Home | History | Annotate | Line # | Download | only in raidframe
      1 /*	$NetBSD: rf_dagutils.c,v 1.58 2021/07/23 00:54:45 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /******************************************************************************
     30  *
     31  * rf_dagutils.c -- utility routines for manipulating dags
     32  *
     33  *****************************************************************************/
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.58 2021/07/23 00:54:45 oster Exp $");
     37 
     38 #include <dev/raidframe/raidframevar.h>
     39 
     40 #include "rf_archs.h"
     41 #include "rf_threadstuff.h"
     42 #include "rf_raid.h"
     43 #include "rf_dag.h"
     44 #include "rf_dagutils.h"
     45 #include "rf_dagfuncs.h"
     46 #include "rf_general.h"
     47 #include "rf_map.h"
     48 #include "rf_shutdown.h"
     49 
     50 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
     51 
     52 const RF_RedFuncs_t rf_xorFuncs = {
     53 	rf_RegularXorFunc, "Reg Xr",
     54 	rf_SimpleXorFunc, "Simple Xr"};
     55 
     56 const RF_RedFuncs_t rf_xorRecoveryFuncs = {
     57 	rf_RecoveryXorFunc, "Recovery Xr",
     58 	rf_RecoveryXorFunc, "Recovery Xr"};
     59 
     60 #if RF_DEBUG_VALIDATE_DAG
     61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
     62 static void rf_PrintDAG(RF_DagHeader_t *);
     63 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
     64 			     RF_DagNode_t **, int);
     65 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
     66 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
     67 #endif /* RF_DEBUG_VALIDATE_DAG */
     68 
     69 /* The maximum number of nodes in a DAG is bounded by
     70 
     71 (2 * raidPtr->Layout->numDataCol) + (1 * layoutPtr->numParityCol) +
     72 	(1 * 2 * layoutPtr->numParityCol) + 3
     73 
     74 which is:  2*RF_MAXCOL+1*2+1*2*2+3
     75 
     76 For RF_MAXCOL of 40, this works out to 89.  We use this value to provide an estimate
     77 on the maximum size needed for RF_DAGPCACHE_SIZE.  For RF_MAXCOL of 40, this structure
     78 would be 534 bytes.  Too much to have on-hand in a RF_DagNode_t, but should be ok to
     79 have a few kicking around.
     80 */
     81 #define RF_DAGPCACHE_SIZE ((2*RF_MAXCOL+1*2+1*2*2+3) *(RF_MAX(sizeof(RF_DagParam_t), sizeof(RF_DagNode_t *))))
     82 
     83 
     84 /******************************************************************************
     85  *
     86  * InitNode - initialize a dag node
     87  *
     88  * the size of the propList array is always the same as that of the
     89  * successors array.
     90  *
     91  *****************************************************************************/
     92 void
     93 rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
     94     void (*doFunc) (RF_DagNode_t *node),
     95     void (*undoFunc) (RF_DagNode_t *node),
     96     void (*wakeFunc) (void *node, int status),
     97     int nSucc, int nAnte, int nParam, int nResult,
     98     RF_DagHeader_t *hdr, const char *name, RF_AllocListElem_t *alist)
     99 {
    100 	void  **ptrs;
    101 	int     nptrs;
    102 	RF_Raid_t *raidPtr;
    103 
    104 	if (nAnte > RF_MAX_ANTECEDENTS)
    105 		RF_PANIC();
    106 	node->status = initstatus;
    107 	node->commitNode = commit;
    108 	node->doFunc = doFunc;
    109 	node->undoFunc = undoFunc;
    110 	node->wakeFunc = wakeFunc;
    111 	node->numParams = nParam;
    112 	node->numResults = nResult;
    113 	node->numAntecedents = nAnte;
    114 	node->numAntDone = 0;
    115 	node->next = NULL;
    116 	/* node->list_next = NULL */  /* Don't touch this here!
    117 	                                 It may already be
    118 					 in use by the caller! */
    119 	node->numSuccedents = nSucc;
    120 	node->name = name;
    121 	node->dagHdr = hdr;
    122 	node->big_dag_ptrs = NULL;
    123 	node->big_dag_params = NULL;
    124 	node->visited = 0;
    125 
    126 	RF_ASSERT(hdr != NULL);
    127 	raidPtr = hdr->raidPtr;
    128 
    129 	/* allocate all the pointers with one call to malloc */
    130 	nptrs = nSucc + nAnte + nResult + nSucc;
    131 
    132 	if (nptrs <= RF_DAG_PTRCACHESIZE) {
    133 		/*
    134 	         * The dag_ptrs field of the node is basically some scribble
    135 	         * space to be used here. We could get rid of it, and always
    136 	         * allocate the range of pointers, but that's expensive. So,
    137 	         * we pick a "common case" size for the pointer cache. Hopefully,
    138 	         * we'll find that:
    139 	         * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
    140 	         *     only a little bit (least efficient case)
    141 	         * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
    142 	         *     (wasted memory)
    143 	         */
    144 		ptrs = (void **) node->dag_ptrs;
    145 	} else if (nptrs <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagNode_t *))) {
    146 		node->big_dag_ptrs = rf_AllocDAGPCache(raidPtr);
    147 		ptrs = (void **) node->big_dag_ptrs;
    148 	} else {
    149 		ptrs = RF_MallocAndAdd(nptrs * sizeof(*ptrs), alist);
    150 	}
    151 	node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
    152 	node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
    153 	node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
    154 	node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
    155 
    156 	if (nParam) {
    157 		if (nParam <= RF_DAG_PARAMCACHESIZE) {
    158 			node->params = (RF_DagParam_t *) node->dag_params;
    159 		} else if (nParam <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagParam_t))) {
    160 			node->big_dag_params = rf_AllocDAGPCache(raidPtr);
    161 			node->params = node->big_dag_params;
    162 		} else {
    163 			node->params = RF_MallocAndAdd(
    164 			    nParam * sizeof(*node->params), alist);
    165 		}
    166 	} else {
    167 		node->params = NULL;
    168 	}
    169 }
    170 
    171 
    172 
    173 /******************************************************************************
    174  *
    175  * allocation and deallocation routines
    176  *
    177  *****************************************************************************/
    178 
    179 void
    180 rf_FreeDAG(RF_DagHeader_t *dag_h)
    181 {
    182 	RF_AccessStripeMapHeader_t *asmap, *t_asmap;
    183 	RF_PhysDiskAddr_t *pda;
    184 	RF_DagNode_t *tmpnode;
    185 	RF_DagHeader_t *nextDag;
    186 	RF_Raid_t *raidPtr;
    187 
    188 	if (dag_h)
    189 		raidPtr = dag_h->raidPtr;
    190 
    191 	while (dag_h) {
    192 		nextDag = dag_h->next;
    193 		rf_FreeAllocList(dag_h->allocList);
    194 		for (asmap = dag_h->asmList; asmap;) {
    195 			t_asmap = asmap;
    196 			asmap = asmap->next;
    197 			rf_FreeAccessStripeMap(raidPtr, t_asmap);
    198 		}
    199 		while (dag_h->pda_cleanup_list) {
    200 			pda = dag_h->pda_cleanup_list;
    201 			dag_h->pda_cleanup_list = dag_h->pda_cleanup_list->next;
    202 			rf_FreePhysDiskAddr(raidPtr, pda);
    203 		}
    204 		while (dag_h->nodes) {
    205 			tmpnode = dag_h->nodes;
    206 			dag_h->nodes = dag_h->nodes->list_next;
    207 			rf_FreeDAGNode(raidPtr, tmpnode);
    208 		}
    209 		rf_FreeDAGHeader(raidPtr, dag_h);
    210 		dag_h = nextDag;
    211 	}
    212 }
    213 
    214 #define RF_MAX_FREE_DAGH 128
    215 #define RF_MIN_FREE_DAGH  32
    216 
    217 #define RF_MAX_FREE_DAGNODE 512 /* XXX Tune this... */
    218 #define RF_MIN_FREE_DAGNODE 128 /* XXX Tune this... */
    219 
    220 #define RF_MAX_FREE_DAGLIST 128
    221 #define RF_MIN_FREE_DAGLIST  32
    222 
    223 #define RF_MAX_FREE_DAGPCACHE 128
    224 #define RF_MIN_FREE_DAGPCACHE   8
    225 
    226 #define RF_MAX_FREE_FUNCLIST 128
    227 #define RF_MIN_FREE_FUNCLIST  32
    228 
    229 #define RF_MAX_FREE_BUFFERS 128
    230 #define RF_MIN_FREE_BUFFERS  32
    231 
    232 static void rf_ShutdownDAGs(void *);
    233 static void
    234 rf_ShutdownDAGs(void *arg)
    235 {
    236 	RF_Raid_t *raidPtr;
    237 
    238 	raidPtr = (RF_Raid_t *) arg;
    239 
    240 	pool_destroy(&raidPtr->pools.dagh);
    241 	pool_destroy(&raidPtr->pools.dagnode);
    242 	pool_destroy(&raidPtr->pools.daglist);
    243 	pool_destroy(&raidPtr->pools.dagpcache);
    244 	pool_destroy(&raidPtr->pools.funclist);
    245 }
    246 
    247 int
    248 rf_ConfigureDAGs(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
    249 		 RF_Config_t *cfgPtr)
    250 {
    251 
    252 	rf_pool_init(raidPtr, raidPtr->poolNames.dagnode, &raidPtr->pools.dagnode, sizeof(RF_DagNode_t),
    253 		     "dagnode", RF_MIN_FREE_DAGNODE, RF_MAX_FREE_DAGNODE);
    254 	rf_pool_init(raidPtr, raidPtr->poolNames.dagh, &raidPtr->pools.dagh, sizeof(RF_DagHeader_t),
    255 		     "dagh", RF_MIN_FREE_DAGH, RF_MAX_FREE_DAGH);
    256 	rf_pool_init(raidPtr, raidPtr->poolNames.daglist, &raidPtr->pools.daglist, sizeof(RF_DagList_t),
    257 		     "daglist", RF_MIN_FREE_DAGLIST, RF_MAX_FREE_DAGLIST);
    258 	rf_pool_init(raidPtr, raidPtr->poolNames.dagpcache, &raidPtr->pools.dagpcache, RF_DAGPCACHE_SIZE,
    259 		     "dagpcache", RF_MIN_FREE_DAGPCACHE, RF_MAX_FREE_DAGPCACHE);
    260 	rf_pool_init(raidPtr, raidPtr->poolNames.funclist, &raidPtr->pools.funclist, sizeof(RF_FuncList_t),
    261 		     "funclist", RF_MIN_FREE_FUNCLIST, RF_MAX_FREE_FUNCLIST);
    262 	rf_ShutdownCreate(listp, rf_ShutdownDAGs, raidPtr);
    263 
    264 	return (0);
    265 }
    266 
    267 RF_DagHeader_t *
    268 rf_AllocDAGHeader(RF_Raid_t *raidPtr)
    269 {
    270 	return pool_get(&raidPtr->pools.dagh, PR_WAITOK | PR_ZERO);
    271 }
    272 
    273 void
    274 rf_FreeDAGHeader(RF_Raid_t *raidPtr, RF_DagHeader_t * dh)
    275 {
    276 	pool_put(&raidPtr->pools.dagh, dh);
    277 }
    278 
    279 RF_DagNode_t *
    280 rf_AllocDAGNode(RF_Raid_t *raidPtr)
    281 {
    282 	return pool_get(&raidPtr->pools.dagnode, PR_WAITOK | PR_ZERO);
    283 }
    284 
    285 void
    286 rf_FreeDAGNode(RF_Raid_t *raidPtr, RF_DagNode_t *node)
    287 {
    288 	if (node->big_dag_ptrs) {
    289 		rf_FreeDAGPCache(raidPtr, node->big_dag_ptrs);
    290 	}
    291 	if (node->big_dag_params) {
    292 		rf_FreeDAGPCache(raidPtr, node->big_dag_params);
    293 	}
    294 	pool_put(&raidPtr->pools.dagnode, node);
    295 }
    296 
    297 RF_DagList_t *
    298 rf_AllocDAGList(RF_Raid_t *raidPtr)
    299 {
    300 	return pool_get(&raidPtr->pools.daglist, PR_WAITOK | PR_ZERO);
    301 }
    302 
    303 void
    304 rf_FreeDAGList(RF_Raid_t *raidPtr, RF_DagList_t *dagList)
    305 {
    306 	pool_put(&raidPtr->pools.daglist, dagList);
    307 }
    308 
    309 void *
    310 rf_AllocDAGPCache(RF_Raid_t *raidPtr)
    311 {
    312 	return pool_get(&raidPtr->pools.dagpcache, PR_WAITOK | PR_ZERO);
    313 }
    314 
    315 void
    316 rf_FreeDAGPCache(RF_Raid_t *raidPtr, void *p)
    317 {
    318 	pool_put(&raidPtr->pools.dagpcache, p);
    319 }
    320 
    321 RF_FuncList_t *
    322 rf_AllocFuncList(RF_Raid_t *raidPtr)
    323 {
    324 	return pool_get(&raidPtr->pools.funclist, PR_WAITOK | PR_ZERO);
    325 }
    326 
    327 void
    328 rf_FreeFuncList(RF_Raid_t *raidPtr, RF_FuncList_t *funcList)
    329 {
    330 	pool_put(&raidPtr->pools.funclist, funcList);
    331 }
    332 
    333 /* allocates a stripe buffer -- a buffer large enough to hold all the data
    334    in an entire stripe.
    335 */
    336 
    337 void *
    338 rf_AllocStripeBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h,
    339     int size)
    340 {
    341 	RF_VoidPointerListElem_t *vple;
    342 	void *p;
    343 
    344 	RF_ASSERT((size <= (raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
    345 					       raidPtr->logBytesPerSector))));
    346 
    347 	p =  malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
    348 					raidPtr->logBytesPerSector),
    349 		     M_RAIDFRAME, M_NOWAIT);
    350 	if (!p) {
    351 		rf_lock_mutex2(raidPtr->mutex);
    352 		if (raidPtr->stripebuf_count > 0) {
    353 			vple = raidPtr->stripebuf;
    354 			raidPtr->stripebuf = vple->next;
    355 			p = vple->p;
    356 			rf_FreeVPListElem(raidPtr, vple);
    357 			raidPtr->stripebuf_count--;
    358 		} else {
    359 #ifdef DIAGNOSTIC
    360 			printf("raid%d: Help!  Out of emergency full-stripe buffers!\n", raidPtr->raidid);
    361 #endif
    362 		}
    363 		rf_unlock_mutex2(raidPtr->mutex);
    364 		if (!p) {
    365 			/* We didn't get a buffer... not much we can do other than wait,
    366 			   and hope that someone frees up memory for us.. */
    367 			p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
    368 						       raidPtr->logBytesPerSector), M_RAIDFRAME, M_WAITOK);
    369 		}
    370 	}
    371 	memset(p, 0, raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector));
    372 
    373 	vple = rf_AllocVPListElem(raidPtr);
    374 	vple->p = p;
    375         vple->next = dag_h->desc->stripebufs;
    376         dag_h->desc->stripebufs = vple;
    377 
    378 	return (p);
    379 }
    380 
    381 
    382 void
    383 rf_FreeStripeBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
    384 {
    385 	rf_lock_mutex2(raidPtr->mutex);
    386 	if (raidPtr->stripebuf_count < raidPtr->numEmergencyStripeBuffers) {
    387 		/* just tack it in */
    388 		vple->next = raidPtr->stripebuf;
    389 		raidPtr->stripebuf = vple;
    390 		raidPtr->stripebuf_count++;
    391 	} else {
    392 		free(vple->p, M_RAIDFRAME);
    393 		rf_FreeVPListElem(raidPtr, vple);
    394 	}
    395 	rf_unlock_mutex2(raidPtr->mutex);
    396 }
    397 
    398 /* allocates a buffer big enough to hold the data described by the
    399 caller (ie. the data of the associated PDA).  Glue this buffer
    400 into our dag_h cleanup structure. */
    401 
    402 void *
    403 rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, int size)
    404 {
    405 	RF_VoidPointerListElem_t *vple;
    406 	void *p;
    407 
    408 	p = rf_AllocIOBuffer(raidPtr, size);
    409 	vple = rf_AllocVPListElem(raidPtr);
    410 	vple->p = p;
    411 	vple->next = dag_h->desc->iobufs;
    412 	dag_h->desc->iobufs = vple;
    413 
    414 	return (p);
    415 }
    416 
    417 void *
    418 rf_AllocIOBuffer(RF_Raid_t *raidPtr, int size)
    419 {
    420 	RF_VoidPointerListElem_t *vple;
    421 	void *p;
    422 
    423 	RF_ASSERT((size <= (raidPtr->Layout.sectorsPerStripeUnit <<
    424 			   raidPtr->logBytesPerSector)));
    425 
    426 	p =  malloc( raidPtr->Layout.sectorsPerStripeUnit <<
    427 				 raidPtr->logBytesPerSector,
    428 				 M_RAIDFRAME, M_NOWAIT);
    429 	if (!p) {
    430 		rf_lock_mutex2(raidPtr->mutex);
    431 		if (raidPtr->iobuf_count > 0) {
    432 			vple = raidPtr->iobuf;
    433 			raidPtr->iobuf = vple->next;
    434 			p = vple->p;
    435 			rf_FreeVPListElem(raidPtr, vple);
    436 			raidPtr->iobuf_count--;
    437 		} else {
    438 #ifdef DIAGNOSTIC
    439 			printf("raid%d: Help!  Out of emergency buffers!\n", raidPtr->raidid);
    440 #endif
    441 		}
    442 		rf_unlock_mutex2(raidPtr->mutex);
    443 		if (!p) {
    444 			/* We didn't get a buffer... not much we can do other than wait,
    445 			   and hope that someone frees up memory for us.. */
    446 			p = malloc( raidPtr->Layout.sectorsPerStripeUnit <<
    447 				    raidPtr->logBytesPerSector,
    448 				    M_RAIDFRAME, M_WAITOK);
    449 		}
    450 	}
    451 	memset(p, 0, raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector);
    452 	return (p);
    453 }
    454 
    455 void
    456 rf_FreeIOBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
    457 {
    458 	rf_lock_mutex2(raidPtr->mutex);
    459 	if (raidPtr->iobuf_count < raidPtr->numEmergencyBuffers) {
    460 		/* just tack it in */
    461 		vple->next = raidPtr->iobuf;
    462 		raidPtr->iobuf = vple;
    463 		raidPtr->iobuf_count++;
    464 	} else {
    465 		free(vple->p, M_RAIDFRAME);
    466 		rf_FreeVPListElem(raidPtr, vple);
    467 	}
    468 	rf_unlock_mutex2(raidPtr->mutex);
    469 }
    470 
    471 
    472 
    473 #if RF_DEBUG_VALIDATE_DAG
    474 /******************************************************************************
    475  *
    476  * debug routines
    477  *
    478  *****************************************************************************/
    479 
    480 char   *
    481 rf_NodeStatusString(RF_DagNode_t *node)
    482 {
    483 	switch (node->status) {
    484 	case rf_wait:
    485 		return ("wait");
    486 	case rf_fired:
    487 		return ("fired");
    488 	case rf_good:
    489 		return ("good");
    490 	case rf_bad:
    491 		return ("bad");
    492 	default:
    493 		return ("?");
    494 	}
    495 }
    496 
    497 void
    498 rf_PrintNodeInfoString(RF_DagNode_t *node)
    499 {
    500 	RF_PhysDiskAddr_t *pda;
    501 	int     (*df) (RF_DagNode_t *) = node->doFunc;
    502 	int     i, lk, unlk;
    503 	void   *bufPtr;
    504 
    505 	if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
    506 	    || (df == rf_DiskReadMirrorIdleFunc)
    507 	    || (df == rf_DiskReadMirrorPartitionFunc)) {
    508 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    509 		bufPtr = (void *) node->params[1].p;
    510 		lk = 0;
    511 		unlk = 0;
    512 		RF_ASSERT(!(lk && unlk));
    513 		printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
    514 		    (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
    515 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
    516 		return;
    517 	}
    518 	if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
    519 	    || (df == rf_RecoveryXorFunc)) {
    520 		printf("result buf 0x%lx\n", (long) node->results[0]);
    521 		for (i = 0; i < node->numParams - 1; i += 2) {
    522 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    523 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    524 			printf("    buf 0x%lx c%d offs %ld nsect %d\n",
    525 			    (long) bufPtr, pda->col,
    526 			    (long) pda->startSector, (int) pda->numSector);
    527 		}
    528 		return;
    529 	}
    530 #if RF_INCLUDE_PARITYLOGGING > 0
    531 	if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
    532 		for (i = 0; i < node->numParams - 1; i += 2) {
    533 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    534 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
    535 			printf(" c%d offs %ld nsect %d buf 0x%lx\n",
    536 			    pda->col, (long) pda->startSector,
    537 			    (int) pda->numSector, (long) bufPtr);
    538 		}
    539 		return;
    540 	}
    541 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    542 
    543 	if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
    544 		printf("\n");
    545 		return;
    546 	}
    547 	printf("?\n");
    548 }
    549 #ifdef DEBUG
    550 static void
    551 rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
    552 {
    553 	char   *anttype;
    554 	int     i;
    555 
    556 	node->visited = (unvisited) ? 0 : 1;
    557 	printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
    558 	    node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
    559 	    node->numSuccedents, node->numSuccFired, node->numSuccDone,
    560 	    node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
    561 	for (i = 0; i < node->numSuccedents; i++) {
    562 		printf("%d%s", node->succedents[i]->nodeNum,
    563 		    ((i == node->numSuccedents - 1) ? "\0" : " "));
    564 	}
    565 	printf("} A{");
    566 	for (i = 0; i < node->numAntecedents; i++) {
    567 		switch (node->antType[i]) {
    568 		case rf_trueData:
    569 			anttype = "T";
    570 			break;
    571 		case rf_antiData:
    572 			anttype = "A";
    573 			break;
    574 		case rf_outputData:
    575 			anttype = "O";
    576 			break;
    577 		case rf_control:
    578 			anttype = "C";
    579 			break;
    580 		default:
    581 			anttype = "?";
    582 			break;
    583 		}
    584 		printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
    585 	}
    586 	printf("}; ");
    587 	rf_PrintNodeInfoString(node);
    588 	for (i = 0; i < node->numSuccedents; i++) {
    589 		if (node->succedents[i]->visited == unvisited)
    590 			rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
    591 	}
    592 }
    593 
    594 static void
    595 rf_PrintDAG(RF_DagHeader_t *dag_h)
    596 {
    597 	int     unvisited, i;
    598 	char   *status;
    599 
    600 	/* set dag status */
    601 	switch (dag_h->status) {
    602 	case rf_enable:
    603 		status = "enable";
    604 		break;
    605 	case rf_rollForward:
    606 		status = "rollForward";
    607 		break;
    608 	case rf_rollBackward:
    609 		status = "rollBackward";
    610 		break;
    611 	default:
    612 		status = "illegal!";
    613 		break;
    614 	}
    615 	/* find out if visited bits are currently set or clear */
    616 	unvisited = dag_h->succedents[0]->visited;
    617 
    618 	printf("DAG type:  %s\n", dag_h->creator);
    619 	printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)};  info\n");
    620 	printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
    621 	    status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
    622 	for (i = 0; i < dag_h->numSuccedents; i++) {
    623 		printf("%d%s", dag_h->succedents[i]->nodeNum,
    624 		    ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
    625 	}
    626 	printf("};\n");
    627 	for (i = 0; i < dag_h->numSuccedents; i++) {
    628 		if (dag_h->succedents[i]->visited == unvisited)
    629 			rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
    630 	}
    631 }
    632 #endif
    633 /* assigns node numbers */
    634 int
    635 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
    636 {
    637 	int     unvisited, i, nnum;
    638 	RF_DagNode_t *node;
    639 
    640 	nnum = 0;
    641 	unvisited = dag_h->succedents[0]->visited;
    642 
    643 	dag_h->nodeNum = nnum++;
    644 	for (i = 0; i < dag_h->numSuccedents; i++) {
    645 		node = dag_h->succedents[i];
    646 		if (node->visited == unvisited) {
    647 			nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
    648 		}
    649 	}
    650 	return (nnum);
    651 }
    652 
    653 int
    654 rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
    655 {
    656 	int     i;
    657 
    658 	node->visited = (unvisited) ? 0 : 1;
    659 
    660 	node->nodeNum = num++;
    661 	for (i = 0; i < node->numSuccedents; i++) {
    662 		if (node->succedents[i]->visited == unvisited) {
    663 			num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
    664 		}
    665 	}
    666 	return (num);
    667 }
    668 /* set the header pointers in each node to "newptr" */
    669 void
    670 rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
    671 {
    672 	int     i;
    673 	for (i = 0; i < dag_h->numSuccedents; i++)
    674 		if (dag_h->succedents[i]->dagHdr != newptr)
    675 			rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
    676 }
    677 
    678 void
    679 rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
    680 {
    681 	int     i;
    682 	node->dagHdr = newptr;
    683 	for (i = 0; i < node->numSuccedents; i++)
    684 		if (node->succedents[i]->dagHdr != newptr)
    685 			rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
    686 }
    687 
    688 
    689 void
    690 rf_PrintDAGList(RF_DagHeader_t * dag_h)
    691 {
    692 	int     i = 0;
    693 
    694 	for (; dag_h; dag_h = dag_h->next) {
    695 		rf_AssignNodeNums(dag_h);
    696 		printf("\n\nDAG %d IN LIST:\n", i++);
    697 		rf_PrintDAG(dag_h);
    698 	}
    699 }
    700 
    701 static int
    702 rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
    703 		  RF_DagNode_t **nodes, int unvisited)
    704 {
    705 	int     i, retcode = 0;
    706 
    707 	/* construct an array of node pointers indexed by node num */
    708 	node->visited = (unvisited) ? 0 : 1;
    709 	nodes[node->nodeNum] = node;
    710 
    711 	if (node->next != NULL) {
    712 		printf("INVALID DAG: next pointer in node is not NULL\n");
    713 		retcode = 1;
    714 	}
    715 	if (node->status != rf_wait) {
    716 		printf("INVALID DAG: Node status is not wait\n");
    717 		retcode = 1;
    718 	}
    719 	if (node->numAntDone != 0) {
    720 		printf("INVALID DAG: numAntDone is not zero\n");
    721 		retcode = 1;
    722 	}
    723 	if (node->doFunc == rf_TerminateFunc) {
    724 		if (node->numSuccedents != 0) {
    725 			printf("INVALID DAG: Terminator node has succedents\n");
    726 			retcode = 1;
    727 		}
    728 	} else {
    729 		if (node->numSuccedents == 0) {
    730 			printf("INVALID DAG: Non-terminator node has no succedents\n");
    731 			retcode = 1;
    732 		}
    733 	}
    734 	for (i = 0; i < node->numSuccedents; i++) {
    735 		if (!node->succedents[i]) {
    736 			printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
    737 			retcode = 1;
    738 		}
    739 		scount[node->succedents[i]->nodeNum]++;
    740 	}
    741 	for (i = 0; i < node->numAntecedents; i++) {
    742 		if (!node->antecedents[i]) {
    743 			printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
    744 			retcode = 1;
    745 		}
    746 		acount[node->antecedents[i]->nodeNum]++;
    747 	}
    748 	for (i = 0; i < node->numSuccedents; i++) {
    749 		if (node->succedents[i]->visited == unvisited) {
    750 			if (rf_ValidateBranch(node->succedents[i], scount,
    751 				acount, nodes, unvisited)) {
    752 				retcode = 1;
    753 			}
    754 		}
    755 	}
    756 	return (retcode);
    757 }
    758 
    759 static void
    760 rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
    761 {
    762 	int     i;
    763 
    764 	RF_ASSERT(node->visited == unvisited);
    765 	for (i = 0; i < node->numSuccedents; i++) {
    766 		if (node->succedents[i] == NULL) {
    767 			printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
    768 			RF_ASSERT(0);
    769 		}
    770 		rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
    771 	}
    772 }
    773 /* NOTE:  never call this on a big dag, because it is exponential
    774  * in execution time
    775  */
    776 static void
    777 rf_ValidateVisitedBits(RF_DagHeader_t *dag)
    778 {
    779 	int     i, unvisited;
    780 
    781 	unvisited = dag->succedents[0]->visited;
    782 
    783 	for (i = 0; i < dag->numSuccedents; i++) {
    784 		if (dag->succedents[i] == NULL) {
    785 			printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
    786 			RF_ASSERT(0);
    787 		}
    788 		rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
    789 	}
    790 }
    791 /* validate a DAG.  _at entry_ verify that:
    792  *   -- numNodesCompleted is zero
    793  *   -- node queue is null
    794  *   -- dag status is rf_enable
    795  *   -- next pointer is null on every node
    796  *   -- all nodes have status wait
    797  *   -- numAntDone is zero in all nodes
    798  *   -- terminator node has zero successors
    799  *   -- no other node besides terminator has zero successors
    800  *   -- no successor or antecedent pointer in a node is NULL
    801  *   -- number of times that each node appears as a successor of another node
    802  *      is equal to the antecedent count on that node
    803  *   -- number of times that each node appears as an antecedent of another node
    804  *      is equal to the succedent count on that node
    805  *   -- what else?
    806  */
    807 int
    808 rf_ValidateDAG(RF_DagHeader_t *dag_h)
    809 {
    810 	int     i, nodecount;
    811 	int    *scount, *acount;/* per-node successor and antecedent counts */
    812 	RF_DagNode_t **nodes;	/* array of ptrs to nodes in dag */
    813 	int     retcode = 0;
    814 	int     unvisited;
    815 	int     commitNodeCount = 0;
    816 
    817 	if (rf_validateVisitedDebug)
    818 		rf_ValidateVisitedBits(dag_h);
    819 
    820 	if (dag_h->numNodesCompleted != 0) {
    821 		printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
    822 		retcode = 1;
    823 		goto validate_dag_bad;
    824 	}
    825 	if (dag_h->status != rf_enable) {
    826 		printf("INVALID DAG: not enabled\n");
    827 		retcode = 1;
    828 		goto validate_dag_bad;
    829 	}
    830 	if (dag_h->numCommits != 0) {
    831 		printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
    832 		retcode = 1;
    833 		goto validate_dag_bad;
    834 	}
    835 	if (dag_h->numSuccedents != 1) {
    836 		/* currently, all dags must have only one succedent */
    837 		printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
    838 		retcode = 1;
    839 		goto validate_dag_bad;
    840 	}
    841 	nodecount = rf_AssignNodeNums(dag_h);
    842 
    843 	unvisited = dag_h->succedents[0]->visited;
    844 
    845 	scount = RF_Malloc(nodecount * sizeof(*scount));
    846 	acount = RF_Malloc(nodecount * sizeof(*acount));
    847 	nodes = RF_Malloc(nodecount * sizeof(*nodes));
    848 	for (i = 0; i < dag_h->numSuccedents; i++) {
    849 		if ((dag_h->succedents[i]->visited == unvisited)
    850 		    && rf_ValidateBranch(dag_h->succedents[i], scount,
    851 			acount, nodes, unvisited)) {
    852 			retcode = 1;
    853 		}
    854 	}
    855 	/* start at 1 to skip the header node */
    856 	for (i = 1; i < nodecount; i++) {
    857 		if (nodes[i]->commitNode)
    858 			commitNodeCount++;
    859 		if (nodes[i]->doFunc == NULL) {
    860 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    861 			retcode = 1;
    862 			goto validate_dag_out;
    863 		}
    864 		if (nodes[i]->undoFunc == NULL) {
    865 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
    866 			retcode = 1;
    867 			goto validate_dag_out;
    868 		}
    869 		if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
    870 			printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
    871 			    nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
    872 			retcode = 1;
    873 			goto validate_dag_out;
    874 		}
    875 		if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
    876 			printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
    877 			    nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
    878 			retcode = 1;
    879 			goto validate_dag_out;
    880 		}
    881 	}
    882 
    883 	if (dag_h->numCommitNodes != commitNodeCount) {
    884 		printf("INVALID DAG: incorrect commit node count.  hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
    885 		    dag_h->numCommitNodes, commitNodeCount);
    886 		retcode = 1;
    887 		goto validate_dag_out;
    888 	}
    889 validate_dag_out:
    890 	RF_Free(scount, nodecount * sizeof(int));
    891 	RF_Free(acount, nodecount * sizeof(int));
    892 	RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
    893 	if (retcode)
    894 		rf_PrintDAGList(dag_h);
    895 
    896 	if (rf_validateVisitedDebug)
    897 		rf_ValidateVisitedBits(dag_h);
    898 
    899 	return (retcode);
    900 
    901 validate_dag_bad:
    902 	rf_PrintDAGList(dag_h);
    903 	return (retcode);
    904 }
    905 
    906 #endif /* RF_DEBUG_VALIDATE_DAG */
    907 
    908 /******************************************************************************
    909  *
    910  * misc construction routines
    911  *
    912  *****************************************************************************/
    913 
    914 void
    915 rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
    916 {
    917 	int     ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
    918 	int     fcol = raidPtr->reconControl->fcol;
    919 	int     scol = raidPtr->reconControl->spareCol;
    920 	RF_PhysDiskAddr_t *pda;
    921 
    922 	RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
    923 	for (pda = asmap->physInfo; pda; pda = pda->next) {
    924 		if (pda->col == fcol) {
    925 #if RF_DEBUG_DAG
    926 			if (rf_dagDebug) {
    927 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
    928 					pda->startSector)) {
    929 					RF_PANIC();
    930 				}
    931 			}
    932 #endif
    933 			/* printf("Remapped data for large write\n"); */
    934 			if (ds) {
    935 				raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
    936 				    &pda->col, &pda->startSector, RF_REMAP);
    937 			} else {
    938 				pda->col = scol;
    939 			}
    940 		}
    941 	}
    942 	for (pda = asmap->parityInfo; pda; pda = pda->next) {
    943 		if (pda->col == fcol) {
    944 #if RF_DEBUG_DAG
    945 			if (rf_dagDebug) {
    946 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
    947 					RF_PANIC();
    948 				}
    949 			}
    950 #endif
    951 		}
    952 		if (ds) {
    953 			(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
    954 		} else {
    955 			pda->col = scol;
    956 		}
    957 	}
    958 }
    959 
    960 
    961 /* this routine allocates read buffers and generates stripe maps for the
    962  * regions of the array from the start of the stripe to the start of the
    963  * access, and from the end of the access to the end of the stripe.  It also
    964  * computes and returns the number of DAG nodes needed to read all this data.
    965  * Note that this routine does the wrong thing if the access is fully
    966  * contained within one stripe unit, so we RF_ASSERT against this case at the
    967  * start.
    968  *
    969  * layoutPtr - in: layout information
    970  * asmap     - in: access stripe map
    971  * dag_h     - in: header of the dag to create
    972  * new_asm_h - in: ptr to array of 2 headers.  to be filled in
    973  * nRodNodes - out: num nodes to be generated to read unaccessed data
    974  * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
    975  */
    976 void
    977 rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
    978 				RF_RaidLayout_t *layoutPtr,
    979 				RF_AccessStripeMap_t *asmap,
    980 				RF_DagHeader_t *dag_h,
    981 				RF_AccessStripeMapHeader_t **new_asm_h,
    982 				int *nRodNodes,
    983 				char **sosBuffer, char **eosBuffer,
    984 				RF_AllocListElem_t *allocList)
    985 {
    986 	RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
    987 	RF_SectorNum_t sosNumSector, eosNumSector;
    988 
    989 	RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
    990 	/* generate an access map for the region of the array from start of
    991 	 * stripe to start of access */
    992 	new_asm_h[0] = new_asm_h[1] = NULL;
    993 	*nRodNodes = 0;
    994 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
    995 		sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    996 		sosNumSector = asmap->raidAddress - sosRaidAddress;
    997 		*sosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, sosNumSector));
    998 		new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
    999 		new_asm_h[0]->next = dag_h->asmList;
   1000 		dag_h->asmList = new_asm_h[0];
   1001 		*nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
   1002 
   1003 		RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
   1004 		/* we're totally within one stripe here */
   1005 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
   1006 			rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
   1007 	}
   1008 	/* generate an access map for the region of the array from end of
   1009 	 * access to end of stripe */
   1010 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
   1011 		eosRaidAddress = asmap->endRaidAddress;
   1012 		eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
   1013 		*eosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, eosNumSector));
   1014 		new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
   1015 		new_asm_h[1]->next = dag_h->asmList;
   1016 		dag_h->asmList = new_asm_h[1];
   1017 		*nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
   1018 
   1019 		RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
   1020 		/* we're totally within one stripe here */
   1021 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
   1022 			rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
   1023 	}
   1024 }
   1025 
   1026 
   1027 
   1028 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
   1029 int
   1030 rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
   1031 	      RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
   1032 {
   1033 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
   1034 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1035 	/* use -1 to be sure we stay within SU */
   1036 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
   1037 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
   1038 	return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
   1039 }
   1040 
   1041 
   1042 /* GenerateFailedAccessASMs
   1043  *
   1044  * this routine figures out what portion of the stripe needs to be read
   1045  * to effect the degraded read or write operation.  It's primary function
   1046  * is to identify everything required to recover the data, and then
   1047  * eliminate anything that is already being accessed by the user.
   1048  *
   1049  * The main result is two new ASMs, one for the region from the start of the
   1050  * stripe to the start of the access, and one for the region from the end of
   1051  * the access to the end of the stripe.  These ASMs describe everything that
   1052  * needs to be read to effect the degraded access.  Other results are:
   1053  *    nXorBufs -- the total number of buffers that need to be XORed together to
   1054  *                recover the lost data,
   1055  *    rpBufPtr -- ptr to a newly-allocated buffer to hold the parity.  If NULL
   1056  *                at entry, not allocated.
   1057  *    overlappingPDAs --
   1058  *                describes which of the non-failed PDAs in the user access
   1059  *                overlap data that needs to be read to effect recovery.
   1060  *                overlappingPDAs[i]==1 if and only if, neglecting the failed
   1061  *                PDA, the ith pda in the input asm overlaps data that needs
   1062  *                to be read for recovery.
   1063  */
   1064  /* in: asm - ASM for the actual access, one stripe only */
   1065  /* in: failedPDA - which component of the access has failed */
   1066  /* in: dag_h - header of the DAG we're going to create */
   1067  /* out: new_asm_h - the two new ASMs */
   1068  /* out: nXorBufs - the total number of xor bufs required */
   1069  /* out: rpBufPtr - a buffer for the parity read */
   1070 void
   1071 rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
   1072 			    RF_PhysDiskAddr_t *failedPDA,
   1073 			    RF_DagHeader_t *dag_h,
   1074 			    RF_AccessStripeMapHeader_t **new_asm_h,
   1075 			    int *nXorBufs, char **rpBufPtr,
   1076 			    char *overlappingPDAs,
   1077 			    RF_AllocListElem_t *allocList)
   1078 {
   1079 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
   1080 
   1081 	/* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
   1082 	RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
   1083 	RF_PhysDiskAddr_t *pda;
   1084 	int     foundit, i;
   1085 
   1086 	foundit = 0;
   1087 	/* first compute the following raid addresses: start of stripe,
   1088 	 * (sosAddr) MIN(start of access, start of failed SU),   (sosEndAddr)
   1089 	 * MAX(end of access, end of failed SU),       (eosStartAddr) end of
   1090 	 * stripe (i.e. start of next stripe)   (eosAddr) */
   1091 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
   1092 	sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
   1093 	eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
   1094 	eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
   1095 
   1096 	/* now generate access stripe maps for each of the above regions of
   1097 	 * the stripe.  Use a dummy (NULL) buf ptr for now */
   1098 
   1099 	new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
   1100 	new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
   1101 
   1102 	/* walk through the PDAs and range-restrict each SU to the region of
   1103 	 * the SU touched on the failed PDA.  also compute total data buffer
   1104 	 * space requirements in this step.  Ignore the parity for now. */
   1105 	/* Also count nodes to find out how many bufs need to be xored together */
   1106 	(*nXorBufs) = 1;	/* in read case, 1 is for parity.  In write
   1107 				 * case, 1 is for failed data */
   1108 
   1109 	if (new_asm_h[0]) {
   1110 		new_asm_h[0]->next = dag_h->asmList;
   1111 		dag_h->asmList = new_asm_h[0];
   1112 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
   1113 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
   1114 			pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
   1115 		}
   1116 		(*nXorBufs) += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
   1117 	}
   1118 	if (new_asm_h[1]) {
   1119 		new_asm_h[1]->next = dag_h->asmList;
   1120 		dag_h->asmList = new_asm_h[1];
   1121 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
   1122 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
   1123 			pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
   1124 		}
   1125 		(*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
   1126 	}
   1127 
   1128 	/* allocate a buffer for parity */
   1129 	if (rpBufPtr)
   1130 		*rpBufPtr = rf_AllocBuffer(raidPtr, dag_h, failedPDA->numSector << raidPtr->logBytesPerSector);
   1131 
   1132 	/* the last step is to figure out how many more distinct buffers need
   1133 	 * to get xor'd to produce the missing unit.  there's one for each
   1134 	 * user-data read node that overlaps the portion of the failed unit
   1135 	 * being accessed */
   1136 
   1137 	for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
   1138 		if (pda == failedPDA) {
   1139 			i--;
   1140 			foundit = 1;
   1141 			continue;
   1142 		}
   1143 		if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
   1144 			overlappingPDAs[i] = 1;
   1145 			(*nXorBufs)++;
   1146 		}
   1147 	}
   1148 	if (!foundit) {
   1149 		RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
   1150 		RF_ASSERT(0);
   1151 	}
   1152 #if RF_DEBUG_DAG
   1153 	if (rf_degDagDebug) {
   1154 		if (new_asm_h[0]) {
   1155 			printf("First asm:\n");
   1156 			rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
   1157 		}
   1158 		if (new_asm_h[1]) {
   1159 			printf("Second asm:\n");
   1160 			rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
   1161 		}
   1162 	}
   1163 #endif
   1164 }
   1165 
   1166 
   1167 /* adjusts the offset and number of sectors in the destination pda so that
   1168  * it covers at most the region of the SU covered by the source PDA.  This
   1169  * is exclusively a restriction:  the number of sectors indicated by the
   1170  * target PDA can only shrink.
   1171  *
   1172  * For example:  s = sectors within SU indicated by source PDA
   1173  *               d = sectors within SU indicated by dest PDA
   1174  *               r = results, stored in dest PDA
   1175  *
   1176  * |--------------- one stripe unit ---------------------|
   1177  * |           sssssssssssssssssssssssssssssssss         |
   1178  * |    ddddddddddddddddddddddddddddddddddddddddddddd    |
   1179  * |           rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr         |
   1180  *
   1181  * Another example:
   1182  *
   1183  * |--------------- one stripe unit ---------------------|
   1184  * |           sssssssssssssssssssssssssssssssss         |
   1185  * |    ddddddddddddddddddddddd                          |
   1186  * |           rrrrrrrrrrrrrrrr                          |
   1187  *
   1188  */
   1189 void
   1190 rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
   1191 		    RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
   1192 {
   1193 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
   1194 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
   1195 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1196 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);	/* use -1 to be sure we
   1197 													 * stay within SU */
   1198 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
   1199 	RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector);	/* stripe unit boundary */
   1200 
   1201 	dest->startSector = subAddr + RF_MAX(soffs, doffs);
   1202 	dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
   1203 
   1204 	if (dobuffer)
   1205 		dest->bufPtr = (char *)(dest->bufPtr) + ((soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0);
   1206 	if (doraidaddr) {
   1207 		dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
   1208 		    rf_StripeUnitOffset(layoutPtr, dest->startSector);
   1209 	}
   1210 }
   1211 
   1212 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
   1213 
   1214 /*
   1215  * Want the highest of these primes to be the largest one
   1216  * less than the max expected number of columns (won't hurt
   1217  * to be too small or too large, but won't be optimal, either)
   1218  * --jimz
   1219  */
   1220 #define NLOWPRIMES 8
   1221 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
   1222 /*****************************************************************************
   1223  * compute the workload shift factor.  (chained declustering)
   1224  *
   1225  * return nonzero if access should shift to secondary, otherwise,
   1226  * access is to primary
   1227  *****************************************************************************/
   1228 int
   1229 rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
   1230 {
   1231 	/*
   1232          * variables:
   1233          *  d   = column of disk containing primary
   1234          *  f   = column of failed disk
   1235          *  n   = number of disks in array
   1236          *  sd  = "shift distance" (number of columns that d is to the right of f)
   1237          *  v   = numerator of redirection ratio
   1238          *  k   = denominator of redirection ratio
   1239          */
   1240 	RF_RowCol_t d, f, sd, n;
   1241 	int     k, v, ret, i;
   1242 
   1243 	n = raidPtr->numCol;
   1244 
   1245 	/* assign column of primary copy to d */
   1246 	d = pda->col;
   1247 
   1248 	/* assign column of dead disk to f */
   1249 	for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++)
   1250 		continue;
   1251 
   1252 	RF_ASSERT(f < n);
   1253 	RF_ASSERT(f != d);
   1254 
   1255 	sd = (f > d) ? (n + d - f) : (d - f);
   1256 	RF_ASSERT(sd < n);
   1257 
   1258 	/*
   1259          * v of every k accesses should be redirected
   1260          *
   1261          * v/k := (n-1-sd)/(n-1)
   1262          */
   1263 	v = (n - 1 - sd);
   1264 	k = (n - 1);
   1265 
   1266 #if 1
   1267 	/*
   1268          * XXX
   1269          * Is this worth it?
   1270          *
   1271          * Now reduce the fraction, by repeatedly factoring
   1272          * out primes (just like they teach in elementary school!)
   1273          */
   1274 	for (i = 0; i < NLOWPRIMES; i++) {
   1275 		if (lowprimes[i] > v)
   1276 			break;
   1277 		while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
   1278 			v /= lowprimes[i];
   1279 			k /= lowprimes[i];
   1280 		}
   1281 	}
   1282 #endif
   1283 
   1284 	raidPtr->hist_diskreq[d]++;
   1285 	if (raidPtr->hist_diskreq[d] > v) {
   1286 		ret = 0;	/* do not redirect */
   1287 	} else {
   1288 		ret = 1;	/* redirect */
   1289 	}
   1290 
   1291 #if 0
   1292 	printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
   1293 	    raidPtr->hist_diskreq[d]);
   1294 #endif
   1295 
   1296 	if (raidPtr->hist_diskreq[d] >= k) {
   1297 		/* reset counter */
   1298 		raidPtr->hist_diskreq[d] = 0;
   1299 	}
   1300 	return (ret);
   1301 }
   1302 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
   1303 
   1304 /*
   1305  * Disk selection routines
   1306  */
   1307 
   1308 /*
   1309  * Selects the disk with the shortest queue from a mirror pair.
   1310  * Both the disk I/Os queued in RAIDframe as well as those at the physical
   1311  * disk are counted as members of the "queue"
   1312  */
   1313 void
   1314 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
   1315 {
   1316 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1317 	RF_RowCol_t colData, colMirror;
   1318 	int     dataQueueLength, mirrorQueueLength, usemirror;
   1319 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1320 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1321 	RF_PhysDiskAddr_t *tmp_pda;
   1322 	RF_RaidDisk_t *disks = raidPtr->Disks;
   1323 	RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
   1324 
   1325 	/* return the [row col] of the disk with the shortest queue */
   1326 	colData = data_pda->col;
   1327 	colMirror = mirror_pda->col;
   1328 	dataQueue = &(dqs[colData]);
   1329 	mirrorQueue = &(dqs[colMirror]);
   1330 
   1331 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1332 	RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1333 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1334 	dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
   1335 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1336 	RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
   1337 	RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1338 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1339 	mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
   1340 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
   1341 	RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
   1342 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
   1343 
   1344 	usemirror = 0;
   1345 	if (RF_DEAD_DISK(disks[colMirror].status)) {
   1346 		usemirror = 0;
   1347 	} else
   1348 		if (RF_DEAD_DISK(disks[colData].status)) {
   1349 			usemirror = 1;
   1350 		} else
   1351 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1352 				/* Trust only the main disk */
   1353 				usemirror = 0;
   1354 			} else
   1355 				if (dataQueueLength < mirrorQueueLength) {
   1356 					usemirror = 0;
   1357 				} else
   1358 					if (mirrorQueueLength < dataQueueLength) {
   1359 						usemirror = 1;
   1360 					} else {
   1361 						/* queues are equal length. attempt
   1362 						 * cleverness. */
   1363 						if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
   1364 						    <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
   1365 							usemirror = 0;
   1366 						} else {
   1367 							usemirror = 1;
   1368 						}
   1369 					}
   1370 
   1371 	if (usemirror) {
   1372 		/* use mirror (parity) disk, swap params 0 & 4 */
   1373 		tmp_pda = data_pda;
   1374 		node->params[0].p = mirror_pda;
   1375 		node->params[4].p = tmp_pda;
   1376 	} else {
   1377 		/* use data disk, leave param 0 unchanged */
   1378 	}
   1379 	/* printf("dataQueueLength %d, mirrorQueueLength
   1380 	 * %d\n",dataQueueLength, mirrorQueueLength); */
   1381 }
   1382 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
   1383 /*
   1384  * Do simple partitioning. This assumes that
   1385  * the data and parity disks are laid out identically.
   1386  */
   1387 void
   1388 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
   1389 {
   1390 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
   1391 	RF_RowCol_t colData, colMirror;
   1392 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
   1393 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
   1394 	RF_PhysDiskAddr_t *tmp_pda;
   1395 	RF_RaidDisk_t *disks = raidPtr->Disks;
   1396 	int     usemirror;
   1397 
   1398 	/* return the [row col] of the disk with the shortest queue */
   1399 	colData = data_pda->col;
   1400 	colMirror = mirror_pda->col;
   1401 
   1402 	usemirror = 0;
   1403 	if (RF_DEAD_DISK(disks[colMirror].status)) {
   1404 		usemirror = 0;
   1405 	} else
   1406 		if (RF_DEAD_DISK(disks[colData].status)) {
   1407 			usemirror = 1;
   1408 		} else
   1409 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
   1410 				/* Trust only the main disk */
   1411 				usemirror = 0;
   1412 			} else
   1413 				if (data_pda->startSector <
   1414 				    (disks[colData].numBlocks / 2)) {
   1415 					usemirror = 0;
   1416 				} else {
   1417 					usemirror = 1;
   1418 				}
   1419 
   1420 	if (usemirror) {
   1421 		/* use mirror (parity) disk, swap params 0 & 4 */
   1422 		tmp_pda = data_pda;
   1423 		node->params[0].p = mirror_pda;
   1424 		node->params[4].p = tmp_pda;
   1425 	} else {
   1426 		/* use data disk, leave param 0 unchanged */
   1427 	}
   1428 }
   1429 #endif
   1430