define		pmap_kenter_pa		(*pmap_kenter_pa_p)
    368 #define		pmap_kremove		(*pmap_kremove_p)
    369 #define		pmap_kprotect		(*pmap_kprotect_p)
    370 #define		pmap_page_protect	(*pmap_page_protect_p)
    371 #define		pmap_protect		(*pmap_protect_p)
    372 
    373 #endif
    374 
    375 /* pmap_{zero,copy}_page() may be assisted by specialized hardware */
    376 #define		pmap_zero_page		(*cpuinfo.zero_page)
    377 #define		pmap_copy_page		(*cpuinfo.copy_page)
    378 
    379 #if defined(SUN4M) || defined(SUN4D)
    380 /*
    381  * Macros which implement SRMMU TLB flushing/invalidation
    382  */
    383 #define tlb_flush_page_real(va)    \
    384 	sta(((vaddr_t)(va) & 0xfffff000) | ASI_SRMMUFP_L3, ASI_SRMMUFP, 0)
    385 
    386 #define tlb_flush_segment_real(va) \
    387 	sta(((vaddr_t)(va) & 0xfffc0000) | ASI_SRMMUFP_L2, ASI_SRMMUFP, 0)
    388 
    389 #define tlb_flush_region_real(va) \
    390 	sta(((vaddr_t)(va) & 0xff000000) | ASI_SRMMUFP_L1, ASI_SRMMUFP, 0)
    391 
    392 #define tlb_flush_context_real()	sta(ASI_SRMMUFP_L0, ASI_SRMMUFP, 0)
    393 #define tlb_flush_all_real()		sta(ASI_SRMMUFP_LN, ASI_SRMMUFP, 0)
    394 
    395 void setpte4m(vaddr_t va, int pte);
    396 
    397 #endif /* SUN4M || SUN4D */
    398 
    399 #define __HAVE_VM_PAGE_MD
    400 
    401 /*
    402  * For each managed physical page, there is a list of all currently
    403  * valid virtual mappings of that page.  Since there is usually one
    404  * (or zero) mapping per page, the table begins with an initial entry,
    405  * rather than a pointer; this head entry is empty iff its pv_pmap
    406  * field is NULL.
    407  */
    408 struct vm_page_md {
    409 	struct pvlist {
    410 		struct	pvlist *pv_next;	/* next pvlist, if any */
    411 		struct	pmap *pv_pmap;		/* pmap of this va */
    412 		vaddr_t	pv_va;			/* virtual address */
    413 		int	pv_flags;		/* flags (below) */
    414 	} pvlisthead;
    415 };
    416 #define VM_MDPAGE_PVHEAD(pg)	(&(pg)->mdpage.pvlisthead)
    417 
    418 #define VM_MDPAGE_INIT(pg) do {				\
    419 	(pg)->mdpage.pvlisthead.pv_next = NULL;		\
    420 	(pg)->mdpage.pvlisthead.pv_pmap = NULL;		\
    421 	(pg)->mdpage.pvlisthead.pv_va = 0;		\
    422 	(pg)->mdpage.pvlisthead.pv_flags = 0;		\
    423 } while(/*CONSTCOND*/0)
    424 
    425 #endif /* _KERNEL */
    426 
    427 #endif /* _SPARC_PMAP_H_ */
    428