Home | History | Annotate | Line # | Download | only in kern
      1 /*	$NetBSD: kern_resource.c,v 1.195 2023/10/04 20:28:06 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1982, 1986, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)kern_resource.c	8.8 (Berkeley) 2/14/95
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.195 2023/10/04 20:28:06 ad Exp $");
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/kernel.h>
     45 #include <sys/file.h>
     46 #include <sys/resourcevar.h>
     47 #include <sys/kmem.h>
     48 #include <sys/namei.h>
     49 #include <sys/pool.h>
     50 #include <sys/proc.h>
     51 #include <sys/sysctl.h>
     52 #include <sys/timevar.h>
     53 #include <sys/kauth.h>
     54 #include <sys/atomic.h>
     55 #include <sys/mount.h>
     56 #include <sys/syscallargs.h>
     57 #include <sys/atomic.h>
     58 
     59 #include <uvm/uvm_extern.h>
     60 
     61 /*
     62  * Maximum process data and stack limits.
     63  * They are variables so they are patchable.
     64  */
     65 rlim_t			maxdmap = MAXDSIZ;
     66 rlim_t			maxsmap = MAXSSIZ;
     67 
     68 static kauth_listener_t	resource_listener;
     69 static struct sysctllog	*proc_sysctllog;
     70 
     71 static int	donice(struct lwp *, struct proc *, int);
     72 static void	sysctl_proc_setup(void);
     73 
     74 static int
     75 resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
     76     void *arg0, void *arg1, void *arg2, void *arg3)
     77 {
     78 	struct proc *p;
     79 	int result;
     80 
     81 	result = KAUTH_RESULT_DEFER;
     82 	p = arg0;
     83 
     84 	switch (action) {
     85 	case KAUTH_PROCESS_NICE:
     86 		if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) &&
     87 		    kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) {
     88 			break;
     89 		}
     90 
     91 		if ((u_long)arg1 >= p->p_nice)
     92 			result = KAUTH_RESULT_ALLOW;
     93 
     94 		break;
     95 
     96 	case KAUTH_PROCESS_RLIMIT: {
     97 		enum kauth_process_req req;
     98 
     99 		req = (enum kauth_process_req)(uintptr_t)arg1;
    100 
    101 		switch (req) {
    102 		case KAUTH_REQ_PROCESS_RLIMIT_GET:
    103 			result = KAUTH_RESULT_ALLOW;
    104 			break;
    105 
    106 		case KAUTH_REQ_PROCESS_RLIMIT_SET: {
    107 			struct rlimit *new_rlimit;
    108 			u_long which;
    109 
    110 			if ((p != curlwp->l_proc) &&
    111 			    (proc_uidmatch(cred, p->p_cred) != 0))
    112 				break;
    113 
    114 			new_rlimit = arg2;
    115 			which = (u_long)arg3;
    116 
    117 			if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max)
    118 				result = KAUTH_RESULT_ALLOW;
    119 
    120 			break;
    121 			}
    122 
    123 		default:
    124 			break;
    125 		}
    126 
    127 		break;
    128 	}
    129 
    130 	default:
    131 		break;
    132 	}
    133 
    134 	return result;
    135 }
    136 
    137 void
    138 resource_init(void)
    139 {
    140 
    141 	resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    142 	    resource_listener_cb, NULL);
    143 
    144 	sysctl_proc_setup();
    145 }
    146 
    147 /*
    148  * Resource controls and accounting.
    149  */
    150 
    151 int
    152 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
    153     register_t *retval)
    154 {
    155 	/* {
    156 		syscallarg(int) which;
    157 		syscallarg(id_t) who;
    158 	} */
    159 	struct proc *curp = l->l_proc, *p;
    160 	id_t who = SCARG(uap, who);
    161 	int low = NZERO + PRIO_MAX + 1;
    162 
    163 	mutex_enter(&proc_lock);
    164 	switch (SCARG(uap, which)) {
    165 	case PRIO_PROCESS:
    166 		p = who ? proc_find(who) : curp;
    167 		if (p != NULL)
    168 			low = p->p_nice;
    169 		break;
    170 
    171 	case PRIO_PGRP: {
    172 		struct pgrp *pg;
    173 
    174 		if (who == 0)
    175 			pg = curp->p_pgrp;
    176 		else if ((pg = pgrp_find(who)) == NULL)
    177 			break;
    178 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    179 			if (p->p_nice < low)
    180 				low = p->p_nice;
    181 		}
    182 		break;
    183 	}
    184 
    185 	case PRIO_USER:
    186 		if (who == 0)
    187 			who = (int)kauth_cred_geteuid(l->l_cred);
    188 		PROCLIST_FOREACH(p, &allproc) {
    189 			mutex_enter(p->p_lock);
    190 			if (kauth_cred_geteuid(p->p_cred) ==
    191 			    (uid_t)who && p->p_nice < low)
    192 				low = p->p_nice;
    193 			mutex_exit(p->p_lock);
    194 		}
    195 		break;
    196 
    197 	default:
    198 		mutex_exit(&proc_lock);
    199 		return EINVAL;
    200 	}
    201 	mutex_exit(&proc_lock);
    202 
    203 	if (low == NZERO + PRIO_MAX + 1) {
    204 		return ESRCH;
    205 	}
    206 	*retval = low - NZERO;
    207 	return 0;
    208 }
    209 
    210 int
    211 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
    212     register_t *retval)
    213 {
    214 	/* {
    215 		syscallarg(int) which;
    216 		syscallarg(id_t) who;
    217 		syscallarg(int) prio;
    218 	} */
    219 	struct proc *curp = l->l_proc, *p;
    220 	id_t who = SCARG(uap, who);
    221 	int found = 0, error = 0;
    222 
    223 	mutex_enter(&proc_lock);
    224 	switch (SCARG(uap, which)) {
    225 	case PRIO_PROCESS:
    226 		p = who ? proc_find(who) : curp;
    227 		if (p != NULL) {
    228 			mutex_enter(p->p_lock);
    229 			found++;
    230 			error = donice(l, p, SCARG(uap, prio));
    231 			mutex_exit(p->p_lock);
    232 		}
    233 		break;
    234 
    235 	case PRIO_PGRP: {
    236 		struct pgrp *pg;
    237 
    238 		if (who == 0)
    239 			pg = curp->p_pgrp;
    240 		else if ((pg = pgrp_find(who)) == NULL)
    241 			break;
    242 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    243 			mutex_enter(p->p_lock);
    244 			found++;
    245 			error = donice(l, p, SCARG(uap, prio));
    246 			mutex_exit(p->p_lock);
    247 			if (error)
    248 				break;
    249 		}
    250 		break;
    251 	}
    252 
    253 	case PRIO_USER:
    254 		if (who == 0)
    255 			who = (int)kauth_cred_geteuid(l->l_cred);
    256 		PROCLIST_FOREACH(p, &allproc) {
    257 			mutex_enter(p->p_lock);
    258 			if (kauth_cred_geteuid(p->p_cred) ==
    259 			    (uid_t)SCARG(uap, who)) {
    260 				found++;
    261 				error = donice(l, p, SCARG(uap, prio));
    262 			}
    263 			mutex_exit(p->p_lock);
    264 			if (error)
    265 				break;
    266 		}
    267 		break;
    268 
    269 	default:
    270 		mutex_exit(&proc_lock);
    271 		return EINVAL;
    272 	}
    273 	mutex_exit(&proc_lock);
    274 
    275 	return (found == 0) ? ESRCH : error;
    276 }
    277 
    278 /*
    279  * Renice a process.
    280  *
    281  * Call with the target process' credentials locked.
    282  */
    283 static int
    284 donice(struct lwp *l, struct proc *chgp, int n)
    285 {
    286 	kauth_cred_t cred = l->l_cred;
    287 
    288 	KASSERT(mutex_owned(chgp->p_lock));
    289 
    290 	if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
    291 	    kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
    292 	    kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
    293 		return EPERM;
    294 
    295 	if (n > PRIO_MAX) {
    296 		n = PRIO_MAX;
    297 	}
    298 	if (n < PRIO_MIN) {
    299 		n = PRIO_MIN;
    300 	}
    301 	n += NZERO;
    302 
    303 	if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
    304 	    KAUTH_ARG(n), NULL, NULL)) {
    305 		return EACCES;
    306 	}
    307 
    308 	sched_nice(chgp, n);
    309 	return 0;
    310 }
    311 
    312 int
    313 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
    314     register_t *retval)
    315 {
    316 	/* {
    317 		syscallarg(int) which;
    318 		syscallarg(const struct rlimit *) rlp;
    319 	} */
    320 	int error, which = SCARG(uap, which);
    321 	struct rlimit alim;
    322 
    323 	error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
    324 	if (error) {
    325 		return error;
    326 	}
    327 	return dosetrlimit(l, l->l_proc, which, &alim);
    328 }
    329 
    330 int
    331 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
    332 {
    333 	struct rlimit *alimp;
    334 	int error;
    335 
    336 	if ((u_int)which >= RLIM_NLIMITS)
    337 		return EINVAL;
    338 
    339 	if (limp->rlim_cur > limp->rlim_max) {
    340 		/*
    341 		 * This is programming error. According to SUSv2, we should
    342 		 * return error in this case.
    343 		 */
    344 		return EINVAL;
    345 	}
    346 
    347 	alimp = &p->p_rlimit[which];
    348 	/* if we don't change the value, no need to limcopy() */
    349 	if (limp->rlim_cur == alimp->rlim_cur &&
    350 	    limp->rlim_max == alimp->rlim_max)
    351 		return 0;
    352 
    353 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    354 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
    355 	if (error)
    356 		return error;
    357 
    358 	lim_privatise(p);
    359 	/* p->p_limit is now unchangeable */
    360 	alimp = &p->p_rlimit[which];
    361 
    362 	switch (which) {
    363 
    364 	case RLIMIT_DATA:
    365 		if (limp->rlim_cur > maxdmap)
    366 			limp->rlim_cur = maxdmap;
    367 		if (limp->rlim_max > maxdmap)
    368 			limp->rlim_max = maxdmap;
    369 		break;
    370 
    371 	case RLIMIT_STACK:
    372 		if (limp->rlim_cur > maxsmap)
    373 			limp->rlim_cur = maxsmap;
    374 		if (limp->rlim_max > maxsmap)
    375 			limp->rlim_max = maxsmap;
    376 
    377 		/*
    378 		 * Return EINVAL if the new stack size limit is lower than
    379 		 * current usage. Otherwise, the process would get SIGSEGV the
    380 		 * moment it would try to access anything on its current stack.
    381 		 * This conforms to SUSv2.
    382 		 */
    383 		if (btoc(limp->rlim_cur) < p->p_vmspace->vm_ssize ||
    384 		    btoc(limp->rlim_max) < p->p_vmspace->vm_ssize) {
    385 			return EINVAL;
    386 		}
    387 
    388 		/*
    389 		 * Stack is allocated to the max at exec time with
    390 		 * only "rlim_cur" bytes accessible (In other words,
    391 		 * allocates stack dividing two contiguous regions at
    392 		 * "rlim_cur" bytes boundary).
    393 		 *
    394 		 * Since allocation is done in terms of page, roundup
    395 		 * "rlim_cur" (otherwise, contiguous regions
    396 		 * overlap).  If stack limit is going up make more
    397 		 * accessible, if going down make inaccessible.
    398 		 */
    399 		limp->rlim_max = round_page(limp->rlim_max);
    400 		limp->rlim_cur = round_page(limp->rlim_cur);
    401 		if (limp->rlim_cur != alimp->rlim_cur) {
    402 			vaddr_t addr;
    403 			vsize_t size;
    404 			vm_prot_t prot;
    405 			char *base, *tmp;
    406 
    407 			base = p->p_vmspace->vm_minsaddr;
    408 			if (limp->rlim_cur > alimp->rlim_cur) {
    409 				prot = VM_PROT_READ | VM_PROT_WRITE;
    410 				size = limp->rlim_cur - alimp->rlim_cur;
    411 				tmp = STACK_GROW(base, alimp->rlim_cur);
    412 			} else {
    413 				prot = VM_PROT_NONE;
    414 				size = alimp->rlim_cur - limp->rlim_cur;
    415 				tmp = STACK_GROW(base, limp->rlim_cur);
    416 			}
    417 			addr = (vaddr_t)STACK_ALLOC(tmp, size);
    418 			(void) uvm_map_protect(&p->p_vmspace->vm_map,
    419 			    addr, addr + size, prot, false);
    420 		}
    421 		break;
    422 
    423 	case RLIMIT_NOFILE:
    424 		if (limp->rlim_cur > maxfiles)
    425 			limp->rlim_cur = maxfiles;
    426 		if (limp->rlim_max > maxfiles)
    427 			limp->rlim_max = maxfiles;
    428 		break;
    429 
    430 	case RLIMIT_NPROC:
    431 		if (limp->rlim_cur > maxproc)
    432 			limp->rlim_cur = maxproc;
    433 		if (limp->rlim_max > maxproc)
    434 			limp->rlim_max = maxproc;
    435 		break;
    436 
    437 	case RLIMIT_NTHR:
    438 		if (limp->rlim_cur > maxlwp)
    439 			limp->rlim_cur = maxlwp;
    440 		if (limp->rlim_max > maxlwp)
    441 			limp->rlim_max = maxlwp;
    442 		break;
    443 	}
    444 
    445 	mutex_enter(&p->p_limit->pl_lock);
    446 	*alimp = *limp;
    447 	mutex_exit(&p->p_limit->pl_lock);
    448 	return 0;
    449 }
    450 
    451 int
    452 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
    453     register_t *retval)
    454 {
    455 	/* {
    456 		syscallarg(int) which;
    457 		syscallarg(struct rlimit *) rlp;
    458 	} */
    459 	struct proc *p = l->l_proc;
    460 	int which = SCARG(uap, which);
    461 	struct rlimit rl;
    462 
    463 	if ((u_int)which >= RLIM_NLIMITS)
    464 		return EINVAL;
    465 
    466 	mutex_enter(p->p_lock);
    467 	memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
    468 	mutex_exit(p->p_lock);
    469 
    470 	return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
    471 }
    472 
    473 void
    474 addrulwp(struct lwp *l, struct bintime *tm)
    475 {
    476 
    477 	lwp_lock(l);
    478 	bintime_add(tm, &l->l_rtime);
    479 	if ((l->l_pflag & LP_RUNNING) != 0 &&
    480 	    (l->l_pflag & (LP_INTR | LP_TIMEINTR)) != LP_INTR) {
    481 		struct bintime diff;
    482 		/*
    483 		 * Adjust for the current time slice.  This is
    484 		 * actually fairly important since the error
    485 		 * here is on the order of a time quantum,
    486 		 * which is much greater than the sampling
    487 		 * error.
    488 		 */
    489 		binuptime(&diff);
    490 		membar_consumer(); /* for softint_dispatch() */
    491 		bintime_sub(&diff, &l->l_stime);
    492 		bintime_add(tm, &diff);
    493 	}
    494 	lwp_unlock(l);
    495 }
    496 
    497 /*
    498  * Transform the running time and tick information in proc p into user,
    499  * system, and interrupt time usage.
    500  *
    501  * Should be called with p->p_lock held unless called from exit1().
    502  */
    503 void
    504 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
    505     struct timeval *ip, struct timeval *rp)
    506 {
    507 	uint64_t u, st, ut, it, tot, dt;
    508 	struct lwp *l;
    509 	struct bintime tm;
    510 	struct timeval tv;
    511 
    512 	KASSERT(p->p_stat == SDEAD || mutex_owned(p->p_lock));
    513 
    514 	mutex_spin_enter(&p->p_stmutex);
    515 	st = p->p_sticks;
    516 	ut = p->p_uticks;
    517 	it = p->p_iticks;
    518 	mutex_spin_exit(&p->p_stmutex);
    519 
    520 	tm = p->p_rtime;
    521 
    522 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    523 		addrulwp(l, &tm);
    524 	}
    525 
    526 	tot = st + ut + it;
    527 	bintime2timeval(&tm, &tv);
    528 	u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
    529 
    530 	if (tot == 0) {
    531 		/* No ticks, so can't use to share time out, split 50-50 */
    532 		st = ut = u / 2;
    533 	} else {
    534 		st = (u * st) / tot;
    535 		ut = (u * ut) / tot;
    536 	}
    537 
    538 	/*
    539 	 * Try to avoid lying to the users (too much)
    540 	 *
    541 	 * Of course, user/sys time are based on sampling (ie: statistics)
    542 	 * so that would be impossible, but convincing the mark
    543 	 * that we have used less ?time this call than we had
    544 	 * last time, is beyond reasonable...  (the con fails!)
    545 	 *
    546 	 * Note that since actual used time cannot decrease, either
    547 	 * utime or stime (or both) must be greater now than last time
    548 	 * (or both the same) - if one seems to have decreased, hold
    549 	 * it constant and steal the necessary bump from the other
    550 	 * which must have increased.
    551 	 */
    552 	if (p->p_xutime > ut) {
    553 		dt = p->p_xutime - ut;
    554 		st -= uimin(dt, st);
    555 		ut = p->p_xutime;
    556 	} else if (p->p_xstime > st) {
    557 		dt = p->p_xstime - st;
    558 		ut -= uimin(dt, ut);
    559 		st = p->p_xstime;
    560 	}
    561 
    562 	if (sp != NULL) {
    563 		p->p_xstime = st;
    564 		sp->tv_sec = st / 1000000;
    565 		sp->tv_usec = st % 1000000;
    566 	}
    567 	if (up != NULL) {
    568 		p->p_xutime = ut;
    569 		up->tv_sec = ut / 1000000;
    570 		up->tv_usec = ut % 1000000;
    571 	}
    572 	if (ip != NULL) {
    573 		if (it != 0)		/* it != 0 --> tot != 0 */
    574 			it = (u * it) / tot;
    575 		ip->tv_sec = it / 1000000;
    576 		ip->tv_usec = it % 1000000;
    577 	}
    578 	if (rp != NULL) {
    579 		*rp = tv;
    580 	}
    581 }
    582 
    583 int
    584 sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
    585     register_t *retval)
    586 {
    587 	/* {
    588 		syscallarg(int) who;
    589 		syscallarg(struct rusage *) rusage;
    590 	} */
    591 	int error;
    592 	struct rusage ru;
    593 	struct proc *p = l->l_proc;
    594 
    595 	error = getrusage1(p, SCARG(uap, who), &ru);
    596 	if (error != 0)
    597 		return error;
    598 
    599 	return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
    600 }
    601 
    602 int
    603 getrusage1(struct proc *p, int who, struct rusage *ru)
    604 {
    605 
    606 	switch (who) {
    607 	case RUSAGE_SELF:
    608 		mutex_enter(p->p_lock);
    609 		ruspace(p);
    610 		memcpy(ru, &p->p_stats->p_ru, sizeof(*ru));
    611 		calcru(p, &ru->ru_utime, &ru->ru_stime, NULL, NULL);
    612 		rulwps(p, ru);
    613 		mutex_exit(p->p_lock);
    614 		break;
    615 	case RUSAGE_CHILDREN:
    616 		mutex_enter(p->p_lock);
    617 		memcpy(ru, &p->p_stats->p_cru, sizeof(*ru));
    618 		mutex_exit(p->p_lock);
    619 		break;
    620 	default:
    621 		return EINVAL;
    622 	}
    623 
    624 	return 0;
    625 }
    626 
    627 void
    628 ruspace(struct proc *p)
    629 {
    630 	struct vmspace *vm = p->p_vmspace;
    631 	struct rusage *ru = &p->p_stats->p_ru;
    632 
    633 	ru->ru_ixrss = vm->vm_tsize << (PAGE_SHIFT - 10);
    634 	ru->ru_idrss = vm->vm_dsize << (PAGE_SHIFT - 10);
    635 	ru->ru_isrss = vm->vm_ssize << (PAGE_SHIFT - 10);
    636 #ifdef __HAVE_NO_PMAP_STATS
    637 	/* We don't keep track of the max so we get the current */
    638 	ru->ru_maxrss = vm_resident_count(vm) << (PAGE_SHIFT - 10);
    639 #else
    640 	ru->ru_maxrss = vm->vm_rssmax << (PAGE_SHIFT - 10);
    641 #endif
    642 }
    643 
    644 void
    645 ruadd(struct rusage *ru, struct rusage *ru2)
    646 {
    647 	long *ip, *ip2;
    648 	int i;
    649 
    650 	timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
    651 	timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
    652 	if (ru->ru_maxrss < ru2->ru_maxrss)
    653 		ru->ru_maxrss = ru2->ru_maxrss;
    654 	ip = &ru->ru_first; ip2 = &ru2->ru_first;
    655 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
    656 		*ip++ += *ip2++;
    657 }
    658 
    659 void
    660 rulwps(proc_t *p, struct rusage *ru)
    661 {
    662 	lwp_t *l;
    663 
    664 	KASSERT(mutex_owned(p->p_lock));
    665 
    666 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    667 		ruadd(ru, &l->l_ru);
    668 	}
    669 }
    670 
    671 /*
    672  * lim_copy: make a copy of the plimit structure.
    673  *
    674  * We use copy-on-write after fork, and copy when a limit is changed.
    675  */
    676 struct plimit *
    677 lim_copy(struct plimit *lim)
    678 {
    679 	struct plimit *newlim;
    680 	char *corename;
    681 	size_t alen, len;
    682 
    683 	newlim = kmem_alloc(sizeof(*newlim), KM_SLEEP);
    684 	mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
    685 	newlim->pl_writeable = false;
    686 	newlim->pl_refcnt = 1;
    687 	newlim->pl_sv_limit = NULL;
    688 
    689 	mutex_enter(&lim->pl_lock);
    690 	memcpy(newlim->pl_rlimit, lim->pl_rlimit,
    691 	    sizeof(struct rlimit) * RLIM_NLIMITS);
    692 
    693 	/*
    694 	 * Note: the common case is a use of default core name.
    695 	 */
    696 	alen = 0;
    697 	corename = NULL;
    698 	for (;;) {
    699 		if (lim->pl_corename == defcorename) {
    700 			newlim->pl_corename = defcorename;
    701 			newlim->pl_cnlen = 0;
    702 			break;
    703 		}
    704 		len = lim->pl_cnlen;
    705 		if (len == alen) {
    706 			newlim->pl_corename = corename;
    707 			newlim->pl_cnlen = len;
    708 			memcpy(corename, lim->pl_corename, len);
    709 			corename = NULL;
    710 			break;
    711 		}
    712 		mutex_exit(&lim->pl_lock);
    713 		if (corename) {
    714 			kmem_free(corename, alen);
    715 		}
    716 		alen = len;
    717 		corename = kmem_alloc(alen, KM_SLEEP);
    718 		mutex_enter(&lim->pl_lock);
    719 	}
    720 	mutex_exit(&lim->pl_lock);
    721 
    722 	if (corename) {
    723 		kmem_free(corename, alen);
    724 	}
    725 	return newlim;
    726 }
    727 
    728 void
    729 lim_addref(struct plimit *lim)
    730 {
    731 	atomic_inc_uint(&lim->pl_refcnt);
    732 }
    733 
    734 /*
    735  * lim_privatise: give a process its own private plimit structure.
    736  */
    737 void
    738 lim_privatise(proc_t *p)
    739 {
    740 	struct plimit *lim = p->p_limit, *newlim;
    741 
    742 	if (lim->pl_writeable) {
    743 		return;
    744 	}
    745 
    746 	newlim = lim_copy(lim);
    747 
    748 	mutex_enter(p->p_lock);
    749 	if (p->p_limit->pl_writeable) {
    750 		/* Other thread won the race. */
    751 		mutex_exit(p->p_lock);
    752 		lim_free(newlim);
    753 		return;
    754 	}
    755 
    756 	/*
    757 	 * Since p->p_limit can be accessed without locked held,
    758 	 * old limit structure must not be deleted yet.
    759 	 */
    760 	newlim->pl_sv_limit = p->p_limit;
    761 	newlim->pl_writeable = true;
    762 	p->p_limit = newlim;
    763 	mutex_exit(p->p_lock);
    764 }
    765 
    766 void
    767 lim_setcorename(proc_t *p, char *name, size_t len)
    768 {
    769 	struct plimit *lim;
    770 	char *oname;
    771 	size_t olen;
    772 
    773 	lim_privatise(p);
    774 	lim = p->p_limit;
    775 
    776 	mutex_enter(&lim->pl_lock);
    777 	oname = lim->pl_corename;
    778 	olen = lim->pl_cnlen;
    779 	lim->pl_corename = name;
    780 	lim->pl_cnlen = len;
    781 	mutex_exit(&lim->pl_lock);
    782 
    783 	if (oname != defcorename) {
    784 		kmem_free(oname, olen);
    785 	}
    786 }
    787 
    788 void
    789 lim_free(struct plimit *lim)
    790 {
    791 	struct plimit *sv_lim;
    792 
    793 	do {
    794 		membar_release();
    795 		if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) {
    796 			return;
    797 		}
    798 		membar_acquire();
    799 		if (lim->pl_corename != defcorename) {
    800 			kmem_free(lim->pl_corename, lim->pl_cnlen);
    801 		}
    802 		sv_lim = lim->pl_sv_limit;
    803 		mutex_destroy(&lim->pl_lock);
    804 		kmem_free(lim, sizeof(*lim));
    805 	} while ((lim = sv_lim) != NULL);
    806 }
    807 
    808 struct pstats *
    809 pstatscopy(struct pstats *ps)
    810 {
    811 	struct pstats *nps;
    812 	size_t len;
    813 
    814 	nps = kmem_alloc(sizeof(*nps), KM_SLEEP);
    815 
    816 	len = (char *)&nps->pstat_endzero - (char *)&nps->pstat_startzero;
    817 	memset(&nps->pstat_startzero, 0, len);
    818 
    819 	len = (char *)&nps->pstat_endcopy - (char *)&nps->pstat_startcopy;
    820 	memcpy(&nps->pstat_startcopy, &ps->pstat_startcopy, len);
    821 
    822 	return nps;
    823 }
    824 
    825 void
    826 pstatsfree(struct pstats *ps)
    827 {
    828 
    829 	kmem_free(ps, sizeof(*ps));
    830 }
    831 
    832 /*
    833  * sysctl_proc_findproc: a routine for sysctl proc subtree helpers that
    834  * need to pick a valid process by PID.
    835  *
    836  * => Hold a reference on the process, on success.
    837  */
    838 static int
    839 sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2)
    840 {
    841 	proc_t *p;
    842 	int error;
    843 
    844 	if (pid == PROC_CURPROC) {
    845 		p = l->l_proc;
    846 	} else {
    847 		mutex_enter(&proc_lock);
    848 		p = proc_find(pid);
    849 		if (p == NULL) {
    850 			mutex_exit(&proc_lock);
    851 			return ESRCH;
    852 		}
    853 	}
    854 	error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
    855 	if (pid != PROC_CURPROC) {
    856 		mutex_exit(&proc_lock);
    857 	}
    858 	*p2 = p;
    859 	return error;
    860 }
    861 
    862 /*
    863  * sysctl_proc_paxflags: helper routine to get process's paxctl flags
    864  */
    865 static int
    866 sysctl_proc_paxflags(SYSCTLFN_ARGS)
    867 {
    868 	struct proc *p;
    869 	struct sysctlnode node;
    870 	int paxflags;
    871 	int error;
    872 
    873 	/* First, validate the request. */
    874 	if (namelen != 0 || name[-1] != PROC_PID_PAXFLAGS)
    875 		return EINVAL;
    876 
    877 	/* Find the process.  Hold a reference (p_reflock), if found. */
    878 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
    879 	if (error)
    880 		return error;
    881 
    882 	/* XXX-elad */
    883 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
    884 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    885 	if (error) {
    886 		rw_exit(&p->p_reflock);
    887 		return error;
    888 	}
    889 
    890 	/* Retrieve the limits. */
    891 	node = *rnode;
    892 	paxflags = p->p_pax;
    893 	node.sysctl_data = &paxflags;
    894 
    895 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    896 
    897 	/* If attempting to write new value, it's an error */
    898 	if (error == 0 && newp != NULL)
    899 		error = EACCES;
    900 
    901 	rw_exit(&p->p_reflock);
    902 	return error;
    903 }
    904 
    905 /*
    906  * sysctl_proc_corename: helper routine to get or set the core file name
    907  * for a process specified by PID.
    908  */
    909 static int
    910 sysctl_proc_corename(SYSCTLFN_ARGS)
    911 {
    912 	struct proc *p;
    913 	struct plimit *lim;
    914 	char *cnbuf, *cname;
    915 	struct sysctlnode node;
    916 	size_t len;
    917 	int error;
    918 
    919 	/* First, validate the request. */
    920 	if (namelen != 0 || name[-1] != PROC_PID_CORENAME)
    921 		return EINVAL;
    922 
    923 	/* Find the process.  Hold a reference (p_reflock), if found. */
    924 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
    925 	if (error)
    926 		return error;
    927 
    928 	/* XXX-elad */
    929 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
    930 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    931 	if (error) {
    932 		rw_exit(&p->p_reflock);
    933 		return error;
    934 	}
    935 
    936 	cnbuf = PNBUF_GET();
    937 
    938 	if (oldp) {
    939 		/* Get case: copy the core name into the buffer. */
    940 		error = kauth_authorize_process(l->l_cred,
    941 		    KAUTH_PROCESS_CORENAME, p,
    942 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
    943 		if (error) {
    944 			goto done;
    945 		}
    946 		lim = p->p_limit;
    947 		mutex_enter(&lim->pl_lock);
    948 		strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN);
    949 		mutex_exit(&lim->pl_lock);
    950 	}
    951 
    952 	node = *rnode;
    953 	node.sysctl_data = cnbuf;
    954 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    955 
    956 	/* Return if error, or if caller is only getting the core name. */
    957 	if (error || newp == NULL) {
    958 		goto done;
    959 	}
    960 
    961 	/*
    962 	 * Set case.  Check permission and then validate new core name.
    963 	 * It must be either "core", "/core", or end in ".core".
    964 	 */
    965 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
    966 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL);
    967 	if (error) {
    968 		goto done;
    969 	}
    970 	len = strlen(cnbuf);
    971 	if ((len < 4 || strcmp(cnbuf + len - 4, "core") != 0) ||
    972 	    (len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) {
    973 		error = EINVAL;
    974 		goto done;
    975 	}
    976 
    977 	/* Allocate, copy and set the new core name for plimit structure. */
    978 	cname = kmem_alloc(++len, KM_NOSLEEP);
    979 	if (cname == NULL) {
    980 		error = ENOMEM;
    981 		goto done;
    982 	}
    983 	memcpy(cname, cnbuf, len);
    984 	lim_setcorename(p, cname, len);
    985 done:
    986 	rw_exit(&p->p_reflock);
    987 	PNBUF_PUT(cnbuf);
    988 	return error;
    989 }
    990 
    991 /*
    992  * sysctl_proc_stop: helper routine for checking/setting the stop flags.
    993  */
    994 static int
    995 sysctl_proc_stop(SYSCTLFN_ARGS)
    996 {
    997 	struct proc *p;
    998 	int isset, flag, error = 0;
    999 	struct sysctlnode node;
   1000 
   1001 	if (namelen != 0)
   1002 		return EINVAL;
   1003 
   1004 	/* Find the process.  Hold a reference (p_reflock), if found. */
   1005 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
   1006 	if (error)
   1007 		return error;
   1008 
   1009 	/* XXX-elad */
   1010 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
   1011 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
   1012 	if (error) {
   1013 		goto out;
   1014 	}
   1015 
   1016 	/* Determine the flag. */
   1017 	switch (rnode->sysctl_num) {
   1018 	case PROC_PID_STOPFORK:
   1019 		flag = PS_STOPFORK;
   1020 		break;
   1021 	case PROC_PID_STOPEXEC:
   1022 		flag = PS_STOPEXEC;
   1023 		break;
   1024 	case PROC_PID_STOPEXIT:
   1025 		flag = PS_STOPEXIT;
   1026 		break;
   1027 	default:
   1028 		error = EINVAL;
   1029 		goto out;
   1030 	}
   1031 	isset = (p->p_flag & flag) ? 1 : 0;
   1032 	node = *rnode;
   1033 	node.sysctl_data = &isset;
   1034 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1035 
   1036 	/* Return if error, or if callers is only getting the flag. */
   1037 	if (error || newp == NULL) {
   1038 		goto out;
   1039 	}
   1040 
   1041 	/* Check if caller can set the flags. */
   1042 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
   1043 	    p, KAUTH_ARG(flag), NULL, NULL);
   1044 	if (error) {
   1045 		goto out;
   1046 	}
   1047 	mutex_enter(p->p_lock);
   1048 	if (isset) {
   1049 		p->p_sflag |= flag;
   1050 	} else {
   1051 		p->p_sflag &= ~flag;
   1052 	}
   1053 	mutex_exit(p->p_lock);
   1054 out:
   1055 	rw_exit(&p->p_reflock);
   1056 	return error;
   1057 }
   1058 
   1059 /*
   1060  * sysctl_proc_plimit: helper routine to get/set rlimits of a process.
   1061  */
   1062 static int
   1063 sysctl_proc_plimit(SYSCTLFN_ARGS)
   1064 {
   1065 	struct proc *p;
   1066 	u_int limitno;
   1067 	int which, error = 0;
   1068         struct rlimit alim;
   1069 	struct sysctlnode node;
   1070 
   1071 	if (namelen != 0)
   1072 		return EINVAL;
   1073 
   1074 	which = name[-1];
   1075 	if (which != PROC_PID_LIMIT_TYPE_SOFT &&
   1076 	    which != PROC_PID_LIMIT_TYPE_HARD)
   1077 		return EINVAL;
   1078 
   1079 	limitno = name[-2] - 1;
   1080 	if (limitno >= RLIM_NLIMITS)
   1081 		return EINVAL;
   1082 
   1083 	if (name[-3] != PROC_PID_LIMIT)
   1084 		return EINVAL;
   1085 
   1086 	/* Find the process.  Hold a reference (p_reflock), if found. */
   1087 	error = sysctl_proc_findproc(l, (pid_t)name[-4], &p);
   1088 	if (error)
   1089 		return error;
   1090 
   1091 	/* XXX-elad */
   1092 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
   1093 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
   1094 	if (error)
   1095 		goto out;
   1096 
   1097 	/* Check if caller can retrieve the limits. */
   1098 	if (newp == NULL) {
   1099 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
   1100 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
   1101 		    KAUTH_ARG(which));
   1102 		if (error)
   1103 			goto out;
   1104 	}
   1105 
   1106 	/* Retrieve the limits. */
   1107 	node = *rnode;
   1108 	memcpy(&alim, &p->p_rlimit[limitno], sizeof(alim));
   1109 	if (which == PROC_PID_LIMIT_TYPE_HARD) {
   1110 		node.sysctl_data = &alim.rlim_max;
   1111 	} else {
   1112 		node.sysctl_data = &alim.rlim_cur;
   1113 	}
   1114 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1115 
   1116 	/* Return if error, or if we are only retrieving the limits. */
   1117 	if (error || newp == NULL) {
   1118 		goto out;
   1119 	}
   1120 	error = dosetrlimit(l, p, limitno, &alim);
   1121 out:
   1122 	rw_exit(&p->p_reflock);
   1123 	return error;
   1124 }
   1125 
   1126 /*
   1127  * Setup sysctl nodes.
   1128  */
   1129 static void
   1130 sysctl_proc_setup(void)
   1131 {
   1132 
   1133 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1134 		       CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
   1135 		       CTLTYPE_NODE, "curproc",
   1136 		       SYSCTL_DESCR("Per-process settings"),
   1137 		       NULL, 0, NULL, 0,
   1138 		       CTL_PROC, PROC_CURPROC, CTL_EOL);
   1139 
   1140 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1141 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
   1142 		       CTLTYPE_INT, "paxflags",
   1143 		       SYSCTL_DESCR("Process PAX control flags"),
   1144 		       sysctl_proc_paxflags, 0, NULL, 0,
   1145 		       CTL_PROC, PROC_CURPROC, PROC_PID_PAXFLAGS, CTL_EOL);
   1146 
   1147 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1148 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1149 		       CTLTYPE_STRING, "corename",
   1150 		       SYSCTL_DESCR("Core file name"),
   1151 		       sysctl_proc_corename, 0, NULL, MAXPATHLEN,
   1152 		       CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
   1153 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1154 		       CTLFLAG_PERMANENT,
   1155 		       CTLTYPE_NODE, "rlimit",
   1156 		       SYSCTL_DESCR("Process limits"),
   1157 		       NULL, 0, NULL, 0,
   1158 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
   1159 
   1160 #define create_proc_plimit(s, n) do {					\
   1161 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1162 		       CTLFLAG_PERMANENT,				\
   1163 		       CTLTYPE_NODE, s,					\
   1164 		       SYSCTL_DESCR("Process " s " limits"),		\
   1165 		       NULL, 0, NULL, 0,				\
   1166 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1167 		       CTL_EOL);					\
   1168 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1169 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
   1170 		       CTLTYPE_QUAD, "soft",				\
   1171 		       SYSCTL_DESCR("Process soft " s " limit"),	\
   1172 		       sysctl_proc_plimit, 0, NULL, 0,			\
   1173 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1174 		       PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL);		\
   1175 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1176 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
   1177 		       CTLTYPE_QUAD, "hard",				\
   1178 		       SYSCTL_DESCR("Process hard " s " limit"),	\
   1179 		       sysctl_proc_plimit, 0, NULL, 0,			\
   1180 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1181 		       PROC_PID_LIMIT_TYPE_HARD, CTL_EOL);		\
   1182 	} while (0/*CONSTCOND*/)
   1183 
   1184 	create_proc_plimit("cputime",		PROC_PID_LIMIT_CPU);
   1185 	create_proc_plimit("filesize",		PROC_PID_LIMIT_FSIZE);
   1186 	create_proc_plimit("datasize",		PROC_PID_LIMIT_DATA);
   1187 	create_proc_plimit("stacksize",		PROC_PID_LIMIT_STACK);
   1188 	create_proc_plimit("coredumpsize",	PROC_PID_LIMIT_CORE);
   1189 	create_proc_plimit("memoryuse",		PROC_PID_LIMIT_RSS);
   1190 	create_proc_plimit("memorylocked",	PROC_PID_LIMIT_MEMLOCK);
   1191 	create_proc_plimit("maxproc",		PROC_PID_LIMIT_NPROC);
   1192 	create_proc_plimit("descriptors",	PROC_PID_LIMIT_NOFILE);
   1193 	create_proc_plimit("sbsize",		PROC_PID_LIMIT_SBSIZE);
   1194 	create_proc_plimit("vmemoryuse",	PROC_PID_LIMIT_AS);
   1195 	create_proc_plimit("maxlwp",		PROC_PID_LIMIT_NTHR);
   1196 
   1197 #undef create_proc_plimit
   1198 
   1199 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1200 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1201 		       CTLTYPE_INT, "stopfork",
   1202 		       SYSCTL_DESCR("Stop process at fork(2)"),
   1203 		       sysctl_proc_stop, 0, NULL, 0,
   1204 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
   1205 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1206 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1207 		       CTLTYPE_INT, "stopexec",
   1208 		       SYSCTL_DESCR("Stop process at execve(2)"),
   1209 		       sysctl_proc_stop, 0, NULL, 0,
   1210 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
   1211 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1212 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1213 		       CTLTYPE_INT, "stopexit",
   1214 		       SYSCTL_DESCR("Stop process before completing exit"),
   1215 		       sysctl_proc_stop, 0, NULL, 0,
   1216 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
   1217 }
   1218