Home | History | Annotate | Line # | Download | only in kern
      1 /*	$NetBSD: uipc_socket2.c,v 1.148 2025/09/14 14:24:12 andvar Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     31  *	The Regents of the University of California.  All rights reserved.
     32  *
     33  * Redistribution and use in source and binary forms, with or without
     34  * modification, are permitted provided that the following conditions
     35  * are met:
     36  * 1. Redistributions of source code must retain the above copyright
     37  *    notice, this list of conditions and the following disclaimer.
     38  * 2. Redistributions in binary form must reproduce the above copyright
     39  *    notice, this list of conditions and the following disclaimer in the
     40  *    documentation and/or other materials provided with the distribution.
     41  * 3. Neither the name of the University nor the names of its contributors
     42  *    may be used to endorse or promote products derived from this software
     43  *    without specific prior written permission.
     44  *
     45  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55  * SUCH DAMAGE.
     56  *
     57  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     58  */
     59 
     60 #include <sys/cdefs.h>
     61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.148 2025/09/14 14:24:12 andvar Exp $");
     62 
     63 #ifdef _KERNEL_OPT
     64 #include "opt_ddb.h"
     65 #include "opt_inet.h"
     66 #include "opt_mbuftrace.h"
     67 #include "opt_sb_max.h"
     68 #endif
     69 
     70 #include <sys/param.h>
     71 #include <sys/types.h>
     72 
     73 #include <sys/buf.h>
     74 #include <sys/domain.h>
     75 #include <sys/file.h>
     76 #include <sys/kauth.h>
     77 #include <sys/mbuf.h>
     78 #include <sys/poll.h>
     79 #include <sys/pool.h>
     80 #include <sys/proc.h>
     81 #include <sys/protosw.h>
     82 #include <sys/sdt.h>
     83 #include <sys/signalvar.h>
     84 #include <sys/socket.h>
     85 #include <sys/socketvar.h>
     86 #include <sys/systm.h>
     87 #include <sys/uidinfo.h>
     88 
     89 #ifdef DDB
     90 #include <sys/filedesc.h>
     91 #include <ddb/db_active.h>
     92 #endif
     93 
     94 /*
     95  * Primitive routines for operating on sockets and socket buffers.
     96  *
     97  * Connection life-cycle:
     98  *
     99  *	Normal sequence from the active (originating) side:
    100  *
    101  *	- soisconnecting() is called during processing of connect() call,
    102  *	- resulting in an eventual call to soisconnected() if/when the
    103  *	  connection is established.
    104  *
    105  *	When the connection is torn down during processing of disconnect():
    106  *
    107  *	- soisdisconnecting() is called and,
    108  *	- soisdisconnected() is called when the connection to the peer
    109  *	  is totally severed.
    110  *
    111  *	The semantics of these routines are such that connectionless protocols
    112  *	can call soisconnected() and soisdisconnected() only, bypassing the
    113  *	in-progress calls when setting up a ``connection'' takes no time.
    114  *
    115  *	From the passive side, a socket is created with two queues of sockets:
    116  *
    117  *	- so_q0 (0) for partial connections (i.e. connections in progress)
    118  *	- so_q (1) for connections already made and awaiting user acceptance.
    119  *
    120  *	As a protocol is preparing incoming connections, it creates a socket
    121  *	structure queued on so_q0 by calling sonewconn().  When the connection
    122  *	is established, soisconnected() is called, and transfers the
    123  *	socket structure to so_q, making it available to accept().
    124  *
    125  *	If a socket is closed with sockets on either so_q0 or so_q, these
    126  *	sockets are dropped.
    127  *
    128  * Locking rules and assumptions:
    129  *
    130  * o socket::so_lock can change on the fly.  The low level routines used
    131  *   to lock sockets are aware of this.  When so_lock is acquired, the
    132  *   routine locking must check to see if so_lock still points to the
    133  *   lock that was acquired.  If so_lock has changed in the meantime, the
    134  *   now irrelevant lock that was acquired must be dropped and the lock
    135  *   operation retried.  Although not proven here, this is completely safe
    136  *   on a multiprocessor system, even with relaxed memory ordering, given
    137  *   the next two rules:
    138  *
    139  * o In order to mutate so_lock, the lock pointed to by the current value
    140  *   of so_lock must be held: i.e., the socket must be held locked by the
    141  *   changing thread.  The thread must issue membar_release() to prevent
    142  *   memory accesses being reordered, and can set so_lock to the desired
    143  *   value.  If the lock pointed to by the new value of so_lock is not
    144  *   held by the changing thread, the socket must then be considered
    145  *   unlocked.
    146  *
    147  * o If so_lock is mutated, and the previous lock referred to by so_lock
    148  *   could still be visible to other threads in the system (e.g. via file
    149  *   descriptor or protocol-internal reference), then the old lock must
    150  *   remain valid until the socket and/or protocol control block has been
    151  *   torn down.
    152  *
    153  * o If a socket has a non-NULL so_head value (i.e. is in the process of
    154  *   connecting), then locking the socket must also lock the socket pointed
    155  *   to by so_head: their lock pointers must match.
    156  *
    157  * o If a socket has connections in progress (so_q, so_q0 not empty) then
    158  *   locking the socket must also lock the sockets attached to both queues.
    159  *   Again, their lock pointers must match.
    160  *
    161  * o Beyond the initial lock assignment in socreate(), assigning locks to
    162  *   sockets is the responsibility of the individual protocols / protocol
    163  *   domains.
    164  */
    165 
    166 static pool_cache_t	socket_cache;
    167 u_long			sb_max = SB_MAX;/* maximum socket buffer size */
    168 static u_long		sb_max_adj;	/* adjusted sb_max */
    169 
    170 void
    171 soisconnecting(struct socket *so)
    172 {
    173 
    174 	KASSERT(solocked(so));
    175 
    176 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
    177 	so->so_state |= SS_ISCONNECTING;
    178 }
    179 
    180 void
    181 soisconnected(struct socket *so)
    182 {
    183 	struct socket	*head;
    184 
    185 	head = so->so_head;
    186 
    187 	KASSERT(solocked(so));
    188 	KASSERT(head == NULL || solocked2(so, head));
    189 
    190 	so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
    191 	so->so_state |= SS_ISCONNECTED;
    192 	if (head && so->so_onq == &head->so_q0) {
    193 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
    194 			/*
    195 			 * Re-enqueue and wake up any waiters, e.g.
    196 			 * processes blocking on accept().
    197 			 */
    198 			soqremque(so, 0);
    199 			soqinsque(head, so, 1);
    200 			sorwakeup(head);
    201 			cv_broadcast(&head->so_cv);
    202 		} else {
    203 			so->so_upcall =
    204 			    head->so_accf->so_accept_filter->accf_callback;
    205 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
    206 			so->so_rcv.sb_flags |= SB_UPCALL;
    207 			so->so_options &= ~SO_ACCEPTFILTER;
    208 			(*so->so_upcall)(so, so->so_upcallarg,
    209 					 POLLIN|POLLRDNORM, M_DONTWAIT);
    210 		}
    211 	} else {
    212 		cv_broadcast(&so->so_cv);
    213 		sorwakeup(so);
    214 		sowwakeup(so);
    215 	}
    216 }
    217 
    218 void
    219 soisdisconnecting(struct socket *so)
    220 {
    221 
    222 	KASSERT(solocked(so));
    223 
    224 	so->so_state &= ~SS_ISCONNECTING;
    225 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    226 	cv_broadcast(&so->so_cv);
    227 	sowwakeup(so);
    228 	sorwakeup(so);
    229 }
    230 
    231 void
    232 soisdisconnected(struct socket *so)
    233 {
    234 
    235 	KASSERT(solocked(so));
    236 
    237 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    238 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    239 	cv_broadcast(&so->so_cv);
    240 	sowwakeup(so);
    241 	sorwakeup(so);
    242 }
    243 
    244 void
    245 soinit2(void)
    246 {
    247 
    248 	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
    249 	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
    250 }
    251 
    252 /*
    253  * sonewconn: accept a new connection.
    254  *
    255  * When an attempt at a new connection is noted on a socket which accepts
    256  * connections, sonewconn(9) is called.  If the connection is possible
    257  * (subject to space constraints, etc) then we allocate a new structure,
    258  * properly linked into the data structure of the original socket.
    259  *
    260  * => If 'soready' is true, then socket will become ready for accept() i.e.
    261  *    inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
    262  * => May be called from soft-interrupt context.
    263  * => Listening socket should be locked.
    264  * => Returns the new socket locked.
    265  */
    266 struct socket *
    267 sonewconn(struct socket *head, bool soready)
    268 {
    269 	struct socket *so;
    270 	int soqueue, error;
    271 
    272 	KASSERT(solocked(head));
    273 
    274 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
    275 		/*
    276 		 * Listen queue overflow.  If there is an accept filter
    277 		 * active, pass through the oldest cxn it's handling.
    278 		 */
    279 		if (head->so_accf == NULL) {
    280 			return NULL;
    281 		} else {
    282 			struct socket *so2, *next;
    283 
    284 			/* Pass the oldest connection waiting in the
    285 			   accept filter */
    286 			for (so2 = TAILQ_FIRST(&head->so_q0);
    287 			     so2 != NULL; so2 = next) {
    288 				next = TAILQ_NEXT(so2, so_qe);
    289 				if (so2->so_upcall == NULL) {
    290 					continue;
    291 				}
    292 				so2->so_upcall = NULL;
    293 				so2->so_upcallarg = NULL;
    294 				so2->so_options &= ~SO_ACCEPTFILTER;
    295 				so2->so_rcv.sb_flags &= ~SB_UPCALL;
    296 				soisconnected(so2);
    297 				break;
    298 			}
    299 
    300 			/* If nothing was nudged out of the accept filter, bail
    301 			 * out; otherwise proceed allocating the socket. */
    302 			if (so2 == NULL) {
    303 				return NULL;
    304 			}
    305 		}
    306 	}
    307 	if ((head->so_options & SO_ACCEPTFILTER) != 0) {
    308 		soready = false;
    309 	}
    310 	soqueue = soready ? 1 : 0;
    311 
    312 	if ((so = soget(false)) == NULL) {
    313 		return NULL;
    314 	}
    315 	so->so_type = head->so_type;
    316 	so->so_options = head->so_options & ~SO_ACCEPTCONN;
    317 	so->so_linger = head->so_linger;
    318 	so->so_state = head->so_state | SS_NOFDREF;
    319 	so->so_proto = head->so_proto;
    320 	so->so_timeo = head->so_timeo;
    321 	so->so_pgid = head->so_pgid;
    322 	so->so_send = head->so_send;
    323 	so->so_receive = head->so_receive;
    324 	so->so_uidinfo = head->so_uidinfo;
    325 	so->so_egid = head->so_egid;
    326 	so->so_cpid = head->so_cpid;
    327 
    328 	/*
    329 	 * Share the lock with the listening-socket, it may get unshared
    330 	 * once the connection is complete.
    331 	 *
    332 	 * so_lock is stable while we hold the socket locked, so no
    333 	 * need for atomic_load_* here.
    334 	 */
    335 	mutex_obj_hold(head->so_lock);
    336 	so->so_lock = head->so_lock;
    337 
    338 	/*
    339 	 * Reserve the space for socket buffers.
    340 	 */
    341 #ifdef MBUFTRACE
    342 	so->so_mowner = head->so_mowner;
    343 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
    344 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
    345 #endif
    346 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
    347 		goto out;
    348 	}
    349 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
    350 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
    351 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
    352 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
    353 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
    354 	so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
    355 
    356 	/*
    357 	 * Finally, perform the protocol attach.  Note: a new socket
    358 	 * lock may be assigned at this point (if so, it will be held).
    359 	 */
    360 	error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
    361 	if (error) {
    362 out:
    363 		KASSERT(solocked(so));
    364 		KASSERT(so->so_accf == NULL);
    365 		soput(so);
    366 
    367 		/* Note: the listening socket shall stay locked. */
    368 		KASSERT(solocked(head));
    369 		return NULL;
    370 	}
    371 	KASSERT(solocked2(head, so));
    372 
    373 	/*
    374 	 * Insert into the queue.  If ready, update the connection status
    375 	 * and wake up any waiters, e.g. processes blocking on accept().
    376 	 */
    377 	soqinsque(head, so, soqueue);
    378 	if (soready) {
    379 		so->so_state |= SS_ISCONNECTED;
    380 		sorwakeup(head);
    381 		cv_broadcast(&head->so_cv);
    382 	}
    383 	return so;
    384 }
    385 
    386 struct socket *
    387 soget(bool waitok)
    388 {
    389 	struct socket *so;
    390 
    391 	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
    392 	if (__predict_false(so == NULL))
    393 		return (NULL);
    394 	memset(so, 0, sizeof(*so));
    395 	TAILQ_INIT(&so->so_q0);
    396 	TAILQ_INIT(&so->so_q);
    397 	cv_init(&so->so_cv, "socket");
    398 	cv_init(&so->so_rcv.sb_cv, "netio");
    399 	cv_init(&so->so_snd.sb_cv, "netio");
    400 	selinit(&so->so_rcv.sb_sel);
    401 	selinit(&so->so_snd.sb_sel);
    402 	so->so_rcv.sb_so = so;
    403 	so->so_snd.sb_so = so;
    404 	return so;
    405 }
    406 
    407 void
    408 soput(struct socket *so)
    409 {
    410 
    411 	KASSERT(!cv_has_waiters(&so->so_cv));
    412 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    413 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    414 	seldestroy(&so->so_rcv.sb_sel);
    415 	seldestroy(&so->so_snd.sb_sel);
    416 	mutex_obj_free(so->so_lock);
    417 	cv_destroy(&so->so_cv);
    418 	cv_destroy(&so->so_rcv.sb_cv);
    419 	cv_destroy(&so->so_snd.sb_cv);
    420 	pool_cache_put(socket_cache, so);
    421 }
    422 
    423 /*
    424  * soqinsque: insert socket of a new connection into the specified
    425  * accept queue of the listening socket (head).
    426  *
    427  *	q = 0: queue of partial connections
    428  *	q = 1: queue of incoming connections
    429  */
    430 void
    431 soqinsque(struct socket *head, struct socket *so, int q)
    432 {
    433 	KASSERT(q == 0 || q == 1);
    434 	KASSERT(solocked2(head, so));
    435 	KASSERT(so->so_onq == NULL);
    436 	KASSERT(so->so_head == NULL);
    437 
    438 	so->so_head = head;
    439 	if (q == 0) {
    440 		head->so_q0len++;
    441 		so->so_onq = &head->so_q0;
    442 	} else {
    443 		head->so_qlen++;
    444 		so->so_onq = &head->so_q;
    445 	}
    446 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    447 }
    448 
    449 /*
    450  * soqremque: remove socket from the specified queue.
    451  *
    452  * => Returns true if socket was removed from the specified queue.
    453  * => False if socket was not removed (because it was in other queue).
    454  */
    455 bool
    456 soqremque(struct socket *so, int q)
    457 {
    458 	struct socket *head = so->so_head;
    459 
    460 	KASSERT(q == 0 || q == 1);
    461 	KASSERT(solocked(so));
    462 	KASSERT(so->so_onq != NULL);
    463 	KASSERT(head != NULL);
    464 
    465 	if (q == 0) {
    466 		if (so->so_onq != &head->so_q0)
    467 			return false;
    468 		head->so_q0len--;
    469 	} else {
    470 		if (so->so_onq != &head->so_q)
    471 			return false;
    472 		head->so_qlen--;
    473 	}
    474 	KASSERT(solocked2(so, head));
    475 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    476 	so->so_onq = NULL;
    477 	so->so_head = NULL;
    478 	return true;
    479 }
    480 
    481 /*
    482  * socantsendmore: indicates that no more data will be sent on the
    483  * socket; it would normally be applied to a socket when the user
    484  * informs the system that no more data is to be sent, by the protocol
    485  * code (in case pr_shutdown()).
    486  */
    487 void
    488 socantsendmore(struct socket *so)
    489 {
    490 	KASSERT(solocked(so));
    491 
    492 	so->so_state |= SS_CANTSENDMORE;
    493 	sowwakeup(so);
    494 }
    495 
    496 /*
    497  * socantrcvmore(): indicates that no more data will be received and
    498  * will normally be applied to the socket by a protocol when it detects
    499  * that the peer will send no more data.  Data queued for reading in
    500  * the socket may yet be read.
    501  */
    502 void
    503 socantrcvmore(struct socket *so)
    504 {
    505 	KASSERT(solocked(so));
    506 
    507 	so->so_state |= SS_CANTRCVMORE;
    508 	sorwakeup(so);
    509 }
    510 
    511 /*
    512  * soroverflow(): indicates that data was attempted to be sent
    513  * but the receiving buffer overflowed.
    514  */
    515 void
    516 soroverflow(struct socket *so)
    517 {
    518 	KASSERT(solocked(so));
    519 
    520 	so->so_rcv.sb_overflowed++;
    521 	if (so->so_options & SO_RERROR)  {
    522 		so->so_rerror = SET_ERROR(ENOBUFS);
    523 		sorwakeup(so);
    524 	}
    525 }
    526 
    527 /*
    528  * Wait for data to arrive at/drain from a socket buffer.
    529  */
    530 int
    531 sbwait(struct sockbuf *sb)
    532 {
    533 	struct socket *so;
    534 	kmutex_t *lock;
    535 	int error;
    536 
    537 	so = sb->sb_so;
    538 
    539 	KASSERT(solocked(so));
    540 
    541 	sb->sb_flags |= SB_NOTIFY;
    542 	lock = so->so_lock;
    543 	if ((sb->sb_flags & SB_NOINTR) != 0)
    544 		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
    545 	else
    546 		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
    547 	if (__predict_false(lock != atomic_load_relaxed(&so->so_lock)))
    548 		solockretry(so, lock);
    549 	return error;
    550 }
    551 
    552 /*
    553  * Wakeup processes waiting on a socket buffer.
    554  * Do asynchronous notification via SIGIO
    555  * if the socket buffer has the SB_ASYNC flag set.
    556  */
    557 void
    558 sowakeup(struct socket *so, struct sockbuf *sb, int code)
    559 {
    560 	int band;
    561 
    562 	KASSERT(solocked(so));
    563 	KASSERT(sb->sb_so == so);
    564 
    565 	switch (code) {
    566 	case POLL_IN:
    567 		band = POLLIN|POLLRDNORM;
    568 		break;
    569 
    570 	case POLL_OUT:
    571 		band = POLLOUT|POLLWRNORM;
    572 		break;
    573 
    574 	case POLL_HUP:
    575 		band = POLLHUP;
    576 		break;
    577 
    578 	default:
    579 		band = 0;
    580 #ifdef DIAGNOSTIC
    581 		printf("bad siginfo code %d in socket notification.\n", code);
    582 #endif
    583 		break;
    584 	}
    585 
    586 	sb->sb_flags &= ~SB_NOTIFY;
    587 	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
    588 	cv_broadcast(&sb->sb_cv);
    589 	if (sb->sb_flags & SB_ASYNC)
    590 		fownsignal(so->so_pgid, SIGIO, code, band, so);
    591 	if (sb->sb_flags & SB_UPCALL)
    592 		(*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
    593 }
    594 
    595 /*
    596  * Reset a socket's lock pointer.  Wake all threads waiting on the
    597  * socket's condition variables so that they can restart their waits
    598  * using the new lock.  The existing lock must be held.
    599  *
    600  * Caller must have issued membar_release before this.
    601  */
    602 void
    603 solockreset(struct socket *so, kmutex_t *lock)
    604 {
    605 
    606 	KASSERT(solocked(so));
    607 
    608 	so->so_lock = lock;
    609 	cv_broadcast(&so->so_snd.sb_cv);
    610 	cv_broadcast(&so->so_rcv.sb_cv);
    611 	cv_broadcast(&so->so_cv);
    612 }
    613 
    614 /*
    615  * Socket buffer (struct sockbuf) utility routines.
    616  *
    617  * Each socket contains two socket buffers: one for sending data and
    618  * one for receiving data.  Each buffer contains a queue of mbufs,
    619  * information about the number of mbufs and amount of data in the
    620  * queue, and other fields allowing poll() statements and notification
    621  * on data availability to be implemented.
    622  *
    623  * Data stored in a socket buffer is maintained as a list of records.
    624  * Each record is a list of mbufs chained together with the m_next
    625  * field.  Records are chained together with the m_nextpkt field. The upper
    626  * level routine soreceive() expects the following conventions to be
    627  * observed when placing information in the receive buffer:
    628  *
    629  * 1. If the protocol requires each message be preceded by the sender's
    630  *    name, then a record containing that name must be present before
    631  *    any associated data (mbuf's must be of type MT_SONAME).
    632  * 2. If the protocol supports the exchange of ``access rights'' (really
    633  *    just additional data associated with the message), and there are
    634  *    ``rights'' to be received, then a record containing this data
    635  *    should be present (mbuf's must be of type MT_CONTROL).
    636  * 3. If a name or rights record exists, then it must be followed by
    637  *    a data record, perhaps of zero length.
    638  *
    639  * Before using a new socket structure it is first necessary to reserve
    640  * buffer space to the socket, by calling sbreserve().  This should commit
    641  * some of the available buffer space in the system buffer pool for the
    642  * socket (currently, it does nothing but enforce limits).  The space
    643  * should be released by calling sbrelease() when the socket is destroyed.
    644  */
    645 
    646 int
    647 sb_max_set(u_long new_sbmax)
    648 {
    649 	int s;
    650 
    651 	if (new_sbmax < (16 * 1024))
    652 		return SET_ERROR(EINVAL);
    653 
    654 	s = splsoftnet();
    655 	sb_max = new_sbmax;
    656 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
    657 	splx(s);
    658 
    659 	return (0);
    660 }
    661 
    662 int
    663 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    664 {
    665 	KASSERT(so->so_pcb == NULL || solocked(so));
    666 
    667 	/*
    668 	 * there's at least one application (a configure script of screen)
    669 	 * which expects a fifo is writable even if it has "some" bytes
    670 	 * in its buffer.
    671 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
    672 	 *
    673 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
    674 	 * we expect it's large enough for such applications.
    675 	 */
    676 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
    677 	u_long  hiwat = lowat + PIPE_BUF;
    678 
    679 	if (sndcc < hiwat)
    680 		sndcc = hiwat;
    681 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
    682 		goto bad;
    683 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
    684 		goto bad2;
    685 	if (so->so_rcv.sb_lowat == 0)
    686 		so->so_rcv.sb_lowat = 1;
    687 	if (so->so_snd.sb_lowat == 0)
    688 		so->so_snd.sb_lowat = lowat;
    689 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    690 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    691 	return (0);
    692  bad2:
    693 	sbrelease(&so->so_snd, so);
    694  bad:
    695 	return SET_ERROR(ENOBUFS);
    696 }
    697 
    698 /*
    699  * Allot mbufs to a sockbuf.
    700  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    701  * if buffering efficiency is near the normal case.
    702  */
    703 int
    704 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
    705 {
    706 	struct lwp *l = curlwp; /* XXX */
    707 	rlim_t maxcc;
    708 	struct uidinfo *uidinfo;
    709 
    710 	KASSERT(so->so_pcb == NULL || solocked(so));
    711 	KASSERT(sb->sb_so == so);
    712 	KASSERT(sb_max_adj != 0);
    713 
    714 	if (cc == 0 || cc > sb_max_adj)
    715 		return (0);
    716 
    717 	maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
    718 
    719 	uidinfo = so->so_uidinfo;
    720 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
    721 		return 0;
    722 	sb->sb_mbmax = uimin(cc * 2, sb_max);
    723 	if (sb->sb_lowat > sb->sb_hiwat)
    724 		sb->sb_lowat = sb->sb_hiwat;
    725 
    726 	return (1);
    727 }
    728 
    729 /*
    730  * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
    731  * that the socket is held locked here: see sorflush().
    732  */
    733 void
    734 sbrelease(struct sockbuf *sb, struct socket *so)
    735 {
    736 
    737 	KASSERT(sb->sb_so == so);
    738 
    739 	sbflush(sb);
    740 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
    741 	sb->sb_mbmax = 0;
    742 }
    743 
    744 /*
    745  * Routines to add and remove
    746  * data from an mbuf queue.
    747  *
    748  * The routines sbappend() or sbappendrecord() are normally called to
    749  * append new mbufs to a socket buffer, after checking that adequate
    750  * space is available, comparing the function sbspace() with the amount
    751  * of data to be added.  sbappendrecord() differs from sbappend() in
    752  * that data supplied is treated as the beginning of a new record.
    753  * To place a sender's address, optional access rights, and data in a
    754  * socket receive buffer, sbappendaddr() should be used.  To place
    755  * access rights and data in a socket receive buffer, sbappendrights()
    756  * should be used.  In either case, the new data begins a new record.
    757  * Note that unlike sbappend() and sbappendrecord(), these routines check
    758  * for the caller that there will be enough space to store the data.
    759  * Each fails if there is not enough space, or if it cannot find mbufs
    760  * to store additional information in.
    761  *
    762  * Reliable protocols may use the socket send buffer to hold data
    763  * awaiting acknowledgement.  Data is normally copied from a socket
    764  * send buffer in a protocol with m_copym for output to a peer,
    765  * and then removing the data from the socket buffer with sbdrop()
    766  * or sbdroprecord() when the data is acknowledged by the peer.
    767  */
    768 
    769 #ifdef SOCKBUF_DEBUG
    770 void
    771 sblastrecordchk(struct sockbuf *sb, const char *where)
    772 {
    773 	struct mbuf *m = sb->sb_mb;
    774 
    775 	KASSERT(solocked(sb->sb_so));
    776 
    777 	while (m && m->m_nextpkt)
    778 		m = m->m_nextpkt;
    779 
    780 	if (m != sb->sb_lastrecord) {
    781 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
    782 		    sb->sb_mb, sb->sb_lastrecord, m);
    783 		printf("packet chain:\n");
    784 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
    785 			printf("\t%p\n", m);
    786 		panic("sblastrecordchk from %s", where);
    787 	}
    788 }
    789 
    790 void
    791 sblastmbufchk(struct sockbuf *sb, const char *where)
    792 {
    793 	struct mbuf *m = sb->sb_mb;
    794 	struct mbuf *n;
    795 
    796 	KASSERT(solocked(sb->sb_so));
    797 
    798 	while (m && m->m_nextpkt)
    799 		m = m->m_nextpkt;
    800 
    801 	while (m && m->m_next)
    802 		m = m->m_next;
    803 
    804 	if (m != sb->sb_mbtail) {
    805 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
    806 		    sb->sb_mb, sb->sb_mbtail, m);
    807 		printf("packet tree:\n");
    808 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
    809 			printf("\t");
    810 			for (n = m; n != NULL; n = n->m_next)
    811 				printf("%p ", n);
    812 			printf("\n");
    813 		}
    814 		panic("sblastmbufchk from %s", where);
    815 	}
    816 }
    817 #endif /* SOCKBUF_DEBUG */
    818 
    819 /*
    820  * Link a chain of records onto a socket buffer
    821  */
    822 #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
    823 do {									\
    824 	if ((sb)->sb_lastrecord != NULL)				\
    825 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
    826 	else								\
    827 		(sb)->sb_mb = (m0);					\
    828 	(sb)->sb_lastrecord = (mlast);					\
    829 } while (/*CONSTCOND*/0)
    830 
    831 
    832 #define	SBLINKRECORD(sb, m0)						\
    833     SBLINKRECORDCHAIN(sb, m0, m0)
    834 
    835 /*
    836  * Append mbuf chain m to the last record in the
    837  * socket buffer sb.  The additional space associated
    838  * the mbuf chain is recorded in sb.  Empty mbufs are
    839  * discarded and mbufs are compacted where possible.
    840  */
    841 void
    842 sbappend(struct sockbuf *sb, struct mbuf *m)
    843 {
    844 	struct mbuf	*n;
    845 
    846 	KASSERT(solocked(sb->sb_so));
    847 
    848 	if (m == NULL)
    849 		return;
    850 
    851 #ifdef MBUFTRACE
    852 	m_claimm(m, sb->sb_mowner);
    853 #endif
    854 
    855 	SBLASTRECORDCHK(sb, "sbappend 1");
    856 
    857 	if ((n = sb->sb_lastrecord) != NULL) {
    858 		/*
    859 		 * XXX Would like to simply use sb_mbtail here, but
    860 		 * XXX I need to verify that I won't miss an EOR that
    861 		 * XXX way.
    862 		 */
    863 		do {
    864 			if (n->m_flags & M_EOR) {
    865 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    866 				return;
    867 			}
    868 		} while (n->m_next && (n = n->m_next));
    869 	} else {
    870 		/*
    871 		 * If this is the first record in the socket buffer, it's
    872 		 * also the last record.
    873 		 */
    874 		sb->sb_lastrecord = m;
    875 	}
    876 	sbcompress(sb, m, n);
    877 	SBLASTRECORDCHK(sb, "sbappend 2");
    878 }
    879 
    880 /*
    881  * This version of sbappend() should only be used when the caller
    882  * absolutely knows that there will never be more than one record
    883  * in the socket buffer, that is, a stream protocol (such as TCP).
    884  */
    885 void
    886 sbappendstream(struct sockbuf *sb, struct mbuf *m)
    887 {
    888 
    889 	KASSERT(solocked(sb->sb_so));
    890 	KDASSERT(m->m_nextpkt == NULL);
    891 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
    892 
    893 	SBLASTMBUFCHK(sb, __func__);
    894 
    895 #ifdef MBUFTRACE
    896 	m_claimm(m, sb->sb_mowner);
    897 #endif
    898 
    899 	sbcompress(sb, m, sb->sb_mbtail);
    900 
    901 	sb->sb_lastrecord = sb->sb_mb;
    902 	SBLASTRECORDCHK(sb, __func__);
    903 }
    904 
    905 #ifdef SOCKBUF_DEBUG
    906 void
    907 sbcheck(struct sockbuf *sb)
    908 {
    909 	struct mbuf	*m, *m2;
    910 	u_long		len, mbcnt;
    911 
    912 	KASSERT(solocked(sb->sb_so));
    913 
    914 	len = 0;
    915 	mbcnt = 0;
    916 	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
    917 		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
    918 			len += m2->m_len;
    919 			mbcnt += MSIZE;
    920 			if (m2->m_flags & M_EXT)
    921 				mbcnt += m2->m_ext.ext_size;
    922 			if (m2->m_nextpkt != NULL)
    923 				panic("sbcheck nextpkt");
    924 		}
    925 	}
    926 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    927 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
    928 		    mbcnt, sb->sb_mbcnt);
    929 		panic("sbcheck");
    930 	}
    931 }
    932 #endif
    933 
    934 /*
    935  * As above, except the mbuf chain
    936  * begins a new record.
    937  */
    938 void
    939 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    940 {
    941 	struct mbuf	*m;
    942 
    943 	KASSERT(solocked(sb->sb_so));
    944 
    945 	if (m0 == NULL)
    946 		return;
    947 
    948 #ifdef MBUFTRACE
    949 	m_claimm(m0, sb->sb_mowner);
    950 #endif
    951 	/*
    952 	 * Put the first mbuf on the queue.
    953 	 * Note this permits zero length records.
    954 	 */
    955 	sballoc(sb, m0);
    956 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
    957 	SBLINKRECORD(sb, m0);
    958 	m = m0->m_next;
    959 	m0->m_next = 0;
    960 	if (m && (m0->m_flags & M_EOR)) {
    961 		m0->m_flags &= ~M_EOR;
    962 		m->m_flags |= M_EOR;
    963 	}
    964 	sbcompress(sb, m, m0);
    965 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
    966 }
    967 
    968 /*
    969  * As above except that OOB data
    970  * is inserted at the beginning of the sockbuf,
    971  * but after any other OOB data.
    972  */
    973 void
    974 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    975 {
    976 	struct mbuf	*m, **mp;
    977 
    978 	KASSERT(solocked(sb->sb_so));
    979 
    980 	if (m0 == NULL)
    981 		return;
    982 
    983 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
    984 
    985 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    986 	    again:
    987 		switch (m->m_type) {
    988 
    989 		case MT_OOBDATA:
    990 			continue;		/* WANT next train */
    991 
    992 		case MT_CONTROL:
    993 			if ((m = m->m_next) != NULL)
    994 				goto again;	/* inspect THIS train further */
    995 		}
    996 		break;
    997 	}
    998 	/*
    999 	 * Put the first mbuf on the queue.
   1000 	 * Note this permits zero length records.
   1001 	 */
   1002 	sballoc(sb, m0);
   1003 	m0->m_nextpkt = *mp;
   1004 	if (*mp == NULL) {
   1005 		/* m0 is actually the new tail */
   1006 		sb->sb_lastrecord = m0;
   1007 	}
   1008 	*mp = m0;
   1009 	m = m0->m_next;
   1010 	m0->m_next = 0;
   1011 	if (m && (m0->m_flags & M_EOR)) {
   1012 		m0->m_flags &= ~M_EOR;
   1013 		m->m_flags |= M_EOR;
   1014 	}
   1015 	sbcompress(sb, m, m0);
   1016 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
   1017 }
   1018 
   1019 /*
   1020  * Append address and data, and optionally, control (ancillary) data
   1021  * to the receive queue of a socket.  If present,
   1022  * m0 must include a packet header with total length.
   1023  * Returns 0 if no space in sockbuf or insufficient mbufs.
   1024  */
   1025 int
   1026 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
   1027 	struct mbuf *control)
   1028 {
   1029 	struct mbuf	*m, *n, *nlast;
   1030 	int		space, len;
   1031 
   1032 	KASSERT(solocked(sb->sb_so));
   1033 
   1034 	space = asa->sa_len;
   1035 
   1036 	if (m0 != NULL) {
   1037 		if ((m0->m_flags & M_PKTHDR) == 0)
   1038 			panic("sbappendaddr");
   1039 		space += m0->m_pkthdr.len;
   1040 #ifdef MBUFTRACE
   1041 		m_claimm(m0, sb->sb_mowner);
   1042 #endif
   1043 	}
   1044 	for (n = control; n; n = n->m_next) {
   1045 		space += n->m_len;
   1046 		MCLAIM(n, sb->sb_mowner);
   1047 		if (n->m_next == NULL)	/* keep pointer to last control buf */
   1048 			break;
   1049 	}
   1050 	if (space > sbspace(sb))
   1051 		return (0);
   1052 	m = m_get(M_DONTWAIT, MT_SONAME);
   1053 	if (m == NULL)
   1054 		return (0);
   1055 	MCLAIM(m, sb->sb_mowner);
   1056 	/*
   1057 	 * XXX avoid 'comparison always true' warning which isn't easily
   1058 	 * avoided.
   1059 	 */
   1060 	len = asa->sa_len;
   1061 	if (len > MLEN) {
   1062 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
   1063 		if ((m->m_flags & M_EXT) == 0) {
   1064 			m_free(m);
   1065 			return (0);
   1066 		}
   1067 	}
   1068 	m->m_len = asa->sa_len;
   1069 	memcpy(mtod(m, void *), asa, asa->sa_len);
   1070 	if (n)
   1071 		n->m_next = m0;		/* concatenate data to control */
   1072 	else
   1073 		control = m0;
   1074 	m->m_next = control;
   1075 
   1076 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
   1077 
   1078 	for (n = m; n->m_next != NULL; n = n->m_next)
   1079 		sballoc(sb, n);
   1080 	sballoc(sb, n);
   1081 	nlast = n;
   1082 	SBLINKRECORD(sb, m);
   1083 
   1084 	sb->sb_mbtail = nlast;
   1085 	SBLASTMBUFCHK(sb, "sbappendaddr");
   1086 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
   1087 
   1088 	return (1);
   1089 }
   1090 
   1091 /*
   1092  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
   1093  * an mbuf chain.
   1094  */
   1095 static inline struct mbuf *
   1096 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
   1097 		   const struct sockaddr *asa)
   1098 {
   1099 	struct mbuf *m;
   1100 	const int salen = asa->sa_len;
   1101 
   1102 	KASSERT(solocked(sb->sb_so));
   1103 
   1104 	/* only the first in each chain need be a pkthdr */
   1105 	m = m_gethdr(M_DONTWAIT, MT_SONAME);
   1106 	if (m == NULL)
   1107 		return NULL;
   1108 	MCLAIM(m, sb->sb_mowner);
   1109 #ifdef notyet
   1110 	if (salen > MHLEN) {
   1111 		MEXTMALLOC(m, salen, M_NOWAIT);
   1112 		if ((m->m_flags & M_EXT) == 0) {
   1113 			m_free(m);
   1114 			return NULL;
   1115 		}
   1116 	}
   1117 #else
   1118 	KASSERT(salen <= MHLEN);
   1119 #endif
   1120 	m->m_len = salen;
   1121 	memcpy(mtod(m, void *), asa, salen);
   1122 	m->m_next = m0;
   1123 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
   1124 
   1125 	return m;
   1126 }
   1127 
   1128 int
   1129 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
   1130 		  struct mbuf *m0, int sbprio)
   1131 {
   1132 	struct mbuf *m, *n, *n0, *nlast;
   1133 	int error;
   1134 
   1135 	KASSERT(solocked(sb->sb_so));
   1136 
   1137 	/*
   1138 	 * XXX sbprio reserved for encoding priority of this* request:
   1139 	 *  SB_PRIO_NONE --> honour normal sb limits
   1140 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
   1141 	 *	take whole chain. Intended for large requests
   1142 	 *      that should be delivered atomically (all, or none).
   1143 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
   1144 	 *       over normal socket limits, for messages indicating
   1145 	 *       buffer overflow in earlier normal/lower-priority messages
   1146 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
   1147 	 *       Intended for  kernel-generated messages only.
   1148 	 *        Up to generator to avoid total mbuf resource exhaustion.
   1149 	 */
   1150 	(void)sbprio;
   1151 
   1152 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
   1153 		panic("sbappendaddrchain");
   1154 
   1155 #ifdef notyet
   1156 	space = sbspace(sb);
   1157 
   1158 	/*
   1159 	 * Enforce SB_PRIO_* limits as described above.
   1160 	 */
   1161 #endif
   1162 
   1163 	n0 = NULL;
   1164 	nlast = NULL;
   1165 	for (m = m0; m; m = m->m_nextpkt) {
   1166 		struct mbuf *np;
   1167 
   1168 #ifdef MBUFTRACE
   1169 		m_claimm(m, sb->sb_mowner);
   1170 #endif
   1171 
   1172 		/* Prepend sockaddr to this record (m) of input chain m0 */
   1173 		n = m_prepend_sockaddr(sb, m, asa);
   1174 		if (n == NULL) {
   1175 			error = SET_ERROR(ENOBUFS);
   1176 			goto bad;
   1177 		}
   1178 
   1179 		/* Append record (asa+m) to end of new chain n0 */
   1180 		if (n0 == NULL) {
   1181 			n0 = n;
   1182 		} else {
   1183 			nlast->m_nextpkt = n;
   1184 		}
   1185 		/* Keep track of last record on new chain */
   1186 		nlast = n;
   1187 
   1188 		for (np = n; np; np = np->m_next)
   1189 			sballoc(sb, np);
   1190 	}
   1191 
   1192 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
   1193 
   1194 	/* Drop the entire chain of (asa+m) records onto the socket */
   1195 	SBLINKRECORDCHAIN(sb, n0, nlast);
   1196 
   1197 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
   1198 
   1199 	for (m = nlast; m->m_next; m = m->m_next)
   1200 		;
   1201 	sb->sb_mbtail = m;
   1202 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
   1203 
   1204 	return (1);
   1205 
   1206 bad:
   1207 	/*
   1208 	 * On error, free the prepended addresses. For consistency
   1209 	 * with sbappendaddr(), leave it to our caller to free
   1210 	 * the input record chain passed to us as m0.
   1211 	 */
   1212 	while ((n = n0) != NULL) {
   1213 		struct mbuf *np;
   1214 
   1215 		/* Undo the sballoc() of this record */
   1216 		for (np = n; np; np = np->m_next)
   1217 			sbfree(sb, np);
   1218 
   1219 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
   1220 		np = m_free(n);		/* free prepended address (not data) */
   1221 	}
   1222 	return error;
   1223 }
   1224 
   1225 
   1226 int
   1227 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
   1228 {
   1229 	struct mbuf	*m, *mlast, *n;
   1230 	int		space;
   1231 
   1232 	KASSERT(solocked(sb->sb_so));
   1233 
   1234 	space = 0;
   1235 	if (control == NULL)
   1236 		panic("sbappendcontrol");
   1237 	for (m = control; ; m = m->m_next) {
   1238 		space += m->m_len;
   1239 		MCLAIM(m, sb->sb_mowner);
   1240 		if (m->m_next == NULL)
   1241 			break;
   1242 	}
   1243 	n = m;			/* save pointer to last control buffer */
   1244 	for (m = m0; m; m = m->m_next) {
   1245 		MCLAIM(m, sb->sb_mowner);
   1246 		space += m->m_len;
   1247 	}
   1248 	if (space > sbspace(sb))
   1249 		return (0);
   1250 	n->m_next = m0;			/* concatenate data to control */
   1251 
   1252 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
   1253 
   1254 	for (m = control; m->m_next != NULL; m = m->m_next)
   1255 		sballoc(sb, m);
   1256 	sballoc(sb, m);
   1257 	mlast = m;
   1258 	SBLINKRECORD(sb, control);
   1259 
   1260 	sb->sb_mbtail = mlast;
   1261 	SBLASTMBUFCHK(sb, "sbappendcontrol");
   1262 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
   1263 
   1264 	return (1);
   1265 }
   1266 
   1267 /*
   1268  * Compress mbuf chain m into the socket
   1269  * buffer sb following mbuf n.  If n
   1270  * is null, the buffer is presumed empty.
   1271  */
   1272 void
   1273 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
   1274 {
   1275 	int		eor;
   1276 	struct mbuf	*o;
   1277 
   1278 	KASSERT(solocked(sb->sb_so));
   1279 
   1280 	eor = 0;
   1281 	while (m) {
   1282 		eor |= m->m_flags & M_EOR;
   1283 		if (m->m_len == 0 &&
   1284 		    (eor == 0 ||
   1285 		     (((o = m->m_next) || (o = n)) &&
   1286 		      o->m_type == m->m_type))) {
   1287 			if (sb->sb_lastrecord == m)
   1288 				sb->sb_lastrecord = m->m_next;
   1289 			m = m_free(m);
   1290 			continue;
   1291 		}
   1292 		if (n && (n->m_flags & M_EOR) == 0 &&
   1293 		    /* M_TRAILINGSPACE() checks buffer writeability */
   1294 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
   1295 		    m->m_len <= M_TRAILINGSPACE(n) &&
   1296 		    n->m_type == m->m_type) {
   1297 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
   1298 			    (unsigned)m->m_len);
   1299 			n->m_len += m->m_len;
   1300 			sb->sb_cc += m->m_len;
   1301 			m = m_free(m);
   1302 			continue;
   1303 		}
   1304 		if (n)
   1305 			n->m_next = m;
   1306 		else
   1307 			sb->sb_mb = m;
   1308 		sb->sb_mbtail = m;
   1309 		sballoc(sb, m);
   1310 		n = m;
   1311 		m->m_flags &= ~M_EOR;
   1312 		m = m->m_next;
   1313 		n->m_next = 0;
   1314 	}
   1315 	if (eor) {
   1316 		if (n)
   1317 			n->m_flags |= eor;
   1318 		else
   1319 			printf("semi-panic: sbcompress\n");
   1320 	}
   1321 	SBLASTMBUFCHK(sb, __func__);
   1322 }
   1323 
   1324 /*
   1325  * Free all mbufs in a sockbuf.
   1326  * Check that all resources are reclaimed.
   1327  */
   1328 void
   1329 sbflush(struct sockbuf *sb)
   1330 {
   1331 
   1332 	KASSERT(solocked(sb->sb_so));
   1333 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
   1334 
   1335 	while (sb->sb_mbcnt)
   1336 		sbdrop(sb, (int)sb->sb_cc);
   1337 
   1338 	KASSERT(sb->sb_cc == 0);
   1339 	KASSERT(sb->sb_mb == NULL);
   1340 	KASSERT(sb->sb_mbtail == NULL);
   1341 	KASSERT(sb->sb_lastrecord == NULL);
   1342 }
   1343 
   1344 /*
   1345  * Drop data from (the front of) a sockbuf.
   1346  */
   1347 void
   1348 sbdrop(struct sockbuf *sb, int len)
   1349 {
   1350 	struct mbuf	*m, *next;
   1351 
   1352 	KASSERT(solocked(sb->sb_so));
   1353 
   1354 	next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
   1355 	while (len > 0) {
   1356 		if (m == NULL) {
   1357 			if (next == NULL)
   1358 				panic("sbdrop(%p,%d): cc=%lu",
   1359 				    sb, len, sb->sb_cc);
   1360 			m = next;
   1361 			next = m->m_nextpkt;
   1362 			continue;
   1363 		}
   1364 		if (m->m_len > len) {
   1365 			m->m_len -= len;
   1366 			m->m_data += len;
   1367 			sb->sb_cc -= len;
   1368 			break;
   1369 		}
   1370 		len -= m->m_len;
   1371 		sbfree(sb, m);
   1372 		m = m_free(m);
   1373 	}
   1374 	while (m && m->m_len == 0) {
   1375 		sbfree(sb, m);
   1376 		m = m_free(m);
   1377 	}
   1378 	if (m) {
   1379 		sb->sb_mb = m;
   1380 		m->m_nextpkt = next;
   1381 	} else
   1382 		sb->sb_mb = next;
   1383 	/*
   1384 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
   1385 	 * makes sure sb_lastrecord is up-to-date if we dropped
   1386 	 * part of the last record.
   1387 	 */
   1388 	m = sb->sb_mb;
   1389 	if (m == NULL) {
   1390 		sb->sb_mbtail = NULL;
   1391 		sb->sb_lastrecord = NULL;
   1392 	} else if (m->m_nextpkt == NULL)
   1393 		sb->sb_lastrecord = m;
   1394 }
   1395 
   1396 /*
   1397  * Drop a record off the front of a sockbuf
   1398  * and move the next record to the front.
   1399  */
   1400 void
   1401 sbdroprecord(struct sockbuf *sb)
   1402 {
   1403 	struct mbuf	*m, *mn;
   1404 
   1405 	KASSERT(solocked(sb->sb_so));
   1406 
   1407 	m = sb->sb_mb;
   1408 	if (m) {
   1409 		sb->sb_mb = m->m_nextpkt;
   1410 		do {
   1411 			sbfree(sb, m);
   1412 			mn = m_free(m);
   1413 		} while ((m = mn) != NULL);
   1414 	}
   1415 	SB_EMPTY_FIXUP(sb);
   1416 }
   1417 
   1418 /*
   1419  * Create a "control" mbuf containing the specified data
   1420  * with the specified type for presentation on a socket buffer.
   1421  */
   1422 struct mbuf *
   1423 sbcreatecontrol1(void **p, int size, int type, int level, int flags)
   1424 {
   1425 	struct cmsghdr	*cp;
   1426 	struct mbuf	*m;
   1427 	int space = CMSG_SPACE(size);
   1428 
   1429 	if ((flags & M_DONTWAIT) && space > MCLBYTES) {
   1430 		printf("%s: message too large %d\n", __func__, space);
   1431 		return NULL;
   1432 	}
   1433 
   1434 	if ((m = m_get(flags, MT_CONTROL)) == NULL)
   1435 		return NULL;
   1436 	if (space > MLEN) {
   1437 		if (space > MCLBYTES)
   1438 			MEXTMALLOC(m, space, M_WAITOK);
   1439 		else
   1440 			MCLGET(m, flags);
   1441 		if ((m->m_flags & M_EXT) == 0) {
   1442 			m_free(m);
   1443 			return NULL;
   1444 		}
   1445 	}
   1446 	cp = mtod(m, struct cmsghdr *);
   1447 	*p = CMSG_DATA(cp);
   1448 	m->m_len = space;
   1449 	cp->cmsg_len = CMSG_LEN(size);
   1450 	cp->cmsg_level = level;
   1451 	cp->cmsg_type = type;
   1452 
   1453 	memset(cp + 1, 0, CMSG_LEN(0) - sizeof(*cp));
   1454 	memset((uint8_t *)*p + size, 0, CMSG_ALIGN(size) - size);
   1455 
   1456 	return m;
   1457 }
   1458 
   1459 struct mbuf *
   1460 sbcreatecontrol(void *p, int size, int type, int level)
   1461 {
   1462 	struct mbuf *m;
   1463 	void *v;
   1464 
   1465 	m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
   1466 	if (m == NULL)
   1467 		return NULL;
   1468 	memcpy(v, p, size);
   1469 	return m;
   1470 }
   1471 
   1472 void
   1473 solockretry(struct socket *so, kmutex_t *lock)
   1474 {
   1475 
   1476 	while (lock != atomic_load_relaxed(&so->so_lock)) {
   1477 		mutex_exit(lock);
   1478 		lock = atomic_load_consume(&so->so_lock);
   1479 		mutex_enter(lock);
   1480 	}
   1481 }
   1482 
   1483 bool
   1484 solocked(const struct socket *so)
   1485 {
   1486 
   1487 	/*
   1488 	 * Used only for diagnostic assertions, so so_lock should be
   1489 	 * stable at this point, hence on need for atomic_load_*.
   1490 	 */
   1491 	return mutex_owned(so->so_lock);
   1492 }
   1493 
   1494 bool
   1495 solocked2(const struct socket *so1, const struct socket *so2)
   1496 {
   1497 	const kmutex_t *lock;
   1498 
   1499 	/*
   1500 	 * Used only for diagnostic assertions, so so_lock should be
   1501 	 * stable at this point, hence on need for atomic_load_*.
   1502 	 */
   1503 	lock = so1->so_lock;
   1504 	if (lock != so2->so_lock)
   1505 		return false;
   1506 	return mutex_owned(lock);
   1507 }
   1508 
   1509 /*
   1510  * sosetlock: assign a default lock to a new socket.
   1511  */
   1512 void
   1513 sosetlock(struct socket *so)
   1514 {
   1515 	if (so->so_lock == NULL) {
   1516 		kmutex_t *lock = softnet_lock;
   1517 
   1518 		so->so_lock = lock;
   1519 		mutex_obj_hold(lock);
   1520 		mutex_enter(lock);
   1521 	}
   1522 	KASSERT(solocked(so));
   1523 }
   1524 
   1525 /*
   1526  * Set lock on sockbuf sb; sleep if lock is already held.
   1527  * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
   1528  * Returns error without lock if sleep is interrupted.
   1529  */
   1530 int
   1531 sblock(struct sockbuf *sb, int wf)
   1532 {
   1533 	struct socket *so;
   1534 	kmutex_t *lock;
   1535 	int error;
   1536 
   1537 	KASSERT(solocked(sb->sb_so));
   1538 
   1539 	for (;;) {
   1540 		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
   1541 			sb->sb_flags |= SB_LOCK;
   1542 			return 0;
   1543 		}
   1544 		if (wf != M_WAITOK)
   1545 			return SET_ERROR(EWOULDBLOCK);
   1546 		so = sb->sb_so;
   1547 		lock = so->so_lock;
   1548 		if ((sb->sb_flags & SB_NOINTR) != 0) {
   1549 			cv_wait(&so->so_cv, lock);
   1550 			error = 0;
   1551 		} else
   1552 			error = cv_wait_sig(&so->so_cv, lock);
   1553 		if (__predict_false(lock != atomic_load_relaxed(&so->so_lock)))
   1554 			solockretry(so, lock);
   1555 		if (error != 0)
   1556 			return error;
   1557 	}
   1558 }
   1559 
   1560 void
   1561 sbunlock(struct sockbuf *sb)
   1562 {
   1563 	struct socket *so;
   1564 
   1565 	so = sb->sb_so;
   1566 
   1567 	KASSERT(solocked(so));
   1568 	KASSERT((sb->sb_flags & SB_LOCK) != 0);
   1569 
   1570 	sb->sb_flags &= ~SB_LOCK;
   1571 	cv_broadcast(&so->so_cv);
   1572 }
   1573 
   1574 int
   1575 sowait(struct socket *so, bool catch_p, int timo)
   1576 {
   1577 	kmutex_t *lock;
   1578 	int error;
   1579 
   1580 	KASSERT(solocked(so));
   1581 	KASSERT(catch_p || timo != 0);
   1582 
   1583 	lock = so->so_lock;
   1584 	if (catch_p)
   1585 		error = cv_timedwait_sig(&so->so_cv, lock, timo);
   1586 	else
   1587 		error = cv_timedwait(&so->so_cv, lock, timo);
   1588 	if (__predict_false(lock != atomic_load_relaxed(&so->so_lock)))
   1589 		solockretry(so, lock);
   1590 	return error;
   1591 }
   1592 
   1593 #ifdef DDB
   1594 
   1595 /*
   1596  * Currently, sofindproc() is used only from DDB. It could be used from others
   1597  * by using db_mutex_enter()
   1598  */
   1599 
   1600 static inline int
   1601 db_mutex_enter(kmutex_t *mtx)
   1602 {
   1603 	int rv;
   1604 
   1605 	if (!db_active) {
   1606 		mutex_enter(mtx);
   1607 		rv = 1;
   1608 	} else
   1609 		rv = mutex_tryenter(mtx);
   1610 
   1611 	return rv;
   1612 }
   1613 
   1614 int
   1615 sofindproc(struct socket *so, int all, void (*pr)(const char *, ...))
   1616 {
   1617 	proc_t *p;
   1618 	filedesc_t *fdp;
   1619 	fdtab_t *dt;
   1620 	fdfile_t *ff;
   1621 	file_t *fp = NULL;
   1622 	int found = 0;
   1623 	int i, t;
   1624 
   1625 	if (so == NULL)
   1626 		return 0;
   1627 
   1628 	t = db_mutex_enter(&proc_lock);
   1629 	if (!t) {
   1630 		pr("could not acquire proc_lock mutex\n");
   1631 		return 0;
   1632 	}
   1633 	PROCLIST_FOREACH(p, &allproc) {
   1634 		if (p->p_stat == SIDL)
   1635 			continue;
   1636 		fdp = p->p_fd;
   1637 		t = db_mutex_enter(&fdp->fd_lock);
   1638 		if (!t) {
   1639 			pr("could not acquire fd_lock mutex\n");
   1640 			continue;
   1641 		}
   1642 		dt = atomic_load_consume(&fdp->fd_dt);
   1643 		for (i = 0; i < dt->dt_nfiles; i++) {
   1644 			ff = dt->dt_ff[i];
   1645 			if (ff == NULL)
   1646 				continue;
   1647 
   1648 			fp = atomic_load_consume(&ff->ff_file);
   1649 			if (fp == NULL)
   1650 				continue;
   1651 
   1652 			t = db_mutex_enter(&fp->f_lock);
   1653 			if (!t) {
   1654 				pr("could not acquire f_lock mutex\n");
   1655 				continue;
   1656 			}
   1657 			if ((struct socket *)fp->f_data != so) {
   1658 				mutex_exit(&fp->f_lock);
   1659 				continue;
   1660 			}
   1661 			found++;
   1662 			if (pr)
   1663 				pr("socket %p: owner %s(pid=%d)\n",
   1664 				    so, p->p_comm, p->p_pid);
   1665 			mutex_exit(&fp->f_lock);
   1666 			if (all == 0)
   1667 				break;
   1668 		}
   1669 		mutex_exit(&fdp->fd_lock);
   1670 		if (all == 0 && found != 0)
   1671 			break;
   1672 	}
   1673 	mutex_exit(&proc_lock);
   1674 
   1675 	return found;
   1676 }
   1677 
   1678 void
   1679 socket_print(const char *modif, void (*pr)(const char *, ...))
   1680 {
   1681 	file_t *fp;
   1682 	struct socket *so;
   1683 	struct sockbuf *sb_snd, *sb_rcv;
   1684 	struct mbuf *m_rec, *m;
   1685 	bool opt_v = false;
   1686 	bool opt_m = false;
   1687 	bool opt_a = false;
   1688 	bool opt_p = false;
   1689 	int nrecs, nmbufs;
   1690 	char ch;
   1691 	const char *family;
   1692 
   1693 	while ( (ch = *(modif++)) != '\0') {
   1694 		switch (ch) {
   1695 		case 'v':
   1696 			opt_v = true;
   1697 			break;
   1698 		case 'm':
   1699 			opt_m = true;
   1700 			break;
   1701 		case 'a':
   1702 			opt_a = true;
   1703 			break;
   1704 		case 'p':
   1705 			opt_p = true;
   1706 			break;
   1707 		}
   1708 	}
   1709 	if (opt_v == false && pr)
   1710 		(pr)("Ignore empty sockets. use /v to print all.\n");
   1711 	if (opt_p == true && pr)
   1712 		(pr)("Don't search owner process.\n");
   1713 
   1714 	LIST_FOREACH(fp, &filehead, f_list) {
   1715 		if (fp->f_type != DTYPE_SOCKET)
   1716 			continue;
   1717 		so = (struct socket *)fp->f_data;
   1718 		if (so == NULL)
   1719 			continue;
   1720 
   1721 		if (so->so_proto->pr_domain->dom_family == AF_INET)
   1722 			family = "INET";
   1723 #ifdef INET6
   1724 		else if (so->so_proto->pr_domain->dom_family == AF_INET6)
   1725 			family = "INET6";
   1726 #endif
   1727 		else if (so->so_proto->pr_domain->dom_family == pseudo_AF_KEY)
   1728 			family = "KEY";
   1729 		else if (so->so_proto->pr_domain->dom_family == AF_ROUTE)
   1730 			family = "ROUTE";
   1731 		else
   1732 			continue;
   1733 
   1734 		sb_snd = &so->so_snd;
   1735 		sb_rcv = &so->so_rcv;
   1736 
   1737 		if (opt_v != true &&
   1738 		    sb_snd->sb_cc == 0 && sb_rcv->sb_cc == 0)
   1739 			continue;
   1740 
   1741 		pr("---SOCKET %p: type %s\n", so, family);
   1742 		if (opt_p != true)
   1743 			sofindproc(so, opt_a == true ? 1 : 0, pr);
   1744 		pr("Send Buffer Bytes: %d [bytes]\n", sb_snd->sb_cc);
   1745 		pr("Send Buffer mbufs:\n");
   1746 		m_rec = m = sb_snd->sb_mb;
   1747 		nrecs = 0;
   1748 		nmbufs = 0;
   1749 		while (m_rec) {
   1750 			nrecs++;
   1751 			if (opt_m == true)
   1752 				pr(" mbuf chain %p\n", m_rec);
   1753 			while (m) {
   1754 				nmbufs++;
   1755 				m = m->m_next;
   1756 			}
   1757 			m_rec = m = m_rec->m_nextpkt;
   1758 		}
   1759 		pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
   1760 
   1761 		pr("Recv Buffer Usage: %d [bytes]\n", sb_rcv->sb_cc);
   1762 		pr("Recv Buffer mbufs:\n");
   1763 		m_rec = m = sb_rcv->sb_mb;
   1764 		nrecs = 0;
   1765 		nmbufs = 0;
   1766 		while (m_rec) {
   1767 			nrecs++;
   1768 			if (opt_m == true)
   1769 				pr(" mbuf chain %p\n", m_rec);
   1770 			while (m) {
   1771 				nmbufs++;
   1772 				m = m->m_next;
   1773 			}
   1774 			m_rec = m = m_rec->m_nextpkt;
   1775 		}
   1776 		pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
   1777 	}
   1778 }
   1779 #endif /* DDB */
   1780