Home | History | Annotate | Line # | Download | only in kern
      1 /*	$NetBSD: sys_select.c,v 1.68 2024/11/26 23:10:15 khorben Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2007, 2008, 2009, 2010, 2019, 2020, 2023
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Andrew Doran and Mindaugas Rasiukevicius.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1989, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  * (c) UNIX System Laboratories, Inc.
     37  * All or some portions of this file are derived from material licensed
     38  * to the University of California by American Telephone and Telegraph
     39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     40  * the permission of UNIX System Laboratories, Inc.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. Neither the name of the University nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	@(#)sys_generic.c	8.9 (Berkeley) 2/14/95
     67  */
     68 
     69 /*
     70  * System calls of synchronous I/O multiplexing subsystem.
     71  *
     72  * Locking
     73  *
     74  * Two locks are used: <object-lock> and selcluster_t::sc_lock.
     75  *
     76  * The <object-lock> might be a device driver or another subsystem, e.g.
     77  * socket or pipe.  This lock is not exported, and thus invisible to this
     78  * subsystem.  Mainly, synchronisation between selrecord() and selnotify()
     79  * routines depends on this lock, as it will be described in the comments.
     80  *
     81  * Lock order
     82  *
     83  *	<object-lock> ->
     84  *		selcluster_t::sc_lock
     85  */
     86 
     87 #include <sys/cdefs.h>
     88 __KERNEL_RCSID(0, "$NetBSD: sys_select.c,v 1.68 2024/11/26 23:10:15 khorben Exp $");
     89 
     90 #include <sys/param.h>
     91 
     92 #include <sys/atomic.h>
     93 #include <sys/bitops.h>
     94 #include <sys/cpu.h>
     95 #include <sys/file.h>
     96 #include <sys/filedesc.h>
     97 #include <sys/kernel.h>
     98 #include <sys/lwp.h>
     99 #include <sys/mount.h>
    100 #include <sys/poll.h>
    101 #include <sys/proc.h>
    102 #include <sys/signalvar.h>
    103 #include <sys/sleepq.h>
    104 #include <sys/socketvar.h>
    105 #include <sys/socketvar.h>
    106 #include <sys/syncobj.h>
    107 #include <sys/syscallargs.h>
    108 #include <sys/sysctl.h>
    109 #include <sys/systm.h>
    110 #include <sys/uio.h>
    111 
    112 /* Flags for lwp::l_selflag. */
    113 #define	SEL_RESET	0	/* awoken, interrupted, or not yet polling */
    114 #define	SEL_SCANNING	1	/* polling descriptors */
    115 #define	SEL_BLOCKING	2	/* blocking and waiting for event */
    116 #define	SEL_EVENT	3	/* interrupted, events set directly */
    117 
    118 /*
    119  * Per-cluster state for select()/poll().  For a system with fewer
    120  * than 64 CPUs, this gives us per-CPU clusters.
    121  */
    122 #define	SELCLUSTERS	64
    123 #define	SELCLUSTERMASK	(SELCLUSTERS - 1)
    124 
    125 typedef struct selcluster {
    126 	kmutex_t	*sc_lock;
    127 	sleepq_t	sc_sleepq;
    128 	uint64_t	sc_mask;
    129 	int		sc_ncoll;
    130 } selcluster_t;
    131 
    132 static inline int	selscan(char *, const int, const size_t, register_t *);
    133 static inline int	pollscan(struct pollfd *, const int, register_t *);
    134 static void		selclear(void);
    135 
    136 static const int sel_flag[] = {
    137 	POLLRDNORM | POLLHUP | POLLERR,
    138 	POLLWRNORM | POLLHUP | POLLERR,
    139 	POLLRDBAND
    140 };
    141 
    142 /*
    143  * LWPs are woken using the sleep queue only due to a collision, the case
    144  * with the maximum Suck Factor.  Save the cost of sorting for named waiters
    145  * by inserting in LIFO order.  In the future it would be preferable to not
    146  * enqueue LWPs at all, unless subject to a collision.
    147  */
    148 syncobj_t select_sobj = {
    149 	.sobj_name	= "select",
    150 	.sobj_flag	= SOBJ_SLEEPQ_LIFO,
    151 	.sobj_boostpri  = PRI_KERNEL,
    152 	.sobj_unsleep	= sleepq_unsleep,
    153 	.sobj_changepri	= sleepq_changepri,
    154 	.sobj_lendpri	= sleepq_lendpri,
    155 	.sobj_owner	= syncobj_noowner,
    156 };
    157 
    158 static selcluster_t	*selcluster[SELCLUSTERS] __read_mostly;
    159 static int		direct_select __read_mostly = 0;
    160 
    161 /* Operations: either select() or poll(). */
    162 const char		selop_select[] = "select";
    163 const char		selop_poll[] = "poll";
    164 
    165 /*
    166  * Select system call.
    167  */
    168 int
    169 sys___pselect50(struct lwp *l, const struct sys___pselect50_args *uap,
    170     register_t *retval)
    171 {
    172 	/* {
    173 		syscallarg(int)				nd;
    174 		syscallarg(fd_set *)			in;
    175 		syscallarg(fd_set *)			ou;
    176 		syscallarg(fd_set *)			ex;
    177 		syscallarg(const struct timespec *)	ts;
    178 		syscallarg(sigset_t *)			mask;
    179 	} */
    180 	struct timespec	ats, *ts = NULL;
    181 	sigset_t	amask, *mask = NULL;
    182 	int		error;
    183 
    184 	if (SCARG(uap, ts)) {
    185 		error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
    186 		if (error)
    187 			return error;
    188 		ts = &ats;
    189 	}
    190 	if (SCARG(uap, mask) != NULL) {
    191 		error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
    192 		if (error)
    193 			return error;
    194 		mask = &amask;
    195 	}
    196 
    197 	return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
    198 	    SCARG(uap, ou), SCARG(uap, ex), ts, mask);
    199 }
    200 
    201 int
    202 sys___select50(struct lwp *l, const struct sys___select50_args *uap,
    203     register_t *retval)
    204 {
    205 	/* {
    206 		syscallarg(int)			nd;
    207 		syscallarg(fd_set *)		in;
    208 		syscallarg(fd_set *)		ou;
    209 		syscallarg(fd_set *)		ex;
    210 		syscallarg(struct timeval *)	tv;
    211 	} */
    212 	struct timeval atv;
    213 	struct timespec ats, *ts = NULL;
    214 	int error;
    215 
    216 	if (SCARG(uap, tv)) {
    217 		error = copyin(SCARG(uap, tv), (void *)&atv, sizeof(atv));
    218 		if (error)
    219 			return error;
    220 
    221 		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
    222 			return EINVAL;
    223 
    224 		TIMEVAL_TO_TIMESPEC(&atv, &ats);
    225 		ts = &ats;
    226 	}
    227 
    228 	return selcommon(retval, SCARG(uap, nd), SCARG(uap, in),
    229 	    SCARG(uap, ou), SCARG(uap, ex), ts, NULL);
    230 }
    231 
    232 /*
    233  * sel_do_scan: common code to perform the scan on descriptors.
    234  */
    235 static int
    236 sel_do_scan(const char *opname, void *fds, const int nf, const size_t ni,
    237     struct timespec *ts, sigset_t *mask, register_t *retval)
    238 {
    239 	lwp_t		* const l = curlwp;
    240 	selcluster_t	*sc;
    241 	kmutex_t	*lock;
    242 	struct timespec	sleepts;
    243 	int		error, timo;
    244 
    245 	timo = 0;
    246 	if (ts && inittimeleft(ts, &sleepts) == -1) {
    247 		return EINVAL;
    248 	}
    249 
    250 	if (__predict_false(mask))
    251 		sigsuspendsetup(l, mask);
    252 
    253 	/*
    254 	 * We may context switch during or at any time after picking a CPU
    255 	 * and cluster to associate with, but it doesn't matter.  In the
    256 	 * unlikely event we migrate elsewhere all we risk is a little lock
    257 	 * contention; correctness is not sacrificed.
    258 	 */
    259 	sc = curcpu()->ci_data.cpu_selcluster;
    260 	lock = sc->sc_lock;
    261 	l->l_selcluster = sc;
    262 
    263 	if (opname == selop_select) {
    264 		l->l_selbits = fds;
    265 		l->l_selni = ni;
    266 	} else {
    267 		l->l_selbits = NULL;
    268 	}
    269 
    270 	for (;;) {
    271 		int ncoll;
    272 
    273 		SLIST_INIT(&l->l_selwait);
    274 		l->l_selret = 0;
    275 
    276 		/*
    277 		 * No need to lock.  If this is overwritten by another value
    278 		 * while scanning, we will retry below.  We only need to see
    279 		 * exact state from the descriptors that we are about to poll,
    280 		 * and lock activity resulting from fo_poll is enough to
    281 		 * provide an up to date value for new polling activity.
    282 		 */
    283 		if (ts && (ts->tv_sec | ts->tv_nsec | direct_select) == 0) {
    284 			/* Non-blocking: no need for selrecord()/selclear() */
    285 			l->l_selflag = SEL_RESET;
    286 		} else {
    287 			l->l_selflag = SEL_SCANNING;
    288 		}
    289 		ncoll = sc->sc_ncoll;
    290 		membar_release();
    291 
    292 		if (opname == selop_select) {
    293 			error = selscan((char *)fds, nf, ni, retval);
    294 		} else {
    295 			error = pollscan((struct pollfd *)fds, nf, retval);
    296 		}
    297 		if (error || *retval)
    298 			break;
    299 		if (ts && (timo = gettimeleft(ts, &sleepts)) <= 0)
    300 			break;
    301 		/*
    302 		 * Acquire the lock and perform the (re)checks.  Note, if
    303 		 * collision has occurred, then our state does not matter,
    304 		 * as we must perform re-scan.  Therefore, check it first.
    305 		 */
    306 state_check:
    307 		mutex_spin_enter(lock);
    308 		if (__predict_false(sc->sc_ncoll != ncoll)) {
    309 			/* Collision: perform re-scan. */
    310 			mutex_spin_exit(lock);
    311 			selclear();
    312 			continue;
    313 		}
    314 		if (__predict_true(l->l_selflag == SEL_EVENT)) {
    315 			/* Events occurred, they are set directly. */
    316 			mutex_spin_exit(lock);
    317 			break;
    318 		}
    319 		if (__predict_true(l->l_selflag == SEL_RESET)) {
    320 			/* Events occurred, but re-scan is requested. */
    321 			mutex_spin_exit(lock);
    322 			selclear();
    323 			continue;
    324 		}
    325 		/* Nothing happen, therefore - sleep. */
    326 		l->l_selflag = SEL_BLOCKING;
    327 		KASSERT(l->l_blcnt == 0);
    328 		(void)sleepq_enter(&sc->sc_sleepq, l, lock);
    329 		sleepq_enqueue(&sc->sc_sleepq, sc, opname, &select_sobj, true);
    330 		error = sleepq_block(timo, true, &select_sobj, 0);
    331 		if (error != 0) {
    332 			break;
    333 		}
    334 		/* Awoken: need to check the state. */
    335 		goto state_check;
    336 	}
    337 	selclear();
    338 
    339 	/* Add direct events if any. */
    340 	if (l->l_selflag == SEL_EVENT) {
    341 		KASSERT(l->l_selret != 0);
    342 		*retval += l->l_selret;
    343 	}
    344 
    345 	if (__predict_false(mask))
    346 		sigsuspendteardown(l);
    347 
    348 	/* select and poll are not restarted after signals... */
    349 	if (error == ERESTART)
    350 		return EINTR;
    351 	if (error == EWOULDBLOCK)
    352 		return 0;
    353 	return error;
    354 }
    355 
    356 /* designed to be compatible with FD_SET() FD_ISSET() ... */
    357 static int
    358 anyset(void *p, size_t nbits)
    359 {
    360 	size_t nwords;
    361 	__fd_mask mask;
    362 	__fd_mask *f = (__fd_mask *)p;
    363 
    364 	nwords = nbits / __NFDBITS;
    365 
    366 	while (nwords-- > 0)
    367 		if (*f++ != 0)
    368 			return 1;
    369 
    370 	nbits &= __NFDMASK;
    371 	if (nbits != 0) {
    372 		mask = (1U << nbits) - 1;
    373 		if ((*f & mask) != 0)
    374 			return 1;
    375 	}
    376 	return 0;
    377 }
    378 
    379 int
    380 selcommon(register_t *retval, int nd, fd_set *u_in, fd_set *u_ou,
    381     fd_set *u_ex, struct timespec *ts, sigset_t *mask)
    382 {
    383 	char		smallbits[howmany(FD_SETSIZE, NFDBITS) *
    384 			    sizeof(fd_mask) * 6];
    385 	char 		*bits;
    386 	int		error, nf, fb, db;
    387 	size_t		ni;
    388 
    389 	if (nd < 0)
    390 		return EINVAL;
    391 
    392 	nf = atomic_load_consume(&curlwp->l_fd->fd_dt)->dt_nfiles;
    393 
    394 	/*
    395 	 * Don't allow absurdly large numbers of fds to be selected.
    396 	 * (used to silently truncate, naughty naughty, no more ...)
    397 	 *
    398 	 * The additional FD_SETSIZE allows for cases where the limit
    399 	 * is not a round binary number, but the fd_set wants to
    400 	 * include all the possible fds, as fd_sets are always
    401 	 * multiples of 32 bits (__NFDBITS extra would be enough).
    402 	 *
    403 	 * The first test handles the case where the res limit has been
    404 	 * set lower after some fds were opened, we always allow selecting
    405 	 * up to the highest currently open fd.
    406 	 */
    407 	if (nd > nf + FD_SETSIZE &&
    408 	    nd > curlwp->l_proc->p_rlimit[RLIMIT_NOFILE].rlim_max + FD_SETSIZE)
    409 		return EINVAL;
    410 
    411 	fb = howmany(nf, __NFDBITS);		/* how many fd_masks */
    412 	db = howmany(nd, __NFDBITS);
    413 
    414 	if (db > fb) {
    415 		size_t off;
    416 
    417 		/*
    418 		 * the application wants to supply more fd masks than can
    419 		 * possibly represent valid file descriptors.
    420 		 *
    421 		 * Check the excess fd_masks, if any bits are set in them
    422 		 * that must be an error (cannot represent valid fd).
    423 		 *
    424 		 * Supplying lots of extra cleared fd_masks is dumb,
    425 		 * but harmless, so allow that.
    426 		 */
    427 		ni = (db - fb) * sizeof(fd_mask);	/* excess bytes */
    428 		bits = smallbits;
    429 
    430 		/* skip over the valid fd_masks, those will be checked below */
    431 		off = howmany(nf, __NFDBITS) * sizeof(__fd_mask);
    432 
    433 		nd -= fb * NFDBITS;	/* the number of excess fds */
    434 
    435 #define checkbits(name, o, sz, fds)					\
    436 		do {							\
    437 		    if (u_ ## name != NULL) {				\
    438 			error = copyin((char *)u_ ## name + o,		\
    439 					bits, sz);			\
    440 			if (error)					\
    441 			    goto fail;					\
    442 			if (anyset(bits, (fds) ?			\
    443 				 (size_t)(fds) : CHAR_BIT * (sz))) {	\
    444 			    error = EBADF;				\
    445 			    goto fail;					\
    446 			}						\
    447 		    }							\
    448 		} while (0)
    449 
    450 		while (ni > sizeof(smallbits)) {
    451 			checkbits(in, off, sizeof(smallbits), 0);
    452 			checkbits(ou, off, sizeof(smallbits), 0);
    453 			checkbits(ex, off, sizeof(smallbits), 0);
    454 
    455 			off += sizeof(smallbits);
    456 			ni -= sizeof(smallbits);
    457 			nd -= sizeof(smallbits) * CHAR_BIT;
    458 		}
    459 		checkbits(in, off, ni, nd);
    460 		checkbits(ou, off, ni, nd);
    461 		checkbits(ex, off, ni, nd);
    462 #undef checkbits
    463 
    464 		db = fb;	/* now just check the plausible fds */
    465 		nd = db * __NFDBITS;
    466 	}
    467 
    468 	ni = db * sizeof(fd_mask);
    469 	if (ni * 6 > sizeof(smallbits))
    470 		bits = kmem_alloc(ni * 6, KM_SLEEP);
    471 	else
    472 		bits = smallbits;
    473 
    474 #define	getbits(name, x)						\
    475 	do {								\
    476 		if (u_ ## name) {					\
    477 			error = copyin(u_ ## name, bits + ni * x, ni);	\
    478 			if (error)					\
    479 				goto fail;				\
    480 		} else							\
    481 			memset(bits + ni * x, 0, ni);			\
    482 	} while (0)
    483 
    484 	getbits(in, 0);
    485 	getbits(ou, 1);
    486 	getbits(ex, 2);
    487 #undef	getbits
    488 
    489 	error = sel_do_scan(selop_select, bits, nd, ni, ts, mask, retval);
    490 
    491 #define copyback(name, x)						\
    492 		do {							\
    493 			if (error == 0 && u_ ## name != NULL)		\
    494 				error = copyout(bits + ni * x,		\
    495 						u_ ## name, ni);	\
    496 		} while (0)
    497 
    498 	copyback(in, 3);
    499 	copyback(ou, 4);
    500 	copyback(ex, 5);
    501 #undef copyback
    502 
    503  fail:
    504 	if (bits != smallbits)
    505 		kmem_free(bits, ni * 6);
    506 	return (error);
    507 }
    508 
    509 static inline int
    510 selscan(char *bits, const int nfd, const size_t ni, register_t *retval)
    511 {
    512 	fd_mask *ibitp, *obitp;
    513 	int msk, i, j, fd, n;
    514 	file_t *fp;
    515 	lwp_t *l;
    516 
    517 	ibitp = (fd_mask *)(bits + ni * 0);
    518 	obitp = (fd_mask *)(bits + ni * 3);
    519 	n = 0;
    520 	l = curlwp;
    521 
    522 	memset(obitp, 0, ni * 3);
    523 	for (msk = 0; msk < 3; msk++) {
    524 		for (i = 0; i < nfd; i += NFDBITS) {
    525 			fd_mask ibits, obits;
    526 
    527 			ibits = *ibitp;
    528 			obits = 0;
    529 			while ((j = ffs(ibits)) && (fd = i + --j) < nfd) {
    530 				ibits &= ~(1U << j);
    531 				if ((fp = fd_getfile(fd)) == NULL)
    532 					return (EBADF);
    533 				/*
    534 				 * Setup an argument to selrecord(), which is
    535 				 * a file descriptor number.
    536 				 */
    537 				l->l_selrec = fd;
    538 				if ((*fp->f_ops->fo_poll)(fp, sel_flag[msk])) {
    539 					if (!direct_select) {
    540 						/*
    541 						 * Have events: do nothing in
    542 						 * selrecord().
    543 						 */
    544 						l->l_selflag = SEL_RESET;
    545 					}
    546 					obits |= (1U << j);
    547 					n++;
    548 				}
    549 				fd_putfile(fd);
    550 			}
    551 			if (obits != 0) {
    552 				if (direct_select) {
    553 					kmutex_t *lock;
    554 					lock = l->l_selcluster->sc_lock;
    555 					mutex_spin_enter(lock);
    556 					*obitp |= obits;
    557 					mutex_spin_exit(lock);
    558 				} else {
    559 					*obitp |= obits;
    560 				}
    561 			}
    562 			ibitp++;
    563 			obitp++;
    564 		}
    565 	}
    566 	*retval = n;
    567 	return (0);
    568 }
    569 
    570 /*
    571  * Poll system call.
    572  */
    573 int
    574 sys_poll(struct lwp *l, const struct sys_poll_args *uap, register_t *retval)
    575 {
    576 	/* {
    577 		syscallarg(struct pollfd *)	fds;
    578 		syscallarg(u_int)		nfds;
    579 		syscallarg(int)			timeout;
    580 	} */
    581 	struct timespec	ats, *ts = NULL;
    582 
    583 	if (SCARG(uap, timeout) != INFTIM) {
    584 		ats.tv_sec = SCARG(uap, timeout) / 1000;
    585 		ats.tv_nsec = (SCARG(uap, timeout) % 1000) * 1000000;
    586 		ts = &ats;
    587 	}
    588 
    589 	return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, NULL);
    590 }
    591 
    592 /*
    593  * Poll system call.
    594  */
    595 int
    596 sys___pollts50(struct lwp *l, const struct sys___pollts50_args *uap,
    597     register_t *retval)
    598 {
    599 	/* {
    600 		syscallarg(struct pollfd *)		fds;
    601 		syscallarg(u_int)			nfds;
    602 		syscallarg(const struct timespec *)	ts;
    603 		syscallarg(const sigset_t *)		mask;
    604 	} */
    605 	struct timespec	ats, *ts = NULL;
    606 	sigset_t	amask, *mask = NULL;
    607 	int		error;
    608 
    609 	if (SCARG(uap, ts)) {
    610 		error = copyin(SCARG(uap, ts), &ats, sizeof(ats));
    611 		if (error)
    612 			return error;
    613 		ts = &ats;
    614 	}
    615 	if (SCARG(uap, mask)) {
    616 		error = copyin(SCARG(uap, mask), &amask, sizeof(amask));
    617 		if (error)
    618 			return error;
    619 		mask = &amask;
    620 	}
    621 
    622 	return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds), ts, mask);
    623 }
    624 
    625 int
    626 pollcommon(register_t *retval, struct pollfd *u_fds, u_int nfds,
    627     struct timespec *ts, sigset_t *mask)
    628 {
    629 	struct pollfd	smallfds[32];
    630 	struct pollfd	*fds;
    631 	int		error;
    632 	size_t		ni;
    633 
    634 	if (nfds > curlwp->l_proc->p_rlimit[RLIMIT_NOFILE].rlim_max + 1000) {
    635 		/*
    636 		 * Prevent userland from causing over-allocation.
    637 		 * Raising the default limit too high can still cause
    638 		 * a lot of memory to be allocated, but this also means
    639 		 * that the file descriptor array will also be large.
    640 		 *
    641 		 * To reduce the memory requirements here, we could
    642 		 * process the 'fds' array in chunks, but that
    643 		 * is a lot of code that isn't normally useful.
    644 		 * (Or just move the copyin/out into pollscan().)
    645 		 *
    646 		 * Historically the code silently truncated 'fds' to
    647 		 * dt_nfiles entries - but that does cause issues.
    648 		 *
    649 		 * Using the max limit equivalent to sysctl
    650 		 * kern.maxfiles is the moral equivalent of OPEN_MAX
    651 		 * as specified by POSIX.
    652 		 *
    653 		 * We add a slop of 1000 in case the resource limit was
    654 		 * changed after opening descriptors or the same descriptor
    655 		 * was specified more than once.
    656 		 */
    657 		return EINVAL;
    658 	}
    659 	ni = nfds * sizeof(struct pollfd);
    660 	if (ni > sizeof(smallfds))
    661 		fds = kmem_alloc(ni, KM_SLEEP);
    662 	else
    663 		fds = smallfds;
    664 
    665 	error = copyin(u_fds, fds, ni);
    666 	if (error)
    667 		goto fail;
    668 
    669 	error = sel_do_scan(selop_poll, fds, nfds, ni, ts, mask, retval);
    670 	if (error == 0)
    671 		error = copyout(fds, u_fds, ni);
    672  fail:
    673 	if (fds != smallfds)
    674 		kmem_free(fds, ni);
    675 	return (error);
    676 }
    677 
    678 static inline int
    679 pollscan(struct pollfd *fds, const int nfd, register_t *retval)
    680 {
    681 	file_t *fp;
    682 	int i, n = 0, revents;
    683 
    684 	for (i = 0; i < nfd; i++, fds++) {
    685 		fds->revents = 0;
    686 		if (fds->fd < 0) {
    687 			revents = 0;
    688 		} else if ((fp = fd_getfile(fds->fd)) == NULL) {
    689 			revents = POLLNVAL;
    690 		} else {
    691 			/*
    692 			 * Perform poll: registers select request or returns
    693 			 * the events which are set.  Setup an argument for
    694 			 * selrecord(), which is a pointer to struct pollfd.
    695 			 */
    696 			curlwp->l_selrec = (uintptr_t)fds;
    697 			revents = (*fp->f_ops->fo_poll)(fp,
    698 			    fds->events | POLLERR | POLLHUP);
    699 			fd_putfile(fds->fd);
    700 		}
    701 		if (revents) {
    702 			if (!direct_select)  {
    703 				/* Have events: do nothing in selrecord(). */
    704 				curlwp->l_selflag = SEL_RESET;
    705 			}
    706 			fds->revents = revents;
    707 			n++;
    708 		}
    709 	}
    710 	*retval = n;
    711 	return (0);
    712 }
    713 
    714 int
    715 seltrue(dev_t dev, int events, lwp_t *l)
    716 {
    717 
    718 	return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
    719 }
    720 
    721 /*
    722  * Record a select request.  Concurrency issues:
    723  *
    724  * The caller holds the same lock across calls to selrecord() and
    725  * selnotify(), so we don't need to consider a concurrent wakeup
    726  * while in this routine.
    727  *
    728  * The only activity we need to guard against is selclear(), called by
    729  * another thread that is exiting sel_do_scan().
    730  * `sel_lwp' can only become non-NULL while the caller's lock is held,
    731  * so it cannot become non-NULL due to a change made by another thread
    732  * while we are in this routine.  It can only become _NULL_ due to a
    733  * call to selclear().
    734  *
    735  * If it is non-NULL and != selector there is the potential for
    736  * selclear() to be called by another thread.  If either of those
    737  * conditions are true, we're not interested in touching the `named
    738  * waiter' part of the selinfo record because we need to record a
    739  * collision.  Hence there is no need for additional locking in this
    740  * routine.
    741  */
    742 void
    743 selrecord(lwp_t *selector, struct selinfo *sip)
    744 {
    745 	selcluster_t *sc;
    746 	lwp_t *other;
    747 
    748 	KASSERT(selector == curlwp);
    749 
    750 	sc = selector->l_selcluster;
    751 	other = sip->sel_lwp;
    752 
    753 	if (selector->l_selflag == SEL_RESET) {
    754 		/* 0. We're not going to block - will poll again if needed. */
    755 	} else if (other == selector) {
    756 		/* 1. We (selector) already claimed to be the first LWP. */
    757 		KASSERT(sip->sel_cluster == sc);
    758 	} else if (other == NULL) {
    759 		/*
    760 		 * 2. No first LWP, therefore we (selector) are the first.
    761 		 *
    762 		 * There may be unnamed waiters (collisions).  Issue a memory
    763 		 * barrier to ensure that we access sel_lwp (above) before
    764 		 * other fields - this guards against a call to selclear().
    765 		 */
    766 		membar_acquire();
    767 		sip->sel_lwp = selector;
    768 		SLIST_INSERT_HEAD(&selector->l_selwait, sip, sel_chain);
    769 		/* Copy the argument, which is for selnotify(). */
    770 		sip->sel_fdinfo = selector->l_selrec;
    771 		/* Replace selinfo's lock with the chosen cluster's lock. */
    772 		sip->sel_cluster = sc;
    773 	} else {
    774 		/* 3. Multiple waiters: record a collision. */
    775 		sip->sel_collision |= sc->sc_mask;
    776 		KASSERT(sip->sel_cluster != NULL);
    777 	}
    778 }
    779 
    780 /*
    781  * Record a knote.
    782  *
    783  * The caller holds the same lock as for selrecord().
    784  */
    785 void
    786 selrecord_knote(struct selinfo *sip, struct knote *kn)
    787 {
    788 	klist_insert(&sip->sel_klist, kn);
    789 }
    790 
    791 /*
    792  * Remove a knote.
    793  *
    794  * The caller holds the same lock as for selrecord().
    795  *
    796  * Returns true if the last knote was removed and the list
    797  * is now empty.
    798  */
    799 bool
    800 selremove_knote(struct selinfo *sip, struct knote *kn)
    801 {
    802 	return klist_remove(&sip->sel_klist, kn);
    803 }
    804 
    805 /*
    806  * sel_setevents: a helper function for selnotify(), to set the events
    807  * for LWP sleeping in selcommon() or pollcommon().
    808  */
    809 static inline bool
    810 sel_setevents(lwp_t *l, struct selinfo *sip, const int events)
    811 {
    812 	const int oflag = l->l_selflag;
    813 	int ret = 0;
    814 
    815 	/*
    816 	 * If we require re-scan or it was required by somebody else,
    817 	 * then just (re)set SEL_RESET and return.
    818 	 */
    819 	if (__predict_false(events == 0 || oflag == SEL_RESET)) {
    820 		l->l_selflag = SEL_RESET;
    821 		return true;
    822 	}
    823 	/*
    824 	 * Direct set.  Note: select state of LWP is locked.  First,
    825 	 * determine whether it is selcommon() or pollcommon().
    826 	 */
    827 	if (l->l_selbits != NULL) {
    828 		const size_t ni = l->l_selni;
    829 		fd_mask *fds = (fd_mask *)l->l_selbits;
    830 		fd_mask *ofds = (fd_mask *)((char *)fds + ni * 3);
    831 		const int fd = sip->sel_fdinfo, fbit = 1 << (fd & __NFDMASK);
    832 		const int idx = fd >> __NFDSHIFT;
    833 		int n;
    834 
    835 		for (n = 0; n < 3; n++) {
    836 			if ((fds[idx] & fbit) != 0 &&
    837 			    (ofds[idx] & fbit) == 0 &&
    838 			    (sel_flag[n] & events)) {
    839 				ofds[idx] |= fbit;
    840 				ret++;
    841 			}
    842 			fds = (fd_mask *)((char *)fds + ni);
    843 			ofds = (fd_mask *)((char *)ofds + ni);
    844 		}
    845 	} else {
    846 		struct pollfd *pfd = (void *)sip->sel_fdinfo;
    847 		int revents = events & (pfd->events | POLLERR | POLLHUP);
    848 
    849 		if (revents) {
    850 			if (pfd->revents == 0)
    851 				ret = 1;
    852 			pfd->revents |= revents;
    853 		}
    854 	}
    855 	/* Check whether there are any events to return. */
    856 	if (!ret) {
    857 		return false;
    858 	}
    859 	/* Indicate direct set and note the event (cluster lock is held). */
    860 	l->l_selflag = SEL_EVENT;
    861 	l->l_selret += ret;
    862 	return true;
    863 }
    864 
    865 /*
    866  * Do a wakeup when a selectable event occurs.  Concurrency issues:
    867  *
    868  * As per selrecord(), the caller's object lock is held.  If there
    869  * is a named waiter, we must acquire the associated selcluster's lock
    870  * in order to synchronize with selclear() and pollers going to sleep
    871  * in sel_do_scan().
    872  *
    873  * sip->sel_cluser cannot change at this point, as it is only changed
    874  * in selrecord(), and concurrent calls to selrecord() are locked
    875  * out by the caller.
    876  */
    877 void
    878 selnotify(struct selinfo *sip, int events, long knhint)
    879 {
    880 	selcluster_t *sc;
    881 	uint64_t mask;
    882 	int index, oflag;
    883 	lwp_t *l;
    884 	kmutex_t *lock;
    885 
    886 	KNOTE(&sip->sel_klist, knhint);
    887 
    888 	if (sip->sel_lwp != NULL) {
    889 		/* One named LWP is waiting. */
    890 		sc = sip->sel_cluster;
    891 		lock = sc->sc_lock;
    892 		mutex_spin_enter(lock);
    893 		/* Still there? */
    894 		if (sip->sel_lwp != NULL) {
    895 			/*
    896 			 * Set the events for our LWP and indicate that.
    897 			 * Otherwise, request for a full re-scan.
    898 			 */
    899 			l = sip->sel_lwp;
    900 			oflag = l->l_selflag;
    901 
    902 			if (!direct_select) {
    903 				l->l_selflag = SEL_RESET;
    904 			} else if (!sel_setevents(l, sip, events)) {
    905 				/* No events to return. */
    906 				mutex_spin_exit(lock);
    907 				return;
    908 			}
    909 
    910 			/*
    911 			 * If thread is sleeping, wake it up.  If it's not
    912 			 * yet asleep, it will notice the change in state
    913 			 * and will re-poll the descriptors.
    914 			 */
    915 			if (oflag == SEL_BLOCKING && l->l_mutex == lock) {
    916 				KASSERT(l->l_wchan == sc);
    917 				sleepq_remove(l->l_sleepq, l, true);
    918 			}
    919 		}
    920 		mutex_spin_exit(lock);
    921 	}
    922 
    923 	if ((mask = sip->sel_collision) != 0) {
    924 		/*
    925 		 * There was a collision (multiple waiters): we must
    926 		 * inform all potentially interested waiters.
    927 		 */
    928 		sip->sel_collision = 0;
    929 		do {
    930 			index = ffs64(mask) - 1;
    931 			mask ^= __BIT(index);
    932 			sc = selcluster[index];
    933 			lock = sc->sc_lock;
    934 			mutex_spin_enter(lock);
    935 			sc->sc_ncoll++;
    936 			sleepq_wake(&sc->sc_sleepq, sc, (u_int)-1, lock);
    937 		} while (__predict_false(mask != 0));
    938 	}
    939 }
    940 
    941 /*
    942  * Remove an LWP from all objects that it is waiting for.  Concurrency
    943  * issues:
    944  *
    945  * The object owner's (e.g. device driver) lock is not held here.  Calls
    946  * can be made to selrecord() and we do not synchronize against those
    947  * directly using locks.  However, we use `sel_lwp' to lock out changes.
    948  * Before clearing it we must use memory barriers to ensure that we can
    949  * safely traverse the list of selinfo records.
    950  */
    951 static void
    952 selclear(void)
    953 {
    954 	struct selinfo *sip, *next;
    955 	selcluster_t *sc;
    956 	lwp_t *l;
    957 	kmutex_t *lock;
    958 
    959 	l = curlwp;
    960 	sc = l->l_selcluster;
    961 	lock = sc->sc_lock;
    962 
    963 	/*
    964 	 * If the request was non-blocking, or we found events on the first
    965 	 * descriptor, there will be no need to clear anything - avoid
    966 	 * taking the lock.
    967 	 */
    968 	if (SLIST_EMPTY(&l->l_selwait)) {
    969 		return;
    970 	}
    971 
    972 	mutex_spin_enter(lock);
    973 	for (sip = SLIST_FIRST(&l->l_selwait); sip != NULL; sip = next) {
    974 		KASSERT(sip->sel_lwp == l);
    975 		KASSERT(sip->sel_cluster == l->l_selcluster);
    976 
    977 		/*
    978 		 * Read link to next selinfo record, if any.
    979 		 * It's no longer safe to touch `sip' after clearing
    980 		 * `sel_lwp', so ensure that the read of `sel_chain'
    981 		 * completes before the clearing of sel_lwp becomes
    982 		 * globally visible.
    983 		 */
    984 		next = SLIST_NEXT(sip, sel_chain);
    985 		/* Release the record for another named waiter to use. */
    986 		atomic_store_release(&sip->sel_lwp, NULL);
    987 	}
    988 	mutex_spin_exit(lock);
    989 }
    990 
    991 /*
    992  * Initialize the select/poll system calls.  Called once for each
    993  * CPU in the system, as they are attached.
    994  */
    995 void
    996 selsysinit(struct cpu_info *ci)
    997 {
    998 	selcluster_t *sc;
    999 	u_int index;
   1000 
   1001 	/* If already a cluster in place for this bit, re-use. */
   1002 	index = cpu_index(ci) & SELCLUSTERMASK;
   1003 	sc = selcluster[index];
   1004 	if (sc == NULL) {
   1005 		sc = kmem_alloc(roundup2(sizeof(selcluster_t),
   1006 		    coherency_unit) + coherency_unit, KM_SLEEP);
   1007 		sc = (void *)roundup2((uintptr_t)sc, coherency_unit);
   1008 		sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
   1009 		sleepq_init(&sc->sc_sleepq);
   1010 		sc->sc_ncoll = 0;
   1011 		sc->sc_mask = __BIT(index);
   1012 		selcluster[index] = sc;
   1013 	}
   1014 	ci->ci_data.cpu_selcluster = sc;
   1015 }
   1016 
   1017 /*
   1018  * Initialize a selinfo record.
   1019  */
   1020 void
   1021 selinit(struct selinfo *sip)
   1022 {
   1023 
   1024 	memset(sip, 0, sizeof(*sip));
   1025 	klist_init(&sip->sel_klist);
   1026 }
   1027 
   1028 /*
   1029  * Destroy a selinfo record.  The owning object must not gain new
   1030  * references while this is in progress: all activity on the record
   1031  * must be stopped.
   1032  *
   1033  * Concurrency issues: we only need guard against a call to selclear()
   1034  * by a thread exiting sel_do_scan().  The caller has prevented further
   1035  * references being made to the selinfo record via selrecord(), and it
   1036  * will not call selnotify() again.
   1037  */
   1038 void
   1039 seldestroy(struct selinfo *sip)
   1040 {
   1041 	selcluster_t *sc;
   1042 	kmutex_t *lock;
   1043 	lwp_t *l;
   1044 
   1045 	klist_fini(&sip->sel_klist);
   1046 
   1047 	if (sip->sel_lwp == NULL)
   1048 		return;
   1049 
   1050 	/*
   1051 	 * Lock out selclear().  The selcluster pointer can't change while
   1052 	 * we are here since it is only ever changed in selrecord(),
   1053 	 * and that will not be entered again for this record because
   1054 	 * it is dying.
   1055 	 */
   1056 	KASSERT(sip->sel_cluster != NULL);
   1057 	sc = sip->sel_cluster;
   1058 	lock = sc->sc_lock;
   1059 	mutex_spin_enter(lock);
   1060 	if ((l = sip->sel_lwp) != NULL) {
   1061 		/*
   1062 		 * This should rarely happen, so although SLIST_REMOVE()
   1063 		 * is slow, using it here is not a problem.
   1064 		 */
   1065 		KASSERT(l->l_selcluster == sc);
   1066 		SLIST_REMOVE(&l->l_selwait, sip, selinfo, sel_chain);
   1067 		sip->sel_lwp = NULL;
   1068 	}
   1069 	mutex_spin_exit(lock);
   1070 }
   1071 
   1072 /*
   1073  * System control nodes.
   1074  */
   1075 SYSCTL_SETUP(sysctl_select_setup, "sysctl select setup")
   1076 {
   1077 
   1078 	sysctl_createv(clog, 0, NULL, NULL,
   1079 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1080 		CTLTYPE_INT, "direct_select",
   1081 		SYSCTL_DESCR("Enable/disable direct select (for testing)"),
   1082 		NULL, 0, &direct_select, 0,
   1083 		CTL_KERN, CTL_CREATE, CTL_EOL);
   1084 }
   1085