Home | History | Annotate | Line # | Download | only in kern
      1 /*	$NetBSD: kern_clock.c,v 1.151 2023/09/02 17:44:59 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  * This code is derived from software contributed to The NetBSD Foundation
     11  * by Charles M. Hannum.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*-
     36  * Copyright (c) 1982, 1986, 1991, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  * (c) UNIX System Laboratories, Inc.
     39  * All or some portions of this file are derived from material licensed
     40  * to the University of California by American Telephone and Telegraph
     41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42  * the permission of UNIX System Laboratories, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.151 2023/09/02 17:44:59 riastradh Exp $");
     73 
     74 #ifdef _KERNEL_OPT
     75 #include "opt_dtrace.h"
     76 #include "opt_gprof.h"
     77 #include "opt_multiprocessor.h"
     78 #endif
     79 
     80 #include <sys/param.h>
     81 #include <sys/systm.h>
     82 #include <sys/callout.h>
     83 #include <sys/kernel.h>
     84 #include <sys/proc.h>
     85 #include <sys/resourcevar.h>
     86 #include <sys/signalvar.h>
     87 #include <sys/sysctl.h>
     88 #include <sys/timex.h>
     89 #include <sys/sched.h>
     90 #include <sys/time.h>
     91 #include <sys/timetc.h>
     92 #include <sys/cpu.h>
     93 #include <sys/atomic.h>
     94 #include <sys/rndsource.h>
     95 #include <sys/heartbeat.h>
     96 
     97 #ifdef GPROF
     98 #include <sys/gmon.h>
     99 #endif
    100 
    101 #ifdef KDTRACE_HOOKS
    102 #include <sys/dtrace_bsd.h>
    103 #include <sys/cpu.h>
    104 
    105 cyclic_clock_func_t	cyclic_clock_func[MAXCPUS];
    106 #endif
    107 
    108 static int sysctl_kern_clockrate(SYSCTLFN_PROTO);
    109 
    110 /*
    111  * Clock handling routines.
    112  *
    113  * This code is written to operate with two timers that run independently of
    114  * each other.  The main clock, running hz times per second, is used to keep
    115  * track of real time.  The second timer handles kernel and user profiling,
    116  * and does resource use estimation.  If the second timer is programmable,
    117  * it is randomized to avoid aliasing between the two clocks.  For example,
    118  * the randomization prevents an adversary from always giving up the CPU
    119  * just before its quantum expires.  Otherwise, it would never accumulate
    120  * CPU ticks.  The mean frequency of the second timer is stathz.
    121  *
    122  * If no second timer exists, stathz will be zero; in this case we drive
    123  * profiling and statistics off the main clock.  This WILL NOT be accurate;
    124  * do not do it unless absolutely necessary.
    125  *
    126  * The statistics clock may (or may not) be run at a higher rate while
    127  * profiling.  This profile clock runs at profhz.  We require that profhz
    128  * be an integral multiple of stathz.
    129  *
    130  * If the statistics clock is running fast, it must be divided by the ratio
    131  * profhz/stathz for statistics.  (For profiling, every tick counts.)
    132  */
    133 
    134 int	stathz;
    135 int	profhz;
    136 int	profsrc;
    137 int	schedhz;
    138 int	profprocs;
    139 static int hardclock_ticks;
    140 static int hardscheddiv; /* hard => sched divider (used if schedhz == 0) */
    141 static int psdiv;			/* prof => stat divider */
    142 int	psratio;			/* ratio: prof / stat */
    143 
    144 struct clockrnd {
    145 	struct krndsource source;
    146 	unsigned needed;
    147 };
    148 
    149 static struct clockrnd hardclockrnd __aligned(COHERENCY_UNIT);
    150 static struct clockrnd statclockrnd __aligned(COHERENCY_UNIT);
    151 
    152 static void
    153 clockrnd_get(size_t needed, void *cookie)
    154 {
    155 	struct clockrnd *C = cookie;
    156 
    157 	/* Start sampling.  */
    158 	atomic_store_relaxed(&C->needed, 2*NBBY*needed);
    159 }
    160 
    161 static void
    162 clockrnd_sample(struct clockrnd *C)
    163 {
    164 	struct cpu_info *ci = curcpu();
    165 
    166 	/* If there's nothing needed right now, stop here.  */
    167 	if (__predict_true(atomic_load_relaxed(&C->needed) == 0))
    168 		return;
    169 
    170 	/*
    171 	 * If we're not the primary core of a package, we're probably
    172 	 * driven by the same clock as the primary core, so don't
    173 	 * bother.
    174 	 */
    175 	if (ci != ci->ci_package1st)
    176 		return;
    177 
    178 	/* Take a sample and enter it into the pool.  */
    179 	rnd_add_uint32(&C->source, 0);
    180 
    181 	/*
    182 	 * On the primary CPU, count down.  Using an atomic decrement
    183 	 * here isn't really necessary -- on every platform we care
    184 	 * about, stores to unsigned int are atomic, and the only other
    185 	 * memory operation that could happen here is for another CPU
    186 	 * to store a higher value for needed.  But using an atomic
    187 	 * decrement avoids giving the impression of data races, and is
    188 	 * unlikely to hurt because only one CPU will ever be writing
    189 	 * to the location.
    190 	 */
    191 	if (CPU_IS_PRIMARY(curcpu())) {
    192 		unsigned needed __diagused;
    193 
    194 		needed = atomic_dec_uint_nv(&C->needed);
    195 		KASSERT(needed != UINT_MAX);
    196 	}
    197 }
    198 
    199 static u_int get_intr_timecount(struct timecounter *);
    200 
    201 static struct timecounter intr_timecounter = {
    202 	.tc_get_timecount	= get_intr_timecount,
    203 	.tc_poll_pps		= NULL,
    204 	.tc_counter_mask	= ~0u,
    205 	.tc_frequency		= 0,
    206 	.tc_name		= "clockinterrupt",
    207 	/* quality - minimum implementation level for a clock */
    208 	.tc_quality		= 0,
    209 	.tc_priv		= NULL,
    210 };
    211 
    212 static u_int
    213 get_intr_timecount(struct timecounter *tc)
    214 {
    215 
    216 	return (u_int)getticks();
    217 }
    218 
    219 int
    220 getticks(void)
    221 {
    222 	return atomic_load_relaxed(&hardclock_ticks);
    223 }
    224 
    225 /*
    226  * Initialize clock frequencies and start both clocks running.
    227  */
    228 void
    229 initclocks(void)
    230 {
    231 	static struct sysctllog *clog;
    232 	int i;
    233 
    234 	/*
    235 	 * Set divisors to 1 (normal case) and let the machine-specific
    236 	 * code do its bit.
    237 	 */
    238 	psdiv = 1;
    239 
    240 	/*
    241 	 * Call cpu_initclocks() before registering the default
    242 	 * timecounter, in case it needs to adjust hz.
    243 	 */
    244 	const int old_hz = hz;
    245 	cpu_initclocks();
    246 	if (old_hz != hz) {
    247 		tick = 1000000 / hz;
    248 		tickadj = (240000 / (60 * hz)) ? (240000 / (60 * hz)) : 1;
    249 	}
    250 
    251 	/*
    252 	 * provide minimum default time counter
    253 	 * will only run at interrupt resolution
    254 	 */
    255 	intr_timecounter.tc_frequency = hz;
    256 	tc_init(&intr_timecounter);
    257 
    258 	/*
    259 	 * Compute profhz and stathz, fix profhz if needed.
    260 	 */
    261 	i = stathz ? stathz : hz;
    262 	if (profhz == 0)
    263 		profhz = i;
    264 	psratio = profhz / i;
    265 	if (schedhz == 0) {
    266 		/* 16Hz is best */
    267 		hardscheddiv = hz / 16;
    268 		if (hardscheddiv <= 0)
    269 			panic("hardscheddiv");
    270 	}
    271 
    272 	sysctl_createv(&clog, 0, NULL, NULL,
    273 		       CTLFLAG_PERMANENT,
    274 		       CTLTYPE_STRUCT, "clockrate",
    275 		       SYSCTL_DESCR("Kernel clock rates"),
    276 		       sysctl_kern_clockrate, 0, NULL,
    277 		       sizeof(struct clockinfo),
    278 		       CTL_KERN, KERN_CLOCKRATE, CTL_EOL);
    279 	sysctl_createv(&clog, 0, NULL, NULL,
    280 		       CTLFLAG_PERMANENT,
    281 		       CTLTYPE_INT, "hardclock_ticks",
    282 		       SYSCTL_DESCR("Number of hardclock ticks"),
    283 		       NULL, 0, &hardclock_ticks, sizeof(hardclock_ticks),
    284 		       CTL_KERN, KERN_HARDCLOCK_TICKS, CTL_EOL);
    285 
    286 	rndsource_setcb(&hardclockrnd.source, clockrnd_get, &hardclockrnd);
    287 	rnd_attach_source(&hardclockrnd.source, "hardclock", RND_TYPE_SKEW,
    288 	    RND_FLAG_COLLECT_TIME|RND_FLAG_ESTIMATE_TIME|RND_FLAG_HASCB);
    289 	if (stathz) {
    290 		rndsource_setcb(&statclockrnd.source, clockrnd_get,
    291 		    &statclockrnd);
    292 		rnd_attach_source(&statclockrnd.source, "statclock",
    293 		    RND_TYPE_SKEW,
    294 		    (RND_FLAG_COLLECT_TIME|RND_FLAG_ESTIMATE_TIME|
    295 			RND_FLAG_HASCB));
    296 	}
    297 }
    298 
    299 /*
    300  * The real-time timer, interrupting hz times per second.
    301  */
    302 void
    303 hardclock(struct clockframe *frame)
    304 {
    305 	struct lwp *l;
    306 	struct cpu_info *ci;
    307 
    308 	clockrnd_sample(&hardclockrnd);
    309 
    310 	ci = curcpu();
    311 	l = ci->ci_onproc;
    312 
    313 	ptimer_tick(l, CLKF_USERMODE(frame));
    314 
    315 	/*
    316 	 * If no separate statistics clock is available, run it from here.
    317 	 */
    318 	if (stathz == 0)
    319 		statclock(frame);
    320 	/*
    321 	 * If no separate schedclock is provided, call it here
    322 	 * at about 16 Hz.
    323 	 */
    324 	if (schedhz == 0) {
    325 		if ((int)(--ci->ci_schedstate.spc_schedticks) <= 0) {
    326 			schedclock(l);
    327 			ci->ci_schedstate.spc_schedticks = hardscheddiv;
    328 		}
    329 	}
    330 	if ((--ci->ci_schedstate.spc_ticks) <= 0)
    331 		sched_tick(ci);
    332 
    333 	if (CPU_IS_PRIMARY(ci)) {
    334 		atomic_store_relaxed(&hardclock_ticks,
    335 		    atomic_load_relaxed(&hardclock_ticks) + 1);
    336 		tc_ticktock();
    337 	}
    338 
    339 	/*
    340 	 * Make sure the CPUs and timecounter are making progress.
    341 	 */
    342 	heartbeat();
    343 
    344 	/*
    345 	 * Update real-time timeout queue.
    346 	 */
    347 	callout_hardclock();
    348 }
    349 
    350 /*
    351  * Start profiling on a process.
    352  *
    353  * Kernel profiling passes proc0 which never exits and hence
    354  * keeps the profile clock running constantly.
    355  */
    356 void
    357 startprofclock(struct proc *p)
    358 {
    359 
    360 	KASSERT(mutex_owned(&p->p_stmutex));
    361 
    362 	if ((p->p_stflag & PST_PROFIL) == 0) {
    363 		p->p_stflag |= PST_PROFIL;
    364 		/*
    365 		 * This is only necessary if using the clock as the
    366 		 * profiling source.
    367 		 */
    368 		if (++profprocs == 1 && stathz != 0)
    369 			psdiv = psratio;
    370 	}
    371 }
    372 
    373 /*
    374  * Stop profiling on a process.
    375  */
    376 void
    377 stopprofclock(struct proc *p)
    378 {
    379 
    380 	KASSERT(mutex_owned(&p->p_stmutex));
    381 
    382 	if (p->p_stflag & PST_PROFIL) {
    383 		p->p_stflag &= ~PST_PROFIL;
    384 		/*
    385 		 * This is only necessary if using the clock as the
    386 		 * profiling source.
    387 		 */
    388 		if (--profprocs == 0 && stathz != 0)
    389 			psdiv = 1;
    390 	}
    391 }
    392 
    393 void
    394 schedclock(struct lwp *l)
    395 {
    396 	if ((l->l_flag & LW_IDLE) != 0)
    397 		return;
    398 
    399 	sched_schedclock(l);
    400 }
    401 
    402 /*
    403  * Statistics clock.  Grab profile sample, and if divider reaches 0,
    404  * do process and kernel statistics.
    405  */
    406 void
    407 statclock(struct clockframe *frame)
    408 {
    409 #ifdef GPROF
    410 	struct gmonparam *g;
    411 	intptr_t i;
    412 #endif
    413 	struct cpu_info *ci = curcpu();
    414 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    415 	struct proc *p;
    416 	struct lwp *l;
    417 
    418 	if (stathz)
    419 		clockrnd_sample(&statclockrnd);
    420 
    421 	/*
    422 	 * Notice changes in divisor frequency, and adjust clock
    423 	 * frequency accordingly.
    424 	 */
    425 	if (spc->spc_psdiv != psdiv) {
    426 		spc->spc_psdiv = psdiv;
    427 		spc->spc_pscnt = psdiv;
    428 		if (psdiv == 1) {
    429 			setstatclockrate(stathz);
    430 		} else {
    431 			setstatclockrate(profhz);
    432 		}
    433 	}
    434 	l = ci->ci_onproc;
    435 	if ((l->l_flag & LW_IDLE) != 0) {
    436 		/*
    437 		 * don't account idle lwps as swapper.
    438 		 */
    439 		p = NULL;
    440 	} else {
    441 		p = l->l_proc;
    442 		mutex_spin_enter(&p->p_stmutex);
    443 	}
    444 
    445 	if (CLKF_USERMODE(frame)) {
    446 		KASSERT(p != NULL);
    447 		if ((p->p_stflag & PST_PROFIL) && profsrc == PROFSRC_CLOCK)
    448 			addupc_intr(l, CLKF_PC(frame));
    449 		if (--spc->spc_pscnt > 0) {
    450 			mutex_spin_exit(&p->p_stmutex);
    451 			return;
    452 		}
    453 
    454 		/*
    455 		 * Came from user mode; CPU was in user state.
    456 		 * If this process is being profiled record the tick.
    457 		 */
    458 		p->p_uticks++;
    459 		if (p->p_nice > NZERO)
    460 			spc->spc_cp_time[CP_NICE]++;
    461 		else
    462 			spc->spc_cp_time[CP_USER]++;
    463 	} else {
    464 #ifdef GPROF
    465 		/*
    466 		 * Kernel statistics are just like addupc_intr, only easier.
    467 		 */
    468 #if defined(MULTIPROCESSOR) && !defined(_RUMPKERNEL)
    469 		g = curcpu()->ci_gmon;
    470 		if (g != NULL &&
    471 		    profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
    472 #else
    473 		g = &_gmonparam;
    474 		if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
    475 #endif
    476 			i = CLKF_PC(frame) - g->lowpc;
    477 			if (i < g->textsize) {
    478 				i /= HISTFRACTION * sizeof(*g->kcount);
    479 				g->kcount[i]++;
    480 			}
    481 		}
    482 #endif
    483 #ifdef LWP_PC
    484 		if (p != NULL && profsrc == PROFSRC_CLOCK &&
    485 		    (p->p_stflag & PST_PROFIL)) {
    486 			addupc_intr(l, LWP_PC(l));
    487 		}
    488 #endif
    489 		if (--spc->spc_pscnt > 0) {
    490 			if (p != NULL)
    491 				mutex_spin_exit(&p->p_stmutex);
    492 			return;
    493 		}
    494 		/*
    495 		 * Came from kernel mode, so we were:
    496 		 * - handling an interrupt,
    497 		 * - doing syscall or trap work on behalf of the current
    498 		 *   user process, or
    499 		 * - spinning in the idle loop.
    500 		 * Whichever it is, charge the time as appropriate.
    501 		 * Note that we charge interrupts to the current process,
    502 		 * regardless of whether they are ``for'' that process,
    503 		 * so that we know how much of its real time was spent
    504 		 * in ``non-process'' (i.e., interrupt) work.
    505 		 */
    506 		if (CLKF_INTR(frame) || (curlwp->l_pflag & LP_INTR) != 0) {
    507 			if (p != NULL) {
    508 				p->p_iticks++;
    509 			}
    510 			spc->spc_cp_time[CP_INTR]++;
    511 		} else if (p != NULL) {
    512 			p->p_sticks++;
    513 			spc->spc_cp_time[CP_SYS]++;
    514 		} else {
    515 			spc->spc_cp_time[CP_IDLE]++;
    516 		}
    517 	}
    518 	spc->spc_pscnt = psdiv;
    519 
    520 	if (p != NULL) {
    521 		atomic_inc_uint(&l->l_cpticks);
    522 		mutex_spin_exit(&p->p_stmutex);
    523 	}
    524 
    525 #ifdef KDTRACE_HOOKS
    526 	cyclic_clock_func_t func = cyclic_clock_func[cpu_index(ci)];
    527 	if (func) {
    528 		(*func)((struct clockframe *)frame);
    529 	}
    530 #endif
    531 }
    532 
    533 /*
    534  * sysctl helper routine for kern.clockrate. Assembles a struct on
    535  * the fly to be returned to the caller.
    536  */
    537 static int
    538 sysctl_kern_clockrate(SYSCTLFN_ARGS)
    539 {
    540 	struct clockinfo clkinfo;
    541 	struct sysctlnode node;
    542 
    543 	clkinfo.tick = tick;
    544 	clkinfo.tickadj = tickadj;
    545 	clkinfo.hz = hz;
    546 	clkinfo.profhz = profhz;
    547 	clkinfo.stathz = stathz ? stathz : hz;
    548 
    549 	node = *rnode;
    550 	node.sysctl_data = &clkinfo;
    551 	return (sysctl_lookup(SYSCTLFN_CALL(&node)));
    552 }
    553