Home | History | Annotate | Line # | Download | only in pax
      1 /*	$NetBSD: tables.c,v 1.31 2013/10/18 19:53:34 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1992 Keith Muller.
      5  * Copyright (c) 1992, 1993
      6  *	The Regents of the University of California.  All rights reserved.
      7  *
      8  * This code is derived from software contributed to Berkeley by
      9  * Keith Muller of the University of California, San Diego.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  */
     35 
     36 #if HAVE_NBTOOL_CONFIG_H
     37 #include "nbtool_config.h"
     38 #endif
     39 
     40 #include <sys/cdefs.h>
     41 #if !defined(lint)
     42 #if 0
     43 static char sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
     44 #else
     45 __RCSID("$NetBSD: tables.c,v 1.31 2013/10/18 19:53:34 christos Exp $");
     46 #endif
     47 #endif /* not lint */
     48 
     49 #include <sys/types.h>
     50 #include <sys/time.h>
     51 #include <sys/stat.h>
     52 #include <sys/param.h>
     53 #include <stdio.h>
     54 #include <ctype.h>
     55 #include <fcntl.h>
     56 #include <paths.h>
     57 #include <string.h>
     58 #include <unistd.h>
     59 #include <errno.h>
     60 #include <stdlib.h>
     61 #include "pax.h"
     62 #include "tables.h"
     63 #include "extern.h"
     64 
     65 /*
     66  * Routines for controlling the contents of all the different databases pax
     67  * keeps. Tables are dynamically created only when they are needed. The
     68  * goal was speed and the ability to work with HUGE archives. The databases
     69  * were kept simple, but do have complex rules for when the contents change.
     70  * As of this writing, the POSIX library functions were more complex than
     71  * needed for this application (pax databases have very short lifetimes and
     72  * do not survive after pax is finished). Pax is required to handle very
     73  * large archives. These database routines carefully combine memory usage and
     74  * temporary file storage in ways which will not significantly impact runtime
     75  * performance while allowing the largest possible archives to be handled.
     76  * Trying to force the fit to the POSIX database routines was not considered
     77  * time well spent.
     78  */
     79 
     80 static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
     81 static FTM **ftab = NULL;	/* file time table for updating arch */
     82 static NAMT **ntab = NULL;	/* interactive rename storage table */
     83 static DEVT **dtab = NULL;	/* device/inode mapping tables */
     84 static ATDIR **atab = NULL;	/* file tree directory time reset table */
     85 #ifdef DIRS_USE_FILE
     86 static int dirfd = -1;		/* storage for setting created dir time/mode */
     87 static u_long dircnt;		/* entries in dir time/mode storage */
     88 #endif
     89 static int ffd = -1;		/* tmp file for file time table name storage */
     90 
     91 static DEVT *chk_dev(dev_t, int);
     92 
     93 /*
     94  * hard link table routines
     95  *
     96  * The hard link table tries to detect hard links to files using the device and
     97  * inode values. We do this when writing an archive, so we can tell the format
     98  * write routine that this file is a hard link to another file. The format
     99  * write routine then can store this file in whatever way it wants (as a hard
    100  * link if the format supports that like tar, or ignore this info like cpio).
    101  * (Actually a field in the format driver table tells us if the format wants
    102  * hard link info. if not, we do not waste time looking for them). We also use
    103  * the same table when reading an archive. In that situation, this table is
    104  * used by the format read routine to detect hard links from stored dev and
    105  * inode numbers (like cpio). This will allow pax to create a link when one
    106  * can be detected by the archive format.
    107  */
    108 
    109 /*
    110  * lnk_start
    111  *	Creates the hard link table.
    112  * Return:
    113  *	0 if created, -1 if failure
    114  */
    115 
    116 int
    117 lnk_start(void)
    118 {
    119 	if (ltab != NULL)
    120 		return 0;
    121 	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
    122 		tty_warn(1, "Cannot allocate memory for hard link table");
    123 		return -1;
    124 	}
    125 	return 0;
    126 }
    127 
    128 /*
    129  * chk_lnk()
    130  *	Looks up entry in hard link hash table. If found, it copies the name
    131  *	of the file it is linked to (we already saw that file) into ln_name.
    132  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
    133  *	database. (We have seen all the links to this file). If not found,
    134  *	we add the file to the database if it has the potential for having
    135  *	hard links to other files we may process (it has a link count > 1)
    136  * Return:
    137  *	if found returns 1; if not found returns 0; -1 on error
    138  */
    139 
    140 int
    141 chk_lnk(ARCHD *arcn)
    142 {
    143 	HRDLNK *pt;
    144 	HRDLNK **ppt;
    145 	u_int indx;
    146 
    147 	if (ltab == NULL)
    148 		return -1;
    149 	/*
    150 	 * ignore those nodes that cannot have hard links
    151 	 */
    152 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
    153 		return 0;
    154 
    155 	/*
    156 	 * hash inode number and look for this file
    157 	 */
    158 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
    159 	if ((pt = ltab[indx]) != NULL) {
    160 		/*
    161 		 * its hash chain is not empty, walk down looking for it
    162 		 */
    163 		ppt = &(ltab[indx]);
    164 		while (pt != NULL) {
    165 			if ((pt->ino == arcn->sb.st_ino) &&
    166 			    (pt->dev == arcn->sb.st_dev))
    167 				break;
    168 			ppt = &(pt->fow);
    169 			pt = pt->fow;
    170 		}
    171 
    172 		if (pt != NULL) {
    173 			/*
    174 			 * found a link. set the node type and copy in the
    175 			 * name of the file it is to link to. we need to
    176 			 * handle hardlinks to regular files differently than
    177 			 * other links.
    178 			 */
    179 			arcn->ln_nlen = strlcpy(arcn->ln_name, pt->name,
    180 				sizeof(arcn->ln_name));
    181 			if (arcn->type == PAX_REG)
    182 				arcn->type = PAX_HRG;
    183 			else
    184 				arcn->type = PAX_HLK;
    185 
    186 			/*
    187 			 * if we have found all the links to this file, remove
    188 			 * it from the database
    189 			 */
    190 			if (--pt->nlink <= 1) {
    191 				*ppt = pt->fow;
    192 				(void)free((char *)pt->name);
    193 				(void)free((char *)pt);
    194 			}
    195 			return 1;
    196 		}
    197 	}
    198 
    199 	/*
    200 	 * we never saw this file before. It has links so we add it to the
    201 	 * front of this hash chain
    202 	 */
    203 	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
    204 		if ((pt->name = strdup(arcn->name)) != NULL) {
    205 			pt->dev = arcn->sb.st_dev;
    206 			pt->ino = arcn->sb.st_ino;
    207 			pt->nlink = arcn->sb.st_nlink;
    208 			pt->fow = ltab[indx];
    209 			ltab[indx] = pt;
    210 			return 0;
    211 		}
    212 		(void)free((char *)pt);
    213 	}
    214 
    215 	tty_warn(1, "Hard link table out of memory");
    216 	return -1;
    217 }
    218 
    219 /*
    220  * purg_lnk
    221  *	remove reference for a file that we may have added to the data base as
    222  *	a potential source for hard links. We ended up not using the file, so
    223  *	we do not want to accidentally point another file at it later on.
    224  */
    225 
    226 void
    227 purg_lnk(ARCHD *arcn)
    228 {
    229 	HRDLNK *pt;
    230 	HRDLNK **ppt;
    231 	u_int indx;
    232 
    233 	if (ltab == NULL)
    234 		return;
    235 	/*
    236 	 * do not bother to look if it could not be in the database
    237 	 */
    238 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
    239 	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
    240 		return;
    241 
    242 	/*
    243 	 * find the hash chain for this inode value, if empty return
    244 	 */
    245 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
    246 	if ((pt = ltab[indx]) == NULL)
    247 		return;
    248 
    249 	/*
    250 	 * walk down the list looking for the inode/dev pair, unlink and
    251 	 * free if found
    252 	 */
    253 	ppt = &(ltab[indx]);
    254 	while (pt != NULL) {
    255 		if ((pt->ino == arcn->sb.st_ino) &&
    256 		    (pt->dev == arcn->sb.st_dev))
    257 			break;
    258 		ppt = &(pt->fow);
    259 		pt = pt->fow;
    260 	}
    261 	if (pt == NULL)
    262 		return;
    263 
    264 	/*
    265 	 * remove and free it
    266 	 */
    267 	*ppt = pt->fow;
    268 	(void)free((char *)pt->name);
    269 	(void)free((char *)pt);
    270 }
    271 
    272 /*
    273  * lnk_end()
    274  *	pull apart a existing link table so we can reuse it. We do this between
    275  *	read and write phases of append with update. (The format may have
    276  *	used the link table, and we need to start with a fresh table for the
    277  *	write phase
    278  */
    279 
    280 void
    281 lnk_end(void)
    282 {
    283 	int i;
    284 	HRDLNK *pt;
    285 	HRDLNK *ppt;
    286 
    287 	if (ltab == NULL)
    288 		return;
    289 
    290 	for (i = 0; i < L_TAB_SZ; ++i) {
    291 		if (ltab[i] == NULL)
    292 			continue;
    293 		pt = ltab[i];
    294 		ltab[i] = NULL;
    295 
    296 		/*
    297 		 * free up each entry on this chain
    298 		 */
    299 		while (pt != NULL) {
    300 			ppt = pt;
    301 			pt = ppt->fow;
    302 			(void)free((char *)ppt->name);
    303 			(void)free((char *)ppt);
    304 		}
    305 	}
    306 	return;
    307 }
    308 
    309 /*
    310  * modification time table routines
    311  *
    312  * The modification time table keeps track of last modification times for all
    313  * files stored in an archive during a write phase when -u is set. We only
    314  * add a file to the archive if it is newer than a file with the same name
    315  * already stored on the archive (if there is no other file with the same
    316  * name on the archive it is added). This applies to writes and appends.
    317  * An append with an -u must read the archive and store the modification time
    318  * for every file on that archive before starting the write phase. It is clear
    319  * that this is one HUGE database. To save memory space, the actual file names
    320  * are stored in a scratch file and indexed by an in-memory hash table. The
    321  * hash table is indexed by hashing the file path. The nodes in the table store
    322  * the length of the filename and the lseek offset within the scratch file
    323  * where the actual name is stored. Since there are never any deletions from this
    324  * table, fragmentation of the scratch file is never a issue. Lookups seem to
    325  * not exhibit any locality at all (files in the database are rarely
    326  * looked up more than once...), so caching is just a waste of memory. The
    327  * only limitation is the amount of scratch file space available to store the
    328  * path names.
    329  */
    330 
    331 /*
    332  * ftime_start()
    333  *	create the file time hash table and open for read/write the scratch
    334  *	file. (after created it is unlinked, so when we exit we leave
    335  *	no witnesses).
    336  * Return:
    337  *	0 if the table and file was created ok, -1 otherwise
    338  */
    339 
    340 int
    341 ftime_start(void)
    342 {
    343 	if (ftab != NULL)
    344 		return 0;
    345 	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
    346 		tty_warn(1, "Cannot allocate memory for file time table");
    347 		return -1;
    348 	}
    349 
    350 	/*
    351 	 * get random name and create temporary scratch file, unlink name
    352 	 * so it will get removed on exit
    353 	 */
    354 	memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
    355 	if ((ffd = mkstemp(tempfile)) == -1) {
    356 		syswarn(1, errno, "Unable to create temporary file: %s",
    357 		    tempfile);
    358 		return -1;
    359 	}
    360 
    361 	(void)unlink(tempfile);
    362 	return 0;
    363 }
    364 
    365 /*
    366  * chk_ftime()
    367  *	looks up entry in file time hash table. If not found, the file is
    368  *	added to the hash table and the file named stored in the scratch file.
    369  *	If a file with the same name is found, the file times are compared and
    370  *	the most recent file time is retained. If the new file was younger (or
    371  *	was not in the database) the new file is selected for storage.
    372  * Return:
    373  *	0 if file should be added to the archive, 1 if it should be skipped,
    374  *	-1 on error
    375  */
    376 
    377 int
    378 chk_ftime(ARCHD *arcn)
    379 {
    380 	FTM *pt;
    381 	int namelen;
    382 	u_int indx;
    383 	char ckname[PAXPATHLEN+1];
    384 
    385 	/*
    386 	 * no info, go ahead and add to archive
    387 	 */
    388 	if (ftab == NULL)
    389 		return 0;
    390 
    391 	/*
    392 	 * hash the pathname and look up in table
    393 	 */
    394 	namelen = arcn->nlen;
    395 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
    396 	if ((pt = ftab[indx]) != NULL) {
    397 		/*
    398 		 * the hash chain is not empty, walk down looking for match
    399 		 * only read up the path names if the lengths match, speeds
    400 		 * up the search a lot
    401 		 */
    402 		while (pt != NULL) {
    403 			if (pt->namelen == namelen) {
    404 				/*
    405 				 * potential match, have to read the name
    406 				 * from the scratch file.
    407 				 */
    408 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
    409 					syswarn(1, errno,
    410 					    "Failed ftime table seek");
    411 					return -1;
    412 				}
    413 				if (xread(ffd, ckname, namelen) != namelen) {
    414 					syswarn(1, errno,
    415 					    "Failed ftime table read");
    416 					return -1;
    417 				}
    418 
    419 				/*
    420 				 * if the names match, we are done
    421 				 */
    422 				if (!strncmp(ckname, arcn->name, namelen))
    423 					break;
    424 			}
    425 
    426 			/*
    427 			 * try the next entry on the chain
    428 			 */
    429 			pt = pt->fow;
    430 		}
    431 
    432 		if (pt != NULL) {
    433 			/*
    434 			 * found the file, compare the times, save the newer
    435 			 */
    436 			if (arcn->sb.st_mtime > pt->mtime) {
    437 				/*
    438 				 * file is newer
    439 				 */
    440 				pt->mtime = arcn->sb.st_mtime;
    441 				return 0;
    442 			}
    443 			/*
    444 			 * file is older
    445 			 */
    446 			return 1;
    447 		}
    448 	}
    449 
    450 	/*
    451 	 * not in table, add it
    452 	 */
    453 	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
    454 		/*
    455 		 * add the name at the end of the scratch file, saving the
    456 		 * offset. add the file to the head of the hash chain
    457 		 */
    458 		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
    459 			if (xwrite(ffd, arcn->name, namelen) == namelen) {
    460 				pt->mtime = arcn->sb.st_mtime;
    461 				pt->namelen = namelen;
    462 				pt->fow = ftab[indx];
    463 				ftab[indx] = pt;
    464 				return 0;
    465 			}
    466 			syswarn(1, errno, "Failed write to file time table");
    467 		} else
    468 			syswarn(1, errno, "Failed seek on file time table");
    469 	} else
    470 		tty_warn(1, "File time table ran out of memory");
    471 
    472 	if (pt != NULL)
    473 		(void)free((char *)pt);
    474 	return -1;
    475 }
    476 
    477 /*
    478  * Interactive rename table routines
    479  *
    480  * The interactive rename table keeps track of the new names that the user
    481  * assigns to files from tty input. Since this map is unique for each file
    482  * we must store it in case there is a reference to the file later in archive
    483  * (a link). Otherwise we will be unable to find the file we know was
    484  * extracted. The remapping of these files is stored in a memory based hash
    485  * table (it is assumed since input must come from /dev/tty, it is unlikely to
    486  * be a very large table).
    487  */
    488 
    489 /*
    490  * name_start()
    491  *	create the interactive rename table
    492  * Return:
    493  *	0 if successful, -1 otherwise
    494  */
    495 
    496 int
    497 name_start(void)
    498 {
    499 	if (ntab != NULL)
    500 		return 0;
    501 	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
    502 		tty_warn(1,
    503 		    "Cannot allocate memory for interactive rename table");
    504 		return -1;
    505 	}
    506 	return 0;
    507 }
    508 
    509 /*
    510  * add_name()
    511  *	add the new name to old name mapping just created by the user.
    512  *	If an old name mapping is found (there may be duplicate names on an
    513  *	archive) only the most recent is kept.
    514  * Return:
    515  *	0 if added, -1 otherwise
    516  */
    517 
    518 int
    519 add_name(char *oname, int onamelen, char *nname)
    520 {
    521 	NAMT *pt;
    522 	u_int indx;
    523 
    524 	if (ntab == NULL) {
    525 		/*
    526 		 * should never happen
    527 		 */
    528 		tty_warn(0, "No interactive rename table, links may fail\n");
    529 		return 0;
    530 	}
    531 
    532 	/*
    533 	 * look to see if we have already mapped this file, if so we
    534 	 * will update it
    535 	 */
    536 	indx = st_hash(oname, onamelen, N_TAB_SZ);
    537 	if ((pt = ntab[indx]) != NULL) {
    538 		/*
    539 		 * look down the has chain for the file
    540 		 */
    541 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
    542 			pt = pt->fow;
    543 
    544 		if (pt != NULL) {
    545 			/*
    546 			 * found an old mapping, replace it with the new one
    547 			 * the user just input (if it is different)
    548 			 */
    549 			if (strcmp(nname, pt->nname) == 0)
    550 				return 0;
    551 
    552 			(void)free((char *)pt->nname);
    553 			if ((pt->nname = strdup(nname)) == NULL) {
    554 				tty_warn(1, "Cannot update rename table");
    555 				return -1;
    556 			}
    557 			return 0;
    558 		}
    559 	}
    560 
    561 	/*
    562 	 * this is a new mapping, add it to the table
    563 	 */
    564 	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
    565 		if ((pt->oname = strdup(oname)) != NULL) {
    566 			if ((pt->nname = strdup(nname)) != NULL) {
    567 				pt->fow = ntab[indx];
    568 				ntab[indx] = pt;
    569 				return 0;
    570 			}
    571 			(void)free((char *)pt->oname);
    572 		}
    573 		(void)free((char *)pt);
    574 	}
    575 	tty_warn(1, "Interactive rename table out of memory");
    576 	return -1;
    577 }
    578 
    579 /*
    580  * sub_name()
    581  *	look up a link name to see if it points at a file that has been
    582  *	remapped by the user. If found, the link is adjusted to contain the
    583  *	new name (oname is the link to name)
    584  */
    585 
    586 void
    587 sub_name(char *oname, int *onamelen, size_t onamesize)
    588 {
    589 	NAMT *pt;
    590 	u_int indx;
    591 
    592 	if (ntab == NULL)
    593 		return;
    594 	/*
    595 	 * look the name up in the hash table
    596 	 */
    597 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
    598 	if ((pt = ntab[indx]) == NULL)
    599 		return;
    600 
    601 	while (pt != NULL) {
    602 		/*
    603 		 * walk down the hash chain looking for a match
    604 		 */
    605 		if (strcmp(oname, pt->oname) == 0) {
    606 			/*
    607 			 * found it, replace it with the new name
    608 			 * and return (we know that oname has enough space)
    609 			 */
    610 			*onamelen = strlcpy(oname, pt->nname, onamesize);
    611 			return;
    612 		}
    613 		pt = pt->fow;
    614 	}
    615 
    616 	/*
    617 	 * no match, just return
    618 	 */
    619 	return;
    620 }
    621 
    622 /*
    623  * device/inode mapping table routines
    624  * (used with formats that store device and inodes fields)
    625  *
    626  * device/inode mapping tables remap the device field in an archive header. The
    627  * device/inode fields are used to determine when files are hard links to each
    628  * other. However these values have very little meaning outside of that. This
    629  * database is used to solve one of two different problems.
    630  *
    631  * 1) when files are appended to an archive, while the new files may have hard
    632  * links to each other, you cannot determine if they have hard links to any
    633  * file already stored on the archive from a prior run of pax. We must assume
    634  * that these inode/device pairs are unique only within a SINGLE run of pax
    635  * (which adds a set of files to an archive). So we have to make sure the
    636  * inode/dev pairs we add each time are always unique. We do this by observing
    637  * while the inode field is very dense, the use of the dev field is fairly
    638  * sparse. Within each run of pax, we remap any device number of a new archive
    639  * member that has a device number used in a prior run and already stored in a
    640  * file on the archive. During the read phase of the append, we store the
    641  * device numbers used and mark them to not be used by any file during the
    642  * write phase. If during write we go to use one of those old device numbers,
    643  * we remap it to a new value.
    644  *
    645  * 2) Often the fields in the archive header used to store these values are
    646  * too small to store the entire value. The result is an inode or device value
    647  * which can be truncated. This really can foul up an archive. With truncation
    648  * we end up creating links between files that are really not links (after
    649  * truncation the inodes are the same value). We address that by detecting
    650  * truncation and forcing a remap of the device field to split truncated
    651  * inodes away from each other. Each truncation creates a pattern of bits that
    652  * are removed. We use this pattern of truncated bits to partition the inodes
    653  * on a single device to many different devices (each one represented by the
    654  * truncated bit pattern). All inodes on the same device that have the same
    655  * truncation pattern are mapped to the same new device. Two inodes that
    656  * truncate to the same value clearly will always have different truncation
    657  * bit patterns, so they will be split from away each other. When we spot
    658  * device truncation we remap the device number to a non truncated value.
    659  * (for more info see table.h for the data structures involved).
    660  */
    661 
    662 /*
    663  * dev_start()
    664  *	create the device mapping table
    665  * Return:
    666  *	0 if successful, -1 otherwise
    667  */
    668 
    669 int
    670 dev_start(void)
    671 {
    672 	if (dtab != NULL)
    673 		return 0;
    674 	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
    675 		tty_warn(1, "Cannot allocate memory for device mapping table");
    676 		return -1;
    677 	}
    678 	return 0;
    679 }
    680 
    681 /*
    682  * add_dev()
    683  *	add a device number to the table. this will force the device to be
    684  *	remapped to a new value if it be used during a write phase. This
    685  *	function is called during the read phase of an append to prohibit the
    686  *	use of any device number already in the archive.
    687  * Return:
    688  *	0 if added ok, -1 otherwise
    689  */
    690 
    691 int
    692 add_dev(ARCHD *arcn)
    693 {
    694 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
    695 		return -1;
    696 	return 0;
    697 }
    698 
    699 /*
    700  * chk_dev()
    701  *	check for a device value in the device table. If not found and the add
    702  *	flag is set, it is added. This does NOT assign any mapping values, just
    703  *	adds the device number as one that need to be remapped. If this device
    704  *	is already mapped, just return with a pointer to that entry.
    705  * Return:
    706  *	pointer to the entry for this device in the device map table. Null
    707  *	if the add flag is not set and the device is not in the table (it is
    708  *	not been seen yet). If add is set and the device cannot be added, null
    709  *	is returned (indicates an error).
    710  */
    711 
    712 static DEVT *
    713 chk_dev(dev_t dev, int add)
    714 {
    715 	DEVT *pt;
    716 	u_int indx;
    717 
    718 	if (dtab == NULL)
    719 		return NULL;
    720 	/*
    721 	 * look to see if this device is already in the table
    722 	 */
    723 	indx = ((unsigned)dev) % D_TAB_SZ;
    724 	if ((pt = dtab[indx]) != NULL) {
    725 		while ((pt != NULL) && (pt->dev != dev))
    726 			pt = pt->fow;
    727 
    728 		/*
    729 		 * found it, return a pointer to it
    730 		 */
    731 		if (pt != NULL)
    732 			return pt;
    733 	}
    734 
    735 	/*
    736 	 * not in table, we add it only if told to as this may just be a check
    737 	 * to see if a device number is being used.
    738 	 */
    739 	if (add == 0)
    740 		return NULL;
    741 
    742 	/*
    743 	 * allocate a node for this device and add it to the front of the hash
    744 	 * chain. Note we do not assign remaps values here, so the pt->list
    745 	 * list must be NULL.
    746 	 */
    747 	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
    748 		tty_warn(1, "Device map table out of memory");
    749 		return NULL;
    750 	}
    751 	pt->dev = dev;
    752 	pt->list = NULL;
    753 	pt->fow = dtab[indx];
    754 	dtab[indx] = pt;
    755 	return pt;
    756 }
    757 /*
    758  * map_dev()
    759  *	given an inode and device storage mask (the mask has a 1 for each bit
    760  *	the archive format is able to store in a header), we check for inode
    761  *	and device truncation and remap the device as required. Device mapping
    762  *	can also occur when during the read phase of append a device number was
    763  *	seen (and was marked as do not use during the write phase). WE ASSUME
    764  *	that unsigned longs are the same size or bigger than the fields used
    765  *	for ino_t and dev_t. If not the types will have to be changed.
    766  * Return:
    767  *	0 if all ok, -1 otherwise.
    768  */
    769 
    770 int
    771 map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
    772 {
    773 	DEVT *pt;
    774 	DLIST *dpt;
    775 	static dev_t lastdev = 0;	/* next device number to try */
    776 	int trc_ino = 0;
    777 	int trc_dev = 0;
    778 	ino_t trunc_bits = 0;
    779 	ino_t nino;
    780 
    781 	if (dtab == NULL)
    782 		return 0;
    783 	/*
    784 	 * check for device and inode truncation, and extract the truncated
    785 	 * bit pattern.
    786 	 */
    787 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
    788 		++trc_dev;
    789 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
    790 		++trc_ino;
    791 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
    792 	}
    793 
    794 	/*
    795 	 * see if this device is already being mapped, look up the device
    796 	 * then find the truncation bit pattern which applies
    797 	 */
    798 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
    799 		/*
    800 		 * this device is already marked to be remapped
    801 		 */
    802 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
    803 			if (dpt->trunc_bits == trunc_bits)
    804 				break;
    805 
    806 		if (dpt != NULL) {
    807 			/*
    808 			 * we are being remapped for this device and pattern
    809 			 * change the device number to be stored and return
    810 			 */
    811 			arcn->sb.st_dev = dpt->dev;
    812 			arcn->sb.st_ino = nino;
    813 			return 0;
    814 		}
    815 	} else {
    816 		/*
    817 		 * this device is not being remapped YET. if we do not have any
    818 		 * form of truncation, we do not need a remap
    819 		 */
    820 		if (!trc_ino && !trc_dev)
    821 			return 0;
    822 
    823 		/*
    824 		 * we have truncation, have to add this as a device to remap
    825 		 */
    826 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
    827 			goto bad;
    828 
    829 		/*
    830 		 * if we just have a truncated inode, we have to make sure that
    831 		 * all future inodes that do not truncate (they have the
    832 		 * truncation pattern of all 0's) continue to map to the same
    833 		 * device number. We probably have already written inodes with
    834 		 * this device number to the archive with the truncation
    835 		 * pattern of all 0's. So we add the mapping for all 0's to the
    836 		 * same device number.
    837 		 */
    838 		if (!trc_dev && (trunc_bits != 0)) {
    839 			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
    840 				goto bad;
    841 			dpt->trunc_bits = 0;
    842 			dpt->dev = arcn->sb.st_dev;
    843 			dpt->fow = pt->list;
    844 			pt->list = dpt;
    845 		}
    846 	}
    847 
    848 	/*
    849 	 * look for a device number not being used. We must watch for wrap
    850 	 * around on lastdev (so we do not get stuck looking forever!)
    851 	 */
    852 	while (++lastdev > 0) {
    853 		if (chk_dev(lastdev, 0) != NULL)
    854 			continue;
    855 		/*
    856 		 * found an unused value. If we have reached truncation point
    857 		 * for this format we are hosed, so we give up. Otherwise we
    858 		 * mark it as being used.
    859 		 */
    860 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
    861 		    (chk_dev(lastdev, 1) == NULL))
    862 			goto bad;
    863 		break;
    864 	}
    865 
    866 	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
    867 		goto bad;
    868 
    869 	/*
    870 	 * got a new device number, store it under this truncation pattern.
    871 	 * change the device number this file is being stored with.
    872 	 */
    873 	dpt->trunc_bits = trunc_bits;
    874 	dpt->dev = lastdev;
    875 	dpt->fow = pt->list;
    876 	pt->list = dpt;
    877 	arcn->sb.st_dev = lastdev;
    878 	arcn->sb.st_ino = nino;
    879 	return 0;
    880 
    881     bad:
    882 	tty_warn(1,
    883 	    "Unable to fix truncated inode/device field when storing %s",
    884 	    arcn->name);
    885 	tty_warn(0, "Archive may create improper hard links when extracted");
    886 	return 0;
    887 }
    888 
    889 /*
    890  * directory access/mod time reset table routines (for directories READ by pax)
    891  *
    892  * The pax -t flag requires that access times of archive files to be the same
    893  * as before being read by pax. For regular files, access time is restored after
    894  * the file has been copied. This database provides the same functionality for
    895  * directories read during file tree traversal. Restoring directory access time
    896  * is more complex than files since directories may be read several times until
    897  * all the descendants in their subtree are visited by fts. Directory access
    898  * and modification times are stored during the fts pre-order visit (done
    899  * before any descendants in the subtree is visited) and restored after the
    900  * fts post-order visit (after all the descendants have been visited). In the
    901  * case of premature exit from a subtree (like from the effects of -n), any
    902  * directory entries left in this database are reset during final cleanup
    903  * operations of pax. Entries are hashed by inode number for fast lookup.
    904  */
    905 
    906 /*
    907  * atdir_start()
    908  *	create the directory access time database for directories READ by pax.
    909  * Return:
    910  *	0 is created ok, -1 otherwise.
    911  */
    912 
    913 int
    914 atdir_start(void)
    915 {
    916 	if (atab != NULL)
    917 		return 0;
    918 	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
    919 		tty_warn(1,
    920 		    "Cannot allocate space for directory access time table");
    921 		return -1;
    922 	}
    923 	return 0;
    924 }
    925 
    926 
    927 /*
    928  * atdir_end()
    929  *	walk through the directory access time table and reset the access time
    930  *	of any directory who still has an entry left in the database. These
    931  *	entries are for directories READ by pax
    932  */
    933 
    934 void
    935 atdir_end(void)
    936 {
    937 	ATDIR *pt;
    938 	int i;
    939 
    940 	if (atab == NULL)
    941 		return;
    942 	/*
    943 	 * for each non-empty hash table entry reset all the directories
    944 	 * chained there.
    945 	 */
    946 	for (i = 0; i < A_TAB_SZ; ++i) {
    947 		if ((pt = atab[i]) == NULL)
    948 			continue;
    949 		/*
    950 		 * remember to force the times, set_ftime() looks at pmtime
    951 		 * and patime, which only applies to things CREATED by pax,
    952 		 * not read by pax. Read time reset is controlled by -t.
    953 		 */
    954 		for (; pt != NULL; pt = pt->fow)
    955 			set_ftime(pt->name, pt->mtime, pt->atime, 1, 0);
    956 	}
    957 }
    958 
    959 /*
    960  * add_atdir()
    961  *	add a directory to the directory access time table. Table is hashed
    962  *	and chained by inode number. This is for directories READ by pax
    963  */
    964 
    965 void
    966 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
    967 {
    968 	ATDIR *pt;
    969 	u_int indx;
    970 
    971 	if (atab == NULL)
    972 		return;
    973 
    974 	/*
    975 	 * make sure this directory is not already in the table, if so just
    976 	 * return (the older entry always has the correct time). The only
    977 	 * way this will happen is when the same subtree can be traversed by
    978 	 * different args to pax and the -n option is aborting fts out of a
    979 	 * subtree before all the post-order visits have been made.
    980 	 */
    981 	indx = ((unsigned)ino) % A_TAB_SZ;
    982 	if ((pt = atab[indx]) != NULL) {
    983 		while (pt != NULL) {
    984 			if ((pt->ino == ino) && (pt->dev == dev))
    985 				break;
    986 			pt = pt->fow;
    987 		}
    988 
    989 		/*
    990 		 * oops, already there. Leave it alone.
    991 		 */
    992 		if (pt != NULL)
    993 			return;
    994 	}
    995 
    996 	/*
    997 	 * add it to the front of the hash chain
    998 	 */
    999 	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
   1000 		if ((pt->name = strdup(fname)) != NULL) {
   1001 			pt->dev = dev;
   1002 			pt->ino = ino;
   1003 			pt->mtime = mtime;
   1004 			pt->atime = atime;
   1005 			pt->fow = atab[indx];
   1006 			atab[indx] = pt;
   1007 			return;
   1008 		}
   1009 		(void)free((char *)pt);
   1010 	}
   1011 
   1012 	tty_warn(1, "Directory access time reset table ran out of memory");
   1013 	return;
   1014 }
   1015 
   1016 /*
   1017  * get_atdir()
   1018  *	look up a directory by inode and device number to obtain the access
   1019  *	and modification time you want to set to. If found, the modification
   1020  *	and access time parameters are set and the entry is removed from the
   1021  *	table (as it is no longer needed). These are for directories READ by
   1022  *	pax
   1023  * Return:
   1024  *	0 if found, -1 if not found.
   1025  */
   1026 
   1027 int
   1028 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
   1029 {
   1030 	ATDIR *pt;
   1031 	ATDIR **ppt;
   1032 	u_int indx;
   1033 
   1034 	if (atab == NULL)
   1035 		return -1;
   1036 	/*
   1037 	 * hash by inode and search the chain for an inode and device match
   1038 	 */
   1039 	indx = ((unsigned)ino) % A_TAB_SZ;
   1040 	if ((pt = atab[indx]) == NULL)
   1041 		return -1;
   1042 
   1043 	ppt = &(atab[indx]);
   1044 	while (pt != NULL) {
   1045 		if ((pt->ino == ino) && (pt->dev == dev))
   1046 			break;
   1047 		/*
   1048 		 * no match, go to next one
   1049 		 */
   1050 		ppt = &(pt->fow);
   1051 		pt = pt->fow;
   1052 	}
   1053 
   1054 	/*
   1055 	 * return if we did not find it.
   1056 	 */
   1057 	if (pt == NULL)
   1058 		return -1;
   1059 
   1060 	/*
   1061 	 * found it. return the times and remove the entry from the table.
   1062 	 */
   1063 	*ppt = pt->fow;
   1064 	*mtime = pt->mtime;
   1065 	*atime = pt->atime;
   1066 	(void)free((char *)pt->name);
   1067 	(void)free((char *)pt);
   1068 	return 0;
   1069 }
   1070 
   1071 /*
   1072  * directory access mode and time storage routines (for directories CREATED
   1073  * by pax).
   1074  *
   1075  * Pax requires that extracted directories, by default, have their access/mod
   1076  * times and permissions set to the values specified in the archive. During the
   1077  * actions of extracting (and creating the destination subtree during -rw copy)
   1078  * directories extracted may be modified after being created. Even worse is
   1079  * that these directories may have been created with file permissions which
   1080  * prohibits any descendants of these directories from being extracted. When
   1081  * directories are created by pax, access rights may be added to permit the
   1082  * creation of files in their subtree. Every time pax creates a directory, the
   1083  * times and file permissions specified by the archive are stored. After all
   1084  * files have been extracted (or copied), these directories have their times
   1085  * and file modes reset to the stored values. The directory info is restored in
   1086  * reverse order as entries were added to the data file from root to leaf. To
   1087  * restore atime properly, we must go backwards. The data file consists of
   1088  * records with two parts, the file name followed by a DIRDATA trailer. The
   1089  * fixed sized trailer contains the size of the name plus the off_t location in
   1090  * the file. To restore we work backwards through the file reading the trailer
   1091  * then the file name.
   1092  */
   1093 
   1094 #ifndef DIRS_USE_FILE
   1095 static DIRDATA *dirdata_head;
   1096 #endif
   1097 
   1098 /*
   1099  * dir_start()
   1100  *	set up the directory time and file mode storage for directories CREATED
   1101  *	by pax.
   1102  * Return:
   1103  *	0 if ok, -1 otherwise
   1104  */
   1105 
   1106 int
   1107 dir_start(void)
   1108 {
   1109 #ifdef DIRS_USE_FILE
   1110 	if (dirfd != -1)
   1111 		return 0;
   1112 
   1113 	/*
   1114 	 * unlink the file so it goes away at termination by itself
   1115 	 */
   1116 	memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
   1117 	if ((dirfd = mkstemp(tempfile)) >= 0) {
   1118 		(void)unlink(tempfile);
   1119 		return 0;
   1120 	}
   1121 	tty_warn(1, "Unable to create temporary file for directory times: %s",
   1122 	    tempfile);
   1123 	return -1;
   1124 #else
   1125 	return (0);
   1126 #endif /* DIRS_USE_FILE */
   1127 }
   1128 
   1129 /*
   1130  * add_dir()
   1131  *	add the mode and times for a newly CREATED directory
   1132  *	name is name of the directory, psb the stat buffer with the data in it,
   1133  *	frc_mode is a flag that says whether to force the setting of the mode
   1134  *	(ignoring the user set values for preserving file mode). Frc_mode is
   1135  *	for the case where we created a file and found that the resulting
   1136  *	directory was not writable and the user asked for file modes to NOT
   1137  *	be preserved. (we have to preserve what was created by default, so we
   1138  *	have to force the setting at the end. this is stated explicitly in the
   1139  *	pax spec)
   1140  */
   1141 
   1142 void
   1143 add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
   1144 {
   1145 #ifdef DIRS_USE_FILE
   1146 	DIRDATA dblk;
   1147 #else
   1148 	DIRDATA *dblk;
   1149 #endif
   1150 	char realname[MAXPATHLEN], *rp;
   1151 
   1152 	if (havechd && *name != '/') {
   1153 		if ((rp = realpath(name, realname)) == NULL) {
   1154 			tty_warn(1, "Cannot canonicalize %s", name);
   1155 			return;
   1156 		}
   1157 		name = rp;
   1158 #ifdef DIRS_USE_FILE
   1159 		nlen = strlen(name);
   1160 #endif
   1161 	}
   1162 
   1163 #ifdef DIRS_USE_FILE
   1164 	if (dirfd < 0)
   1165 		return;
   1166 
   1167 	/*
   1168 	 * get current position (where file name will start) so we can store it
   1169 	 * in the trailer
   1170 	 */
   1171 	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
   1172 		tty_warn(1,
   1173 		    "Unable to store mode and times for directory: %s",name);
   1174 		return;
   1175 	}
   1176 
   1177 	/*
   1178 	 * write the file name followed by the trailer
   1179 	 */
   1180 	dblk.nlen = nlen + 1;
   1181 	dblk.mode = psb->st_mode & 0xffff;
   1182 	dblk.mtime = psb->st_mtime;
   1183 	dblk.atime = psb->st_atime;
   1184 #if HAVE_STRUCT_STAT_ST_FLAGS
   1185 	dblk.fflags = psb->st_flags;
   1186 #else
   1187 	dblk.fflags = 0;
   1188 #endif
   1189 	dblk.frc_mode = frc_mode;
   1190 	if ((xwrite(dirfd, name, dblk.nlen) == dblk.nlen) &&
   1191 	    (xwrite(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
   1192 		++dircnt;
   1193 		return;
   1194 	}
   1195 
   1196 	tty_warn(1,
   1197 	    "Unable to store mode and times for created directory: %s",name);
   1198 	return;
   1199 #else
   1200 
   1201 	if ((dblk = malloc(sizeof(*dblk))) == NULL ||
   1202 	    (dblk->name = strdup(name)) == NULL) {
   1203 		tty_warn(1,
   1204 		    "Unable to store mode and times for directory: %s",name);
   1205 		if (dblk != NULL)
   1206 			free(dblk);
   1207 		return;
   1208 	}
   1209 
   1210 	dblk->mode = psb->st_mode & 0xffff;
   1211 	dblk->mtime = psb->st_mtime;
   1212 	dblk->atime = psb->st_atime;
   1213 #if HAVE_STRUCT_STAT_ST_FLAGS
   1214 	dblk->fflags = psb->st_flags;
   1215 #else
   1216 	dblk->fflags = 0;
   1217 #endif
   1218 	dblk->frc_mode = frc_mode;
   1219 
   1220 	dblk->next = dirdata_head;
   1221 	dirdata_head = dblk;
   1222 	return;
   1223 #endif /* DIRS_USE_FILE */
   1224 }
   1225 
   1226 /*
   1227  * proc_dir()
   1228  *	process all file modes and times stored for directories CREATED
   1229  *	by pax
   1230  */
   1231 
   1232 void
   1233 proc_dir(void)
   1234 {
   1235 #ifdef DIRS_USE_FILE
   1236 	char name[PAXPATHLEN+1];
   1237 	DIRDATA dblk;
   1238 	u_long cnt;
   1239 
   1240 	if (dirfd < 0)
   1241 		return;
   1242 	/*
   1243 	 * read backwards through the file and process each directory
   1244 	 */
   1245 	for (cnt = 0; cnt < dircnt; ++cnt) {
   1246 		/*
   1247 		 * read the trailer, then the file name, if this fails
   1248 		 * just give up.
   1249 		 */
   1250 		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
   1251 			break;
   1252 		if (xread(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
   1253 			break;
   1254 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
   1255 			break;
   1256 		if (xread(dirfd, name, dblk.nlen) != dblk.nlen)
   1257 			break;
   1258 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
   1259 			break;
   1260 
   1261 		/*
   1262 		 * frc_mode set, make sure we set the file modes even if
   1263 		 * the user didn't ask for it (see file_subs.c for more info)
   1264 		 */
   1265 		if (pmode || dblk.frc_mode)
   1266 			set_pmode(name, dblk.mode);
   1267 		if (patime || pmtime)
   1268 			set_ftime(name, dblk.mtime, dblk.atime, 0, 0);
   1269 		if (pfflags)
   1270 			set_chflags(name, dblk.fflags);
   1271 	}
   1272 
   1273 	(void)close(dirfd);
   1274 	dirfd = -1;
   1275 	if (cnt != dircnt)
   1276 		tty_warn(1,
   1277 		    "Unable to set mode and times for created directories");
   1278 	return;
   1279 #else
   1280 	DIRDATA *dblk;
   1281 
   1282 	for (dblk = dirdata_head; dblk != NULL; dblk = dirdata_head) {
   1283 		dirdata_head = dblk->next;
   1284 
   1285 		/*
   1286 		 * frc_mode set, make sure we set the file modes even if
   1287 		 * the user didn't ask for it (see file_subs.c for more info)
   1288 		 */
   1289 		if (pmode || dblk->frc_mode)
   1290 			set_pmode(dblk->name, dblk->mode);
   1291 		if (patime || pmtime)
   1292 			set_ftime(dblk->name, dblk->mtime, dblk->atime, 0, 0);
   1293 		if (pfflags)
   1294 			set_chflags(dblk->name, dblk->fflags);
   1295 
   1296 		free(dblk->name);
   1297 		free(dblk);
   1298 	}
   1299 #endif /* DIRS_USE_FILE */
   1300 }
   1301 
   1302 /*
   1303  * database independent routines
   1304  */
   1305 
   1306 /*
   1307  * st_hash()
   1308  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
   1309  *	end of file, as this provides far better distribution than any other
   1310  *	part of the name. For performance reasons we only care about the last
   1311  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
   1312  *	name). Was tested on 500,000 name file tree traversal from the root
   1313  *	and gave almost a perfectly uniform distribution of keys when used with
   1314  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
   1315  *	chars at a time and pads with 0 for last addition.
   1316  * Return:
   1317  *	the hash value of the string MOD (%) the table size.
   1318  */
   1319 
   1320 u_int
   1321 st_hash(char *name, int len, int tabsz)
   1322 {
   1323 	char *pt;
   1324 	char *dest;
   1325 	char *end;
   1326 	int i;
   1327 	u_int key = 0;
   1328 	int steps;
   1329 	int res;
   1330 	u_int val;
   1331 
   1332 	/*
   1333 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
   1334 	 * time here (remember these are pathnames, the tail is what will
   1335 	 * spread out the keys)
   1336 	 */
   1337 	if (len > MAXKEYLEN) {
   1338 		pt = &(name[len - MAXKEYLEN]);
   1339 		len = MAXKEYLEN;
   1340 	} else
   1341 		pt = name;
   1342 
   1343 	/*
   1344 	 * calculate the number of u_int size steps in the string and if
   1345 	 * there is a runt to deal with
   1346 	 */
   1347 	steps = len/sizeof(u_int);
   1348 	res = len % sizeof(u_int);
   1349 
   1350 	/*
   1351 	 * add up the value of the string in unsigned integer sized pieces
   1352 	 * too bad we cannot have unsigned int aligned strings, then we
   1353 	 * could avoid the expensive copy.
   1354 	 */
   1355 	for (i = 0; i < steps; ++i) {
   1356 		end = pt + sizeof(u_int);
   1357 		dest = (char *)&val;
   1358 		while (pt < end)
   1359 			*dest++ = *pt++;
   1360 		key += val;
   1361 	}
   1362 
   1363 	/*
   1364 	 * add in the runt padded with zero to the right
   1365 	 */
   1366 	if (res) {
   1367 		val = 0;
   1368 		end = pt + res;
   1369 		dest = (char *)&val;
   1370 		while (pt < end)
   1371 			*dest++ = *pt++;
   1372 		key += val;
   1373 	}
   1374 
   1375 	/*
   1376 	 * return the result mod the table size
   1377 	 */
   1378 	return key % tabsz;
   1379 }
   1380