Home | History | Annotate | Line # | Download | only in uvm
      1 /*	$NetBSD: uvm_swap.c,v 1.215 2026/02/13 19:16:41 kre Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  *
     28  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     29  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.215 2026/02/13 19:16:41 kre Exp $");
     34 
     35 #include "opt_uvmhist.h"
     36 #include "opt_compat_netbsd.h"
     37 #include "opt_ddb.h"
     38 #include "opt_vmswap.h"
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/atomic.h>
     43 #include <sys/buf.h>
     44 #include <sys/bufq.h>
     45 #include <sys/conf.h>
     46 #include <sys/cprng.h>
     47 #include <sys/proc.h>
     48 #include <sys/namei.h>
     49 #include <sys/disklabel.h>
     50 #include <sys/errno.h>
     51 #include <sys/kernel.h>
     52 #include <sys/vnode.h>
     53 #include <sys/file.h>
     54 #include <sys/vmem.h>
     55 #include <sys/blist.h>
     56 #include <sys/mount.h>
     57 #include <sys/pool.h>
     58 #include <sys/kmem.h>
     59 #include <sys/syscallargs.h>
     60 #include <sys/swap.h>
     61 #include <sys/kauth.h>
     62 #include <sys/sysctl.h>
     63 #include <sys/workqueue.h>
     64 
     65 #include <uvm/uvm.h>
     66 
     67 #include <miscfs/specfs/specdev.h>
     68 
     69 #include <crypto/aes/aes.h>
     70 #include <crypto/aes/aes_cbc.h>
     71 
     72 /*
     73  * uvm_swap.c: manage configuration and i/o to swap space.
     74  */
     75 
     76 /*
     77  * swap space is managed in the following way:
     78  *
     79  * each swap partition or file is described by a "swapdev" structure.
     80  * each "swapdev" structure contains a "swapent" structure which contains
     81  * information that is passed up to the user (via system calls).
     82  *
     83  * each swap partition is assigned a "priority" (int) which controls
     84  * swap partition usage.
     85  *
     86  * the system maintains a global data structure describing all swap
     87  * partitions/files.   there is a sorted LIST of "swappri" structures
     88  * which describe "swapdev"'s at that priority.   this LIST is headed
     89  * by the "swap_priority" global var.    each "swappri" contains a
     90  * TAILQ of "swapdev" structures at that priority.
     91  *
     92  * locking:
     93  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
     94  *    system call and prevents the swap priority list from changing
     95  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     96  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
     97  *    structures including the priority list, the swapdev structures,
     98  *    and the swapmap arena.
     99  *
    100  * each swap device has the following info:
    101  *  - swap device in use (could be disabled, preventing future use)
    102  *  - swap enabled (allows new allocations on swap)
    103  *  - map info in /dev/drum
    104  *  - vnode pointer
    105  * for swap files only:
    106  *  - block size
    107  *  - max byte count in buffer
    108  *  - buffer
    109  *
    110  * userland controls and configures swap with the swapctl(2) system call.
    111  * the sys_swapctl performs the following operations:
    112  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    113  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    114  *	(passed in via "arg") of a size passed in via "misc" ... we load
    115  *	the current swap config into the array. The actual work is done
    116  *	in the uvm_swap_stats() function.
    117  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    118  *	priority in "misc", start swapping on it.
    119  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    120  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    121  *	"misc")
    122  */
    123 
    124 /*
    125  * swapdev: describes a single swap partition/file
    126  *
    127  * note the following should be true:
    128  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    129  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    130  */
    131 struct swapdev {
    132 	dev_t			swd_dev;	/* device id */
    133 	int			swd_flags;	/* flags:inuse/enable/fake */
    134 	int			swd_priority;	/* our priority */
    135 	int			swd_nblks;	/* blocks in this device */
    136 	char			*swd_path;	/* saved pathname of device */
    137 	int			swd_pathlen;	/* length of pathname */
    138 	int			swd_npages;	/* #pages we can use */
    139 	int			swd_npginuse;	/* #pages in use */
    140 	int			swd_npgbad;	/* #pages bad */
    141 	int			swd_drumoffset;	/* page0 offset in drum */
    142 	int			swd_drumsize;	/* #pages in drum */
    143 	blist_t			swd_blist;	/* blist for this swapdev */
    144 	struct vnode		*swd_vp;	/* backing vnode */
    145 	TAILQ_ENTRY(swapdev)	swd_next;	/* priority tailq */
    146 
    147 	int			swd_bsize;	/* blocksize (bytes) */
    148 	int			swd_maxactive;	/* max active i/o reqs */
    149 	struct bufq_state	*swd_tab;	/* buffer list */
    150 	int			swd_active;	/* number of active buffers */
    151 
    152 	volatile uint32_t	*swd_encmap;	/* bitmap of encrypted slots */
    153 	struct aesenc		swd_enckey;	/* AES key expanded for enc */
    154 	struct aesdec		swd_deckey;	/* AES key expanded for dec */
    155 	bool			swd_encinit;	/* true if keys initialized */
    156 };
    157 
    158 /*
    159  * swap device priority entry; the list is kept sorted on `spi_priority'.
    160  */
    161 struct swappri {
    162 	int			spi_priority;     /* priority */
    163 	TAILQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    164 	/* tailq of swapdevs at this priority */
    165 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    166 };
    167 
    168 /*
    169  * The following two structures are used to keep track of data transfers
    170  * on swap devices associated with regular files.
    171  * NOTE: this code is more or less a copy of vnd.c; we use the same
    172  * structure names here to ease porting..
    173  */
    174 struct vndxfer {
    175 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    176 	struct swapdev	*vx_sdp;
    177 	int		vx_error;
    178 	int		vx_pending;	/* # of pending aux buffers */
    179 	int		vx_flags;
    180 #define VX_BUSY		1
    181 #define VX_DEAD		2
    182 };
    183 
    184 struct vndbuf {
    185 	struct buf	vb_buf;
    186 	struct vndxfer	*vb_xfer;
    187 };
    188 
    189 /*
    190  * We keep a of pool vndbuf's and vndxfer structures.
    191  */
    192 static struct pool vndxfer_pool, vndbuf_pool;
    193 
    194 /*
    195  * local variables
    196  */
    197 static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
    198 
    199 /* list of all active swap devices [by priority] */
    200 LIST_HEAD(swap_priority, swappri);
    201 static struct swap_priority swap_priority;
    202 
    203 /* locks */
    204 static kmutex_t uvm_swap_data_lock __cacheline_aligned;
    205 static krwlock_t swap_syscall_lock;
    206 bool uvm_swap_init_done = false;
    207 
    208 /* workqueue and use counter for swap to regular files */
    209 static int sw_reg_count = 0;
    210 static struct workqueue *sw_reg_workqueue;
    211 
    212 /* tuneables */
    213 u_int uvm_swapisfull_factor = 99;
    214 #if VMSWAP_DEFAULT_PLAINTEXT
    215 bool uvm_swap_encrypt = false;
    216 #else
    217 bool uvm_swap_encrypt = true;
    218 #endif
    219 
    220 /*
    221  * prototypes
    222  */
    223 static struct swapdev	*swapdrum_getsdp(int);
    224 
    225 static struct swapdev	*swaplist_find(struct vnode *, bool);
    226 static void		 swaplist_insert(struct swapdev *,
    227 					 struct swappri *, int);
    228 static void		 swaplist_trim(void);
    229 
    230 static int swap_on(struct lwp *, struct swapdev *);
    231 static int swap_off(struct lwp *, struct swapdev *);
    232 
    233 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    234 static void sw_reg_biodone(struct buf *);
    235 static void sw_reg_iodone(struct work *wk, void *dummy);
    236 static void sw_reg_start(struct swapdev *);
    237 
    238 static int uvm_swap_io(struct vm_page **, int, int, int);
    239 
    240 static void uvm_swap_genkey(struct swapdev *);
    241 static void uvm_swap_encryptpage(struct swapdev *, void *, int);
    242 static void uvm_swap_decryptpage(struct swapdev *, void *, int);
    243 
    244 static size_t
    245 encmap_size(size_t npages)
    246 {
    247 	struct swapdev *sdp;
    248 	const size_t bytesperword = sizeof(sdp->swd_encmap[0]);
    249 	const size_t bitsperword = NBBY * bytesperword;
    250 	const size_t nbits = npages; /* one bit for each page */
    251 	const size_t nwords = howmany(nbits, bitsperword);
    252 	const size_t nbytes = nwords * bytesperword;
    253 
    254 	return nbytes;
    255 }
    256 
    257 /*
    258  * uvm_swap_init: init the swap system data structures and locks
    259  *
    260  * => called at boot time from init_main.c after the filesystems
    261  *	are brought up (which happens after uvm_init())
    262  */
    263 void
    264 uvm_swap_init(void)
    265 {
    266 	UVMHIST_FUNC(__func__);
    267 
    268 	UVMHIST_CALLED(pdhist);
    269 	/*
    270 	 * first, init the swap list, its counter, and its lock.
    271 	 * then get a handle on the vnode for /dev/drum by using
    272 	 * the its dev_t number ("swapdev", from MD conf.c).
    273 	 */
    274 
    275 	LIST_INIT(&swap_priority);
    276 	uvmexp.nswapdev = 0;
    277 	rw_init(&swap_syscall_lock);
    278 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    279 
    280 	if (bdevvp(swapdev, &swapdev_vp))
    281 		panic("%s: can't get vnode for swap device", __func__);
    282 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
    283 		panic("%s: can't lock swap device", __func__);
    284 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
    285 		panic("%s: can't open swap device", __func__);
    286 	VOP_UNLOCK(swapdev_vp);
    287 
    288 	/*
    289 	 * create swap block resource map to map /dev/drum.   the range
    290 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    291 	 * that block 0 is reserved (used to indicate an allocation
    292 	 * failure, or no allocation).
    293 	 */
    294 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
    295 	    VM_NOSLEEP, IPL_NONE);
    296 	if (swapmap == 0) {
    297 		panic("%s: vmem_create failed", __func__);
    298 	}
    299 
    300 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
    301 	    NULL, IPL_BIO);
    302 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
    303 	    NULL, IPL_BIO);
    304 
    305 	uvm_swap_init_done = true;
    306 
    307 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    308 }
    309 
    310 /*
    311  * swaplist functions: functions that operate on the list of swap
    312  * devices on the system.
    313  */
    314 
    315 /*
    316  * swaplist_insert: insert swap device "sdp" into the global list
    317  *
    318  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    319  * => caller must provide a newly allocated swappri structure (we will
    320  *	FREE it if we don't need it... this it to prevent allocation
    321  *	blocking here while adding swap)
    322  */
    323 static void
    324 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    325 {
    326 	struct swappri *spp, *pspp;
    327 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
    328 
    329 	KASSERT(rw_write_held(&swap_syscall_lock));
    330 	KASSERT(mutex_owned(&uvm_swap_data_lock));
    331 
    332 	/*
    333 	 * find entry at or after which to insert the new device.
    334 	 */
    335 	pspp = NULL;
    336 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    337 		if (priority <= spp->spi_priority)
    338 			break;
    339 		pspp = spp;
    340 	}
    341 
    342 	/*
    343 	 * new priority?
    344 	 */
    345 	if (spp == NULL || spp->spi_priority != priority) {
    346 		spp = newspp;  /* use newspp! */
    347 		UVMHIST_LOG(pdhist, "created new swappri = %jd",
    348 			    priority, 0, 0, 0);
    349 
    350 		spp->spi_priority = priority;
    351 		TAILQ_INIT(&spp->spi_swapdev);
    352 
    353 		if (pspp)
    354 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    355 		else
    356 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    357 	} else {
    358 	  	/* we don't need a new priority structure, free it */
    359 		kmem_free(newspp, sizeof(*newspp));
    360 	}
    361 
    362 	/*
    363 	 * priority found (or created).   now insert on the priority's
    364 	 * tailq list and bump the total number of swapdevs.
    365 	 */
    366 	sdp->swd_priority = priority;
    367 	TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    368 	uvmexp.nswapdev++;
    369 }
    370 
    371 /*
    372  * swaplist_find: find and optionally remove a swap device from the
    373  *	global list.
    374  *
    375  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    376  * => we return the swapdev we found (and removed)
    377  */
    378 static struct swapdev *
    379 swaplist_find(struct vnode *vp, bool remove)
    380 {
    381 	struct swapdev *sdp;
    382 	struct swappri *spp;
    383 
    384 	KASSERT(rw_lock_held(&swap_syscall_lock));
    385 	KASSERT(remove ? rw_write_held(&swap_syscall_lock) : 1);
    386 	KASSERT(mutex_owned(&uvm_swap_data_lock));
    387 
    388 	/*
    389 	 * search the lists for the requested vp
    390 	 */
    391 
    392 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    393 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    394 			if (sdp->swd_vp == vp) {
    395 				if (remove) {
    396 					TAILQ_REMOVE(&spp->spi_swapdev,
    397 					    sdp, swd_next);
    398 					uvmexp.nswapdev--;
    399 				}
    400 				return(sdp);
    401 			}
    402 		}
    403 	}
    404 	return (NULL);
    405 }
    406 
    407 /*
    408  * swaplist_trim: scan priority list for empty priority entries and kill
    409  *	them.
    410  *
    411  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    412  */
    413 static void
    414 swaplist_trim(void)
    415 {
    416 	struct swappri *spp, *nextspp;
    417 
    418 	KASSERT(rw_write_held(&swap_syscall_lock));
    419 	KASSERT(mutex_owned(&uvm_swap_data_lock));
    420 
    421 	LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
    422 		if (!TAILQ_EMPTY(&spp->spi_swapdev))
    423 			continue;
    424 		LIST_REMOVE(spp, spi_swappri);
    425 		kmem_free(spp, sizeof(*spp));
    426 	}
    427 }
    428 
    429 /*
    430  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    431  *	to the "swapdev" that maps that section of the drum.
    432  *
    433  * => each swapdev takes one big contig chunk of the drum
    434  * => caller must hold uvm_swap_data_lock
    435  */
    436 static struct swapdev *
    437 swapdrum_getsdp(int pgno)
    438 {
    439 	struct swapdev *sdp;
    440 	struct swappri *spp;
    441 
    442 	KASSERT(mutex_owned(&uvm_swap_data_lock));
    443 
    444 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    445 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    446 			if (sdp->swd_flags & SWF_FAKE)
    447 				continue;
    448 			if (pgno >= sdp->swd_drumoffset &&
    449 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    450 				return sdp;
    451 			}
    452 		}
    453 	}
    454 	return NULL;
    455 }
    456 
    457 /*
    458  * swapdrum_sdp_is: true iff the swap device for pgno is sdp
    459  *
    460  * => for use in positive assertions only; result is not stable
    461  */
    462 static bool __debugused
    463 swapdrum_sdp_is(int pgno, struct swapdev *sdp)
    464 {
    465 	bool result;
    466 
    467 	mutex_enter(&uvm_swap_data_lock);
    468 	result = swapdrum_getsdp(pgno) == sdp;
    469 	mutex_exit(&uvm_swap_data_lock);
    470 
    471 	return result;
    472 }
    473 
    474 void swapsys_lock(krw_t op)
    475 {
    476 	rw_enter(&swap_syscall_lock, op);
    477 }
    478 
    479 void swapsys_unlock(void)
    480 {
    481 	rw_exit(&swap_syscall_lock);
    482 }
    483 
    484 static void
    485 swapent_cvt(struct swapent *se, const struct swapdev *sdp, int inuse)
    486 {
    487 	se->se_dev = sdp->swd_dev;
    488 	se->se_flags = sdp->swd_flags;
    489 	se->se_nblks = sdp->swd_nblks;
    490 	se->se_inuse = inuse;
    491 	se->se_priority = sdp->swd_priority;
    492 	KASSERT(sdp->swd_pathlen < sizeof(se->se_path));
    493 	strcpy(se->se_path, sdp->swd_path);
    494 }
    495 
    496 int (*uvm_swap_stats13)(const struct sys_swapctl_args *, register_t *) =
    497     (void *)enosys;
    498 int (*uvm_swap_stats50)(const struct sys_swapctl_args *, register_t *) =
    499     (void *)enosys;
    500 
    501 /*
    502  * sys_swapctl: main entry point for swapctl(2) system call
    503  * 	[with three helper functions: swap_on, swap_off and uvm_swap_stats]
    504  */
    505 int
    506 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap,
    507    register_t *retval)
    508 {
    509 	/* {
    510 		syscallarg(int) cmd;
    511 		syscallarg(void *) arg;
    512 		syscallarg(int) misc;
    513 	} */
    514 	struct vnode *vp;
    515 	struct nameidata nd;
    516 	struct swappri *spp;
    517 	struct swapdev *sdp;
    518 #define SWAP_PATH_MAX (PATH_MAX + 1)
    519 	char	*userpath;
    520 	size_t	len = 0;
    521 	int	error;
    522 	int	priority;
    523 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
    524 
    525 	/*
    526 	 * we handle the non-priv NSWAP and STATS request first.
    527 	 *
    528 	 * SWAP_NSWAP: return number of config'd swap devices
    529 	 * [can also be obtained with uvmexp sysctl]
    530 	 */
    531 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    532 		const int nswapdev = uvmexp.nswapdev;
    533 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%jd", nswapdev,
    534 		    0, 0, 0);
    535 		*retval = nswapdev;
    536 		return 0;
    537 	}
    538 
    539 	userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
    540 
    541 	/*
    542 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    543 	 */
    544 	rw_enter(&swap_syscall_lock, RW_WRITER);
    545 
    546 	/*
    547 	 * SWAP_STATS: get stats on current # of configured swap devs
    548 	 *
    549 	 * note that the swap_priority list can't change as long
    550 	 * as we are holding the swap_syscall_lock.  we don't want
    551 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
    552 	 * copyout() and we don't want to be holding that lock then!
    553 	 */
    554 	switch (SCARG(uap, cmd)) {
    555 	case SWAP_STATS13:
    556 		error = (*uvm_swap_stats13)(uap, retval);
    557 		goto out;
    558 	case SWAP_STATS50:
    559 		error = (*uvm_swap_stats50)(uap, retval);
    560 		goto out;
    561 	case SWAP_STATS:
    562 		error = uvm_swap_stats(SCARG(uap, arg), SCARG(uap, misc),
    563 		    NULL, sizeof(struct swapent), retval);
    564 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    565 		goto out;
    566 
    567 	case SWAP_GETDUMPDEV:
    568 		error = copyout(&dumpdev, SCARG(uap, arg), sizeof(dumpdev));
    569 		goto out;
    570 	default:
    571 		break;
    572 	}
    573 
    574 	/*
    575 	 * all other requests require superuser privs.   verify.
    576 	 */
    577 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
    578 	    0, NULL, NULL, NULL)))
    579 		goto out;
    580 
    581 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
    582 		/* drop the current dump device */
    583 		dumpdev = NODEV;
    584 		dumpcdev = NODEV;
    585 		cpu_dumpconf();
    586 		goto out;
    587 	}
    588 
    589 	/*
    590 	 * at this point we expect a path name in arg.   we will
    591 	 * use namei() to gain a vnode reference (vref), and lock
    592 	 * the vnode (VOP_LOCK).
    593 	 *
    594 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    595 	 * miniroot)
    596 	 */
    597 	if (SCARG(uap, arg) == NULL) {
    598 		vp = rootvp;		/* miniroot */
    599 		vref(vp);
    600 		if (vn_lock(vp, LK_EXCLUSIVE)) {
    601 			vrele(vp);
    602 			error = EBUSY;
    603 			goto out;
    604 		}
    605 		if (SCARG(uap, cmd) == SWAP_ON &&
    606 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
    607 			panic("swapctl: miniroot copy failed");
    608 	} else {
    609 		struct pathbuf *pb;
    610 
    611 		/*
    612 		 * This used to allow copying in one extra byte
    613 		 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
    614 		 * This was completely pointless because if anyone
    615 		 * used that extra byte namei would fail with
    616 		 * ENAMETOOLONG anyway, so I've removed the excess
    617 		 * logic. - dholland 20100215
    618 		 */
    619 
    620 		error = pathbuf_copyin(SCARG(uap, arg), &pb);
    621 		if (error) {
    622 			goto out;
    623 		}
    624 		if (SCARG(uap, cmd) == SWAP_ON) {
    625 			/* get a copy of the string */
    626 			pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
    627 			len = strlen(userpath) + 1;
    628 		}
    629 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
    630 		if ((error = namei(&nd))) {
    631 			pathbuf_destroy(pb);
    632 			goto out;
    633 		}
    634 		vp = nd.ni_vp;
    635 		pathbuf_destroy(pb);
    636 	}
    637 	/* note: "vp" is referenced and locked */
    638 
    639 	error = 0;		/* assume no error */
    640 	switch(SCARG(uap, cmd)) {
    641 
    642 	case SWAP_DUMPDEV:
    643 		if (vp->v_type != VBLK) {
    644 			error = ENOTBLK;
    645 			break;
    646 		}
    647 		if (bdevsw_lookup(vp->v_rdev)) {
    648 			dumpdev = vp->v_rdev;
    649 			dumpcdev = devsw_blk2chr(dumpdev);
    650 		} else
    651 			dumpdev = NODEV;
    652 		cpu_dumpconf();
    653 		break;
    654 
    655 	case SWAP_CTL:
    656 		/*
    657 		 * get new priority, remove old entry (if any) and then
    658 		 * reinsert it in the correct place.  finally, prune out
    659 		 * any empty priority structures.
    660 		 */
    661 		priority = SCARG(uap, misc);
    662 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
    663 		mutex_enter(&uvm_swap_data_lock);
    664 		if ((sdp = swaplist_find(vp, true)) == NULL) {
    665 			error = ENOENT;
    666 		} else {
    667 			swaplist_insert(sdp, spp, priority);
    668 			swaplist_trim();
    669 		}
    670 		mutex_exit(&uvm_swap_data_lock);
    671 		if (error)
    672 			kmem_free(spp, sizeof(*spp));
    673 		break;
    674 
    675 	case SWAP_ON:
    676 
    677 		/*
    678 		 * check for duplicates.   if none found, then insert a
    679 		 * dummy entry on the list to prevent someone else from
    680 		 * trying to enable this device while we are working on
    681 		 * it.
    682 		 */
    683 
    684 		priority = SCARG(uap, misc);
    685 		sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
    686 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
    687 		sdp->swd_flags = SWF_FAKE;
    688 		sdp->swd_vp = vp;
    689 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    690 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
    691 		mutex_enter(&uvm_swap_data_lock);
    692 		if (swaplist_find(vp, false) != NULL) {
    693 			error = EBUSY;
    694 			mutex_exit(&uvm_swap_data_lock);
    695 			bufq_free(sdp->swd_tab);
    696 			kmem_free(sdp, sizeof(*sdp));
    697 			kmem_free(spp, sizeof(*spp));
    698 			break;
    699 		}
    700 		swaplist_insert(sdp, spp, priority);
    701 		mutex_exit(&uvm_swap_data_lock);
    702 
    703 		KASSERT(len > 0);
    704 		sdp->swd_pathlen = len;
    705 		sdp->swd_path = kmem_alloc(len, KM_SLEEP);
    706 		if (copystr(userpath, sdp->swd_path, len, 0) != 0)
    707 			panic("swapctl: copystr");
    708 
    709 		/*
    710 		 * we've now got a FAKE placeholder in the swap list.
    711 		 * now attempt to enable swap on it.  if we fail, undo
    712 		 * what we've done and kill the fake entry we just inserted.
    713 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    714 		 */
    715 
    716 		if ((error = swap_on(l, sdp)) != 0) {
    717 			mutex_enter(&uvm_swap_data_lock);
    718 			(void) swaplist_find(vp, true);  /* kill fake entry */
    719 			swaplist_trim();
    720 			mutex_exit(&uvm_swap_data_lock);
    721 			bufq_free(sdp->swd_tab);
    722 			kmem_free(sdp->swd_path, sdp->swd_pathlen);
    723 			kmem_free(sdp, sizeof(*sdp));
    724 			break;
    725 		}
    726 		break;
    727 
    728 	case SWAP_OFF:
    729 		mutex_enter(&uvm_swap_data_lock);
    730 		if ((sdp = swaplist_find(vp, false)) == NULL) {
    731 			mutex_exit(&uvm_swap_data_lock);
    732 			error = ENXIO;
    733 			break;
    734 		}
    735 
    736 		/*
    737 		 * If a device isn't in use or enabled, we
    738 		 * can't stop swapping from it (again).
    739 		 */
    740 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    741 			mutex_exit(&uvm_swap_data_lock);
    742 			error = EBUSY;
    743 			break;
    744 		}
    745 
    746 		/*
    747 		 * do the real work.
    748 		 */
    749 		error = swap_off(l, sdp);
    750 		break;
    751 
    752 	default:
    753 		error = EINVAL;
    754 	}
    755 
    756 	/*
    757 	 * done!  release the ref gained by namei() and unlock.
    758 	 */
    759 	vput(vp);
    760 out:
    761 	rw_exit(&swap_syscall_lock);
    762 	kmem_free(userpath, SWAP_PATH_MAX);
    763 
    764 	UVMHIST_LOG(pdhist, "<- done!  error=%jd", error, 0, 0, 0);
    765 	return (error);
    766 }
    767 
    768 /*
    769  * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
    770  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    771  * emulation to use it directly without going through sys_swapctl().
    772  * The problem with using sys_swapctl() there is that it involves
    773  * copying the swapent array to the stackgap, and this array's size
    774  * is not known at build time. Hence it would not be possible to
    775  * ensure it would fit in the stackgap in any case.
    776  */
    777 int
    778 uvm_swap_stats(char *ptr, int misc,
    779     void (*f)(void *, const struct swapent *), size_t len,
    780     register_t *retval)
    781 {
    782 	struct swappri *spp;
    783 	struct swapdev *sdp, **sdps, **sp;
    784 	struct swapent sep;
    785 	size_t sdpsize = 0;
    786 	struct swapdev *stackbuf[8];	/* magic 8, any number >1 will do */
    787 	int count, slots;
    788 	int error;
    789 
    790 	KASSERT(len <= sizeof(sep));
    791 	if (len == 0)
    792 		return ENOSYS;
    793 
    794 	if (misc < 0)
    795 		return EINVAL;
    796 
    797 	if (misc == 0 || uvmexp.nswapdev == 0)
    798 		return 0;
    799 
    800 	KASSERT(rw_lock_held(&swap_syscall_lock));
    801 
    802 	/*
    803 	 * Allocate space (slots) for pointers to all swapdevs
    804 	 *
    805 	 * This needs to be done here (not earlier) (and so needs
    806 	 * the unlock/lock dance) because of the way the various
    807 	 * compat functions work.
    808 	 */
    809 	sdps = NULL;
    810 	slots = uvmexp.nswapdev;
    811 
    812 	if (slots > misc)	/* we never need more than requested */
    813 		slots = misc;
    814 
    815 	/*
    816 	 * Nb: do not limit misc to <= uvmexp.nswapdev yet,
    817 	 * as the latter might get bigger (or smaller)
    818 	 */
    819 
    820 	if ((SIZE_T_MAX / sizeof sdp) <= misc)	/* unlikely */
    821 		return E2BIG;
    822 
    823 	/*
    824 	 * One slot for each currently existing swap device, but
    825 	 * limited (above) to no more than the request wants (misc).
    826 	 * Each slot needs space for a pointer to a swapdev.
    827 	 */
    828 	sdpsize = (size_t)slots * sizeof sdp;
    829 
    830 	/*
    831 	 * Borrow from kmem_tmpbuf_alloc(9) but don't use that
    832 	 * so we don't need to do the unlock dance unnecessarily
    833 	 */
    834 	if (sdpsize <= sizeof stackbuf) {
    835 		/* Should be the common case */
    836 		sdps = stackbuf;
    837 	} else {
    838 		rw_exit(&swap_syscall_lock);
    839 
    840 		sdps = kmem_alloc(sdpsize, KM_SLEEP);
    841 
    842 		rw_enter(&swap_syscall_lock, RW_READER);
    843 
    844 		/*
    845 		 * At this point, 3 possibilities.
    846 		 *
    847 		 * 1. uvmexp.nswapdev has increased.
    848 		 *
    849 		 * A new swap device got added.  That's OK, just ignore the
    850 		 * excess device(s), and return the first N (the number that
    851 		 * were there when we started).
    852 		 *
    853 		 * 2. uvmexp.nswapdev has decreased.
    854 		 *
    855 		 * A swap device was deleted.  In this case we will return
    856 		 * less devices than requested but that's OK.  We will have
    857 		 * more slot memory than is needed to save them all, but just
    858 		 * a little more, and it gets freed just below.
    859 		 *
    860 		 * 3. uvmexp.nswapdev hasn't changed.
    861 		 *
    862 		 * This will be the usual case; no swapctl operations occurred
    863 		 * while the lock was released, or possibly a device was
    864 		 * deleted and another added - that's irrelevant.  At this
    865 		 * point all that matters is the number of devices, we haven't
    866 		 * looked at the lists yet.
    867 		 *
    868 		 * So we never need to adjust this allocation.
    869 		 *
    870 		 * And we don't need to look at uvmexp.nswapdev again!
    871 		 */
    872 	}
    873 
    874 	KASSERT(rw_lock_held(&swap_syscall_lock));
    875 
    876 	/*
    877 	 * Collect all of the swap descriptors, while holding the data lock,
    878 	 * so the lists cannot change.   Then they can be used safely.
    879 	 *
    880 	 * Entries cannot be deleted, because swap_syscall_lock is held,
    881 	 * but the lists holding them can be reordered except in this small
    882 	 * loop where we lock out that kind of activity.   No processing
    883 	 * happens here, this is fast, with no func calls, or anything which
    884 	 * might perform operations which might need the lock.
    885 	 */
    886 	mutex_enter(&uvm_swap_data_lock);
    887 	sp = sdps;
    888 	count = 0;
    889 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    890 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    891 			if (++count <= slots)
    892 				*sp++ = sdp;
    893 			/*
    894 			 * don't bother with exiting the loops early,
    895 			 * the lists tend to be very short, and not
    896 			 * exhausting them is a very rare occurrence.
    897 			 * So just loop and do nothing (but count) in
    898 			 * the odd case we could have broken out early.
    899 			 */
    900 		}
    901 	}
    902 	mutex_exit(&uvm_swap_data_lock);
    903 
    904 	/*
    905 	 * Now we have a stable list of devices which cannot change,
    906 	 * even if the swapping lists are reordered.
    907 	 */
    908 
    909 	if (misc > slots)		/* the number of storage slots */
    910 		misc = slots;
    911 	if (misc > count)		/* the number of devices now */
    912 		misc = count;
    913 
    914 	/*
    915 	 * This is the actual work of uvm_swap_stats() - above was bookkeeping.
    916 	 */
    917 	error = 0;
    918 	count = 0;
    919 	sp = sdps;
    920 	while (misc-- > 0) {
    921 		int inuse;
    922 
    923 		sdp = *sp++;	/* The next swapdev, from the next slot */
    924 
    925 		inuse = btodb((uint64_t)sdp->swd_npginuse <<
    926 		    PAGE_SHIFT);
    927 
    928 		memset(&sep, 0, sizeof(sep));
    929 		swapent_cvt(&sep, sdp, inuse);
    930 		if (f)
    931 			(*f)(&sep, &sep);
    932 		if ((error = copyout(&sep, ptr, len)) != 0)
    933 			goto out;
    934 		ptr += len;
    935 		count++;
    936 	}
    937 	*retval = count;
    938    out:;
    939 	if (sdps != stackbuf) {
    940 		/*
    941 		 * XXX should unlock & lock again here probably,
    942 		 *     but for now, no...
    943 		 */
    944 		kmem_free(sdps, sdpsize);
    945 	}
    946 	return error;
    947 }
    948 
    949 /*
    950  * swap_on: attempt to enable a swapdev for swapping.   note that the
    951  *	swapdev is already on the global list, but disabled (marked
    952  *	SWF_FAKE).
    953  *
    954  * => we avoid the start of the disk (to protect disk labels)
    955  * => we also avoid the miniroot, if we are swapping to root.
    956  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
    957  *	if needed.
    958  */
    959 static int
    960 swap_on(struct lwp *l, struct swapdev *sdp)
    961 {
    962 	struct vnode *vp;
    963 	int error, npages, nblocks, size;
    964 	long addr;
    965 	vmem_addr_t result;
    966 	struct vattr va;
    967 	dev_t dev;
    968 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
    969 
    970 	/*
    971 	 * we want to enable swapping on sdp.   the swd_vp contains
    972 	 * the vnode we want (locked and ref'd), and the swd_dev
    973 	 * contains the dev_t of the file, if it a block device.
    974 	 */
    975 
    976 	vp = sdp->swd_vp;
    977 	dev = sdp->swd_dev;
    978 
    979 	/*
    980 	 * open the swap file (mostly useful for block device files to
    981 	 * let device driver know what is up).
    982 	 *
    983 	 * we skip the open/close for root on swap because the root
    984 	 * has already been opened when root was mounted (mountroot).
    985 	 */
    986 	if (vp != rootvp) {
    987 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
    988 			return (error);
    989 	}
    990 
    991 	/* XXX this only works for block devices */
    992 	UVMHIST_LOG(pdhist, "  dev=%jd, major(dev)=%jd", dev, major(dev), 0, 0);
    993 
    994 	/*
    995 	 * we now need to determine the size of the swap area.   for
    996 	 * block specials we can call the d_psize function.
    997 	 * for normal files, we must stat [get attrs].
    998 	 *
    999 	 * we put the result in nblks.
   1000 	 * for normal files, we also want the filesystem block size
   1001 	 * (which we get with statfs).
   1002 	 */
   1003 	switch (vp->v_type) {
   1004 	case VBLK:
   1005 		if ((nblocks = bdev_size(dev)) == -1) {
   1006 			error = ENXIO;
   1007 			goto bad;
   1008 		}
   1009 		break;
   1010 
   1011 	case VREG:
   1012 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
   1013 			goto bad;
   1014 		nblocks = (int)btodb(va.va_size);
   1015 		sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
   1016 		/*
   1017 		 * limit the max # of outstanding I/O requests we issue
   1018 		 * at any one time.   take it easy on NFS servers.
   1019 		 */
   1020 		if (vp->v_tag == VT_NFS)
   1021 			sdp->swd_maxactive = 2; /* XXX */
   1022 		else
   1023 			sdp->swd_maxactive = 8; /* XXX */
   1024 		break;
   1025 
   1026 	default:
   1027 		error = ENXIO;
   1028 		goto bad;
   1029 	}
   1030 
   1031 	/*
   1032 	 * save nblocks in a safe place and convert to pages.
   1033 	 */
   1034 
   1035 	sdp->swd_nblks = nblocks;
   1036 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
   1037 
   1038 	/*
   1039 	 * for block special files, we want to make sure that leave
   1040 	 * the disklabel and bootblocks alone, so we arrange to skip
   1041 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
   1042 	 * note that because of this the "size" can be less than the
   1043 	 * actual number of blocks on the device.
   1044 	 */
   1045 	if (vp->v_type == VBLK) {
   1046 		/* we use pages 1 to (size - 1) [inclusive] */
   1047 		size = npages - 1;
   1048 		addr = 1;
   1049 	} else {
   1050 		/* we use pages 0 to (size - 1) [inclusive] */
   1051 		size = npages;
   1052 		addr = 0;
   1053 	}
   1054 
   1055 	/*
   1056 	 * make sure we have enough blocks for a reasonable sized swap
   1057 	 * area.   we want at least one page.
   1058 	 */
   1059 
   1060 	if (size < 1) {
   1061 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
   1062 		error = EINVAL;
   1063 		goto bad;
   1064 	}
   1065 
   1066 	UVMHIST_LOG(pdhist,"  dev=%#jx: size=%jd addr=%jd", dev, size, addr, 0);
   1067 
   1068 	/*
   1069 	 * now we need to allocate an extent to manage this swap device
   1070 	 */
   1071 
   1072 	sdp->swd_blist = blist_create(npages);
   1073 	/* mark all expect the `saved' region free. */
   1074 	blist_free(sdp->swd_blist, addr, size);
   1075 
   1076 	/*
   1077 	 * allocate space to for swap encryption state and mark the
   1078 	 * keys uninitialized so we generate them lazily
   1079 	 */
   1080 	sdp->swd_encmap = kmem_zalloc(encmap_size(npages), KM_SLEEP);
   1081 	sdp->swd_encinit = false;
   1082 
   1083 	/*
   1084 	 * if the vnode we are swapping to is the root vnode
   1085 	 * (i.e. we are swapping to the miniroot) then we want
   1086 	 * to make sure we don't overwrite it.   do a statfs to
   1087 	 * find its size and skip over it.
   1088 	 */
   1089 	if (vp == rootvp) {
   1090 		struct mount *mp;
   1091 		struct statvfs *sp;
   1092 		int rootblocks, rootpages;
   1093 
   1094 		mp = rootvnode->v_mount;
   1095 		sp = &mp->mnt_stat;
   1096 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
   1097 		/*
   1098 		 * XXX: sp->f_blocks isn't the total number of
   1099 		 * blocks in the filesystem, it's the number of
   1100 		 * data blocks.  so, our rootblocks almost
   1101 		 * definitely underestimates the total size
   1102 		 * of the filesystem - how badly depends on the
   1103 		 * details of the filesystem type.  there isn't
   1104 		 * an obvious way to deal with this cleanly
   1105 		 * and perfectly, so for now we just pad our
   1106 		 * rootblocks estimate with an extra 5 percent.
   1107 		 */
   1108 		rootblocks += (rootblocks >> 5) +
   1109 			(rootblocks >> 6) +
   1110 			(rootblocks >> 7);
   1111 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
   1112 		if (rootpages > size)
   1113 			panic("swap_on: miniroot larger than swap?");
   1114 
   1115 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
   1116 			panic("swap_on: unable to preserve miniroot");
   1117 		}
   1118 
   1119 		size -= rootpages;
   1120 		printf("Preserved %d pages of miniroot ", rootpages);
   1121 		printf("leaving %d pages of swap\n", size);
   1122 	}
   1123 
   1124 	/*
   1125 	 * add a ref to vp to reflect usage as a swap device.
   1126 	 */
   1127 	vref(vp);
   1128 
   1129 	/*
   1130 	 * now add the new swapdev to the drum and enable.
   1131 	 */
   1132 	error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
   1133 	if (error != 0)
   1134 		panic("swapdrum_add");
   1135 	/*
   1136 	 * If this is the first regular swap create the workqueue.
   1137 	 * => Protected by swap_syscall_lock.
   1138 	 */
   1139 	if (vp->v_type != VBLK) {
   1140 		if (sw_reg_count++ == 0) {
   1141 			KASSERT(sw_reg_workqueue == NULL);
   1142 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
   1143 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
   1144 				panic("%s: workqueue_create failed", __func__);
   1145 		}
   1146 	}
   1147 
   1148 	sdp->swd_drumoffset = (int)result;
   1149 	sdp->swd_drumsize = npages;
   1150 	sdp->swd_npages = size;
   1151 	mutex_enter(&uvm_swap_data_lock);
   1152 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
   1153 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
   1154 	uvmexp.swpages += size;
   1155 	uvmexp.swpgavail += size;
   1156 	mutex_exit(&uvm_swap_data_lock);
   1157 	return (0);
   1158 
   1159 	/*
   1160 	 * failure: clean up and return error.
   1161 	 */
   1162 
   1163 bad:
   1164 	if (sdp->swd_blist) {
   1165 		blist_destroy(sdp->swd_blist);
   1166 	}
   1167 	if (vp != rootvp) {
   1168 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
   1169 	}
   1170 	return (error);
   1171 }
   1172 
   1173 /*
   1174  * swap_off: stop swapping on swapdev
   1175  *
   1176  * => swap data should be locked, we will unlock.
   1177  */
   1178 static int
   1179 swap_off(struct lwp *l, struct swapdev *sdp)
   1180 {
   1181 	int npages = sdp->swd_npages;
   1182 	int error = 0;
   1183 
   1184 	UVMHIST_FUNC(__func__);
   1185 	UVMHIST_CALLARGS(pdhist,
   1186 	    "  dev=%#jx, npages=%jd", sdp->swd_dev,npages, 0, 0);
   1187 
   1188 	KASSERT(rw_write_held(&swap_syscall_lock));
   1189 	KASSERT(mutex_owned(&uvm_swap_data_lock));
   1190 
   1191 	/* disable the swap area being removed */
   1192 	sdp->swd_flags &= ~SWF_ENABLE;
   1193 	uvmexp.swpgavail -= npages;
   1194 	mutex_exit(&uvm_swap_data_lock);
   1195 
   1196 	/*
   1197 	 * the idea is to find all the pages that are paged out to this
   1198 	 * device, and page them all in.  in uvm, swap-backed pageable
   1199 	 * memory can take two forms: aobjs and anons.  call the
   1200 	 * swapoff hook for each subsystem to bring in pages.
   1201 	 */
   1202 
   1203 	if (uao_swap_off(sdp->swd_drumoffset,
   1204 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1205 	    amap_swap_off(sdp->swd_drumoffset,
   1206 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1207 		error = ENOMEM;
   1208 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
   1209 		error = EBUSY;
   1210 	}
   1211 
   1212 	if (error) {
   1213 		mutex_enter(&uvm_swap_data_lock);
   1214 		sdp->swd_flags |= SWF_ENABLE;
   1215 		uvmexp.swpgavail += npages;
   1216 		mutex_exit(&uvm_swap_data_lock);
   1217 
   1218 		return error;
   1219 	}
   1220 
   1221 	/*
   1222 	 * If this is the last regular swap destroy the workqueue.
   1223 	 * => Protected by swap_syscall_lock.
   1224 	 */
   1225 	if (sdp->swd_vp->v_type != VBLK) {
   1226 		KASSERT(sw_reg_count > 0);
   1227 		KASSERT(sw_reg_workqueue != NULL);
   1228 		if (--sw_reg_count == 0) {
   1229 			workqueue_destroy(sw_reg_workqueue);
   1230 			sw_reg_workqueue = NULL;
   1231 		}
   1232 	}
   1233 
   1234 	/*
   1235 	 * done with the vnode.
   1236 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1237 	 * so that spec_close() can tell if this is the last close.
   1238 	 */
   1239 	vrele(sdp->swd_vp);
   1240 	if (sdp->swd_vp != rootvp) {
   1241 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
   1242 	}
   1243 
   1244 	mutex_enter(&uvm_swap_data_lock);
   1245 	uvmexp.swpages -= npages;
   1246 	KASSERTMSG(uvmexp.swpginuse >= sdp->swd_npgbad,
   1247 		   "swpginuse %d sdp->swd_npgbad %d",
   1248 		   uvmexp.swpginuse, sdp->swd_npgbad);
   1249 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1250 
   1251 	if (swaplist_find(sdp->swd_vp, true) == NULL)
   1252 		panic("%s: swapdev not in list", __func__);
   1253 	swaplist_trim();
   1254 	mutex_exit(&uvm_swap_data_lock);
   1255 
   1256 	/*
   1257 	 * free all resources!
   1258 	 */
   1259 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
   1260 	blist_destroy(sdp->swd_blist);
   1261 	bufq_free(sdp->swd_tab);
   1262 	kmem_free(__UNVOLATILE(sdp->swd_encmap),
   1263 	    encmap_size(sdp->swd_drumsize));
   1264 	explicit_memset(&sdp->swd_enckey, 0, sizeof sdp->swd_enckey);
   1265 	explicit_memset(&sdp->swd_deckey, 0, sizeof sdp->swd_deckey);
   1266 	kmem_free(sdp, sizeof(*sdp));
   1267 	return (0);
   1268 }
   1269 
   1270 void
   1271 uvm_swap_shutdown(struct lwp *l)
   1272 {
   1273 	struct swapdev *sdp;
   1274 	struct swappri *spp;
   1275 	struct vnode *vp;
   1276 	int error;
   1277 
   1278 	if (!uvm_swap_init_done || uvmexp.nswapdev == 0)
   1279 		return;
   1280 	printf("turning off swap...");
   1281 	rw_enter(&swap_syscall_lock, RW_WRITER);
   1282 	mutex_enter(&uvm_swap_data_lock);
   1283 again:
   1284 	LIST_FOREACH(spp, &swap_priority, spi_swappri)
   1285 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1286 			if (sdp->swd_flags & SWF_FAKE)
   1287 				continue;
   1288 			if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
   1289 				continue;
   1290 #ifdef DEBUG
   1291 			printf("\nturning off swap on %s...", sdp->swd_path);
   1292 #endif
   1293 			/* Have to lock and reference vnode for swap_off(). */
   1294 			vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE|LK_RETRY);
   1295 			vref(vp);
   1296 			error = swap_off(l, sdp);
   1297 			vput(vp);
   1298 			mutex_enter(&uvm_swap_data_lock);
   1299 			if (error) {
   1300 				printf("stopping swap on %s failed "
   1301 				    "with error %d\n", sdp->swd_path, error);
   1302 				TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1303 				uvmexp.nswapdev--;
   1304 				swaplist_trim();
   1305 			}
   1306 			goto again;
   1307 		}
   1308 	printf(" done\n");
   1309 	mutex_exit(&uvm_swap_data_lock);
   1310 	rw_exit(&swap_syscall_lock);
   1311 }
   1312 
   1313 
   1314 /*
   1315  * /dev/drum interface and i/o functions
   1316  */
   1317 
   1318 /*
   1319  * swopen: allow the initial open from uvm_swap_init() and reject all others.
   1320  */
   1321 
   1322 static int
   1323 swopen(dev_t dev, int flag, int mode, struct lwp *l)
   1324 {
   1325 	static bool inited = false;
   1326 
   1327 	if (!inited) {
   1328 		inited = true;
   1329 		return 0;
   1330 	}
   1331 	return ENODEV;
   1332 }
   1333 
   1334 /*
   1335  * swstrategy: perform I/O on the drum
   1336  *
   1337  * => we must map the i/o request from the drum to the correct swapdev.
   1338  */
   1339 static void
   1340 swstrategy(struct buf *bp)
   1341 {
   1342 	struct swapdev *sdp;
   1343 	struct vnode *vp;
   1344 	int pageno, bn;
   1345 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
   1346 
   1347 	/*
   1348 	 * convert block number to swapdev.   note that swapdev can't
   1349 	 * be yanked out from under us because we are holding resources
   1350 	 * in it (i.e. the blocks we are doing I/O on).
   1351 	 */
   1352 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1353 	mutex_enter(&uvm_swap_data_lock);
   1354 	sdp = swapdrum_getsdp(pageno);
   1355 	mutex_exit(&uvm_swap_data_lock);
   1356 	if (sdp == NULL) {
   1357 		bp->b_error = EINVAL;
   1358 		bp->b_resid = bp->b_bcount;
   1359 		biodone(bp);
   1360 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1361 		return;
   1362 	}
   1363 
   1364 	/*
   1365 	 * convert drum page number to block number on this swapdev.
   1366 	 */
   1367 
   1368 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1369 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1370 
   1371 	UVMHIST_LOG(pdhist, "  Rd/Wr (0/1) %jd: mapoff=%#jx bn=%#jx bcount=%jd",
   1372 		((bp->b_flags & B_READ) == 0) ? 1 : 0,
   1373 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1374 
   1375 	/*
   1376 	 * for block devices we finish up here.
   1377 	 * for regular files we have to do more work which we delegate
   1378 	 * to sw_reg_strategy().
   1379 	 */
   1380 
   1381 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1382 	switch (vp->v_type) {
   1383 	default:
   1384 		panic("%s: vnode type 0x%x", __func__, vp->v_type);
   1385 
   1386 	case VBLK:
   1387 
   1388 		/*
   1389 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1390 		 * on the swapdev (sdp).
   1391 		 */
   1392 		bp->b_blkno = bn;		/* swapdev block number */
   1393 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1394 
   1395 		/*
   1396 		 * if we are doing a write, we have to redirect the i/o on
   1397 		 * drum's v_numoutput counter to the swapdevs.
   1398 		 */
   1399 		if ((bp->b_flags & B_READ) == 0) {
   1400 			mutex_enter(bp->b_objlock);
   1401 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1402 			mutex_exit(bp->b_objlock);
   1403 			mutex_enter(vp->v_interlock);
   1404 			vp->v_numoutput++;	/* put it on swapdev */
   1405 			mutex_exit(vp->v_interlock);
   1406 		}
   1407 
   1408 		/*
   1409 		 * finally plug in swapdev vnode and start I/O
   1410 		 */
   1411 		bp->b_vp = vp;
   1412 		bp->b_objlock = vp->v_interlock;
   1413 		VOP_STRATEGY(vp, bp);
   1414 		return;
   1415 
   1416 	case VREG:
   1417 		/*
   1418 		 * delegate to sw_reg_strategy function.
   1419 		 */
   1420 		sw_reg_strategy(sdp, bp, bn);
   1421 		return;
   1422 	}
   1423 	/* NOTREACHED */
   1424 }
   1425 
   1426 /*
   1427  * swread: the read function for the drum (just a call to physio)
   1428  */
   1429 /*ARGSUSED*/
   1430 static int
   1431 swread(dev_t dev, struct uio *uio, int ioflag)
   1432 {
   1433 	UVMHIST_FUNC(__func__);
   1434 	UVMHIST_CALLARGS(pdhist,
   1435 	    "  dev=%#jx offset=%#jx", dev, uio->uio_offset, 0, 0);
   1436 
   1437 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1438 }
   1439 
   1440 /*
   1441  * swwrite: the write function for the drum (just a call to physio)
   1442  */
   1443 /*ARGSUSED*/
   1444 static int
   1445 swwrite(dev_t dev, struct uio *uio, int ioflag)
   1446 {
   1447 	UVMHIST_FUNC(__func__);
   1448 	UVMHIST_CALLARGS(pdhist,
   1449 	    "  dev=%#jx offset=%#jx", dev, uio->uio_offset, 0, 0);
   1450 
   1451 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1452 }
   1453 
   1454 const struct bdevsw swap_bdevsw = {
   1455 	.d_open = swopen,
   1456 	.d_close = noclose,
   1457 	.d_strategy = swstrategy,
   1458 	.d_ioctl = noioctl,
   1459 	.d_dump = nodump,
   1460 	.d_psize = nosize,
   1461 	.d_discard = nodiscard,
   1462 	.d_flag = D_OTHER
   1463 };
   1464 
   1465 const struct cdevsw swap_cdevsw = {
   1466 	.d_open = nullopen,
   1467 	.d_close = nullclose,
   1468 	.d_read = swread,
   1469 	.d_write = swwrite,
   1470 	.d_ioctl = noioctl,
   1471 	.d_stop = nostop,
   1472 	.d_tty = notty,
   1473 	.d_poll = nopoll,
   1474 	.d_mmap = nommap,
   1475 	.d_kqfilter = nokqfilter,
   1476 	.d_discard = nodiscard,
   1477 	.d_flag = D_OTHER,
   1478 };
   1479 
   1480 /*
   1481  * sw_reg_strategy: handle swap i/o to regular files
   1482  */
   1483 static void
   1484 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1485 {
   1486 	struct vnode	*vp;
   1487 	struct vndxfer	*vnx;
   1488 	daddr_t		nbn;
   1489 	char 		*addr;
   1490 	off_t		byteoff;
   1491 	int		s, off, nra, error, sz, resid;
   1492 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
   1493 
   1494 	/*
   1495 	 * allocate a vndxfer head for this transfer and point it to
   1496 	 * our buffer.
   1497 	 */
   1498 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
   1499 	vnx->vx_flags = VX_BUSY;
   1500 	vnx->vx_error = 0;
   1501 	vnx->vx_pending = 0;
   1502 	vnx->vx_bp = bp;
   1503 	vnx->vx_sdp = sdp;
   1504 
   1505 	/*
   1506 	 * setup for main loop where we read filesystem blocks into
   1507 	 * our buffer.
   1508 	 */
   1509 	error = 0;
   1510 	bp->b_resid = bp->b_bcount;	/* nothing transferred yet! */
   1511 	addr = bp->b_data;		/* current position in buffer */
   1512 	byteoff = dbtob((uint64_t)bn);
   1513 
   1514 	for (resid = bp->b_resid; resid; resid -= sz) {
   1515 		struct vndbuf	*nbp;
   1516 
   1517 		/*
   1518 		 * translate byteoffset into block number.  return values:
   1519 		 *   vp = vnode of underlying device
   1520 		 *  nbn = new block number (on underlying vnode dev)
   1521 		 *  nra = num blocks we can read-ahead (excludes requested
   1522 		 *	block)
   1523 		 */
   1524 		nra = 0;
   1525 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1526 				 	&vp, &nbn, &nra);
   1527 
   1528 		if (error == 0 && nbn == (daddr_t)-1) {
   1529 			/*
   1530 			 * this used to just set error, but that doesn't
   1531 			 * do the right thing.  Instead, it causes random
   1532 			 * memory errors.  The panic() should remain until
   1533 			 * this condition doesn't destabilize the system.
   1534 			 */
   1535 #if 1
   1536 			panic("%s: swap to sparse file", __func__);
   1537 #else
   1538 			error = EIO;	/* failure */
   1539 #endif
   1540 		}
   1541 
   1542 		/*
   1543 		 * punt if there was an error or a hole in the file.
   1544 		 * we must wait for any i/o ops we have already started
   1545 		 * to finish before returning.
   1546 		 *
   1547 		 * XXX we could deal with holes here but it would be
   1548 		 * a hassle (in the write case).
   1549 		 */
   1550 		if (error) {
   1551 			s = splbio();
   1552 			vnx->vx_error = error;	/* pass error up */
   1553 			goto out;
   1554 		}
   1555 
   1556 		/*
   1557 		 * compute the size ("sz") of this transfer (in bytes).
   1558 		 */
   1559 		off = byteoff % sdp->swd_bsize;
   1560 		sz = (1 + nra) * sdp->swd_bsize - off;
   1561 		if (sz > resid)
   1562 			sz = resid;
   1563 
   1564 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1565 		    "vp %#jx/%#jx offset %#jx/%#jx",
   1566 		    (uintptr_t)sdp->swd_vp, (uintptr_t)vp, byteoff, nbn);
   1567 
   1568 		/*
   1569 		 * now get a buf structure.   note that the vb_buf is
   1570 		 * at the front of the nbp structure so that you can
   1571 		 * cast pointers between the two structure easily.
   1572 		 */
   1573 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
   1574 		buf_init(&nbp->vb_buf);
   1575 		nbp->vb_buf.b_flags    = bp->b_flags;
   1576 		nbp->vb_buf.b_cflags   = bp->b_cflags;
   1577 		nbp->vb_buf.b_oflags   = bp->b_oflags;
   1578 		nbp->vb_buf.b_bcount   = sz;
   1579 		nbp->vb_buf.b_bufsize  = sz;
   1580 		nbp->vb_buf.b_error    = 0;
   1581 		nbp->vb_buf.b_data     = addr;
   1582 		nbp->vb_buf.b_lblkno   = 0;
   1583 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1584 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1585 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
   1586 		nbp->vb_buf.b_vp       = vp;
   1587 		nbp->vb_buf.b_objlock  = vp->v_interlock;
   1588 		if (vp->v_type == VBLK) {
   1589 			nbp->vb_buf.b_dev = vp->v_rdev;
   1590 		}
   1591 
   1592 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1593 
   1594 		/*
   1595 		 * Just sort by block number
   1596 		 */
   1597 		s = splbio();
   1598 		if (vnx->vx_error != 0) {
   1599 			buf_destroy(&nbp->vb_buf);
   1600 			pool_put(&vndbuf_pool, nbp);
   1601 			goto out;
   1602 		}
   1603 		vnx->vx_pending++;
   1604 
   1605 		/* sort it in and start I/O if we are not over our limit */
   1606 		/* XXXAD locking */
   1607 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
   1608 		sw_reg_start(sdp);
   1609 		splx(s);
   1610 
   1611 		/*
   1612 		 * advance to the next I/O
   1613 		 */
   1614 		byteoff += sz;
   1615 		addr += sz;
   1616 	}
   1617 
   1618 	s = splbio();
   1619 
   1620 out: /* Arrive here at splbio */
   1621 	vnx->vx_flags &= ~VX_BUSY;
   1622 	if (vnx->vx_pending == 0) {
   1623 		error = vnx->vx_error;
   1624 		pool_put(&vndxfer_pool, vnx);
   1625 		if (error) {
   1626 			bp->b_resid = bp->b_bcount;
   1627 			bp->b_error = error;
   1628 		}
   1629 		biodone(bp);
   1630 	}
   1631 	splx(s);
   1632 }
   1633 
   1634 /*
   1635  * sw_reg_start: start an I/O request on the requested swapdev
   1636  *
   1637  * => reqs are sorted by b_rawblkno (above)
   1638  */
   1639 static void
   1640 sw_reg_start(struct swapdev *sdp)
   1641 {
   1642 	struct buf	*bp;
   1643 	struct vnode	*vp;
   1644 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
   1645 
   1646 	/* recursion control */
   1647 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1648 		return;
   1649 
   1650 	sdp->swd_flags |= SWF_BUSY;
   1651 
   1652 	while (sdp->swd_active < sdp->swd_maxactive) {
   1653 		bp = bufq_get(sdp->swd_tab);
   1654 		if (bp == NULL)
   1655 			break;
   1656 		sdp->swd_active++;
   1657 
   1658 		UVMHIST_LOG(pdhist,
   1659 		    "sw_reg_start:  bp %#jx vp %#jx blkno %#jx cnt %#jx",
   1660 		    (uintptr_t)bp, (uintptr_t)bp->b_vp, (uintptr_t)bp->b_blkno,
   1661 		    bp->b_bcount);
   1662 		vp = bp->b_vp;
   1663 		KASSERT(bp->b_objlock == vp->v_interlock);
   1664 		if ((bp->b_flags & B_READ) == 0) {
   1665 			mutex_enter(vp->v_interlock);
   1666 			vp->v_numoutput++;
   1667 			mutex_exit(vp->v_interlock);
   1668 		}
   1669 		VOP_STRATEGY(vp, bp);
   1670 	}
   1671 	sdp->swd_flags &= ~SWF_BUSY;
   1672 }
   1673 
   1674 /*
   1675  * sw_reg_biodone: one of our i/o's has completed
   1676  */
   1677 static void
   1678 sw_reg_biodone(struct buf *bp)
   1679 {
   1680 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
   1681 }
   1682 
   1683 /*
   1684  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1685  *
   1686  * => note that we can recover the vndbuf struct by casting the buf ptr
   1687  */
   1688 static void
   1689 sw_reg_iodone(struct work *wk, void *dummy)
   1690 {
   1691 	struct vndbuf *vbp = (void *)wk;
   1692 	struct vndxfer *vnx = vbp->vb_xfer;
   1693 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1694 	struct swapdev	*sdp = vnx->vx_sdp;
   1695 	int s, resid, error;
   1696 	KASSERT(&vbp->vb_buf.b_work == wk);
   1697 	UVMHIST_FUNC(__func__);
   1698 	UVMHIST_CALLARGS(pdhist, "  vbp=%#jx vp=%#jx blkno=%#jx addr=%#jx",
   1699 	    (uintptr_t)vbp, (uintptr_t)vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno,
   1700 	    (uintptr_t)vbp->vb_buf.b_data);
   1701 	UVMHIST_LOG(pdhist, "  cnt=%#jx resid=%#jx",
   1702 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1703 
   1704 	/*
   1705 	 * protect vbp at splbio and update.
   1706 	 */
   1707 
   1708 	s = splbio();
   1709 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1710 	pbp->b_resid -= resid;
   1711 	vnx->vx_pending--;
   1712 
   1713 	if (vbp->vb_buf.b_error != 0) {
   1714 		/* pass error upward */
   1715 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1716 		UVMHIST_LOG(pdhist, "  got error=%jd !", error, 0, 0, 0);
   1717 		vnx->vx_error = error;
   1718 	}
   1719 
   1720 	/*
   1721 	 * kill vbp structure
   1722 	 */
   1723 	buf_destroy(&vbp->vb_buf);
   1724 	pool_put(&vndbuf_pool, vbp);
   1725 
   1726 	/*
   1727 	 * wrap up this transaction if it has run to completion or, in
   1728 	 * case of an error, when all auxiliary buffers have returned.
   1729 	 */
   1730 	if (vnx->vx_error != 0) {
   1731 		/* pass error upward */
   1732 		error = vnx->vx_error;
   1733 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1734 			pbp->b_error = error;
   1735 			pbp->b_resid = pbp->b_bcount;
   1736 			biodone(pbp);
   1737 			pool_put(&vndxfer_pool, vnx);
   1738 		}
   1739 	} else if (pbp->b_resid == 0) {
   1740 		KASSERT(vnx->vx_pending == 0);
   1741 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1742 			UVMHIST_LOG(pdhist, "  iodone, pbp=%#jx error=%jd !",
   1743 			    (uintptr_t)pbp, vnx->vx_error, 0, 0);
   1744 			biodone(pbp);
   1745 			pool_put(&vndxfer_pool, vnx);
   1746 		}
   1747 	}
   1748 
   1749 	/*
   1750 	 * done!   start next swapdev I/O if one is pending
   1751 	 */
   1752 	sdp->swd_active--;
   1753 	sw_reg_start(sdp);
   1754 	splx(s);
   1755 }
   1756 
   1757 
   1758 /*
   1759  * uvm_swap_alloc: allocate space on swap
   1760  *
   1761  * => allocation is done "round robin" down the priority list, as we
   1762  *	allocate in a priority we "rotate" the circle queue.
   1763  * => space can be freed with uvm_swap_free
   1764  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1765  * => we lock uvm_swap_data_lock
   1766  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1767  */
   1768 int
   1769 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
   1770 {
   1771 	struct swapdev *sdp;
   1772 	struct swappri *spp;
   1773 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
   1774 
   1775 	/*
   1776 	 * no swap devices configured yet?   definite failure.
   1777 	 */
   1778 	if (uvmexp.nswapdev < 1)
   1779 		return 0;
   1780 
   1781 	/*
   1782 	 * XXXJAK: BEGIN HACK
   1783 	 *
   1784 	 * blist_alloc() in subr_blist.c will panic if we try to allocate
   1785 	 * too many slots.
   1786 	 */
   1787 	if (*nslots > BLIST_MAX_ALLOC) {
   1788 		if (__predict_false(lessok == false))
   1789 			return 0;
   1790 		*nslots = BLIST_MAX_ALLOC;
   1791 	}
   1792 	/* XXXJAK: END HACK */
   1793 
   1794 	/*
   1795 	 * lock data lock, convert slots into blocks, and enter loop
   1796 	 */
   1797 	mutex_enter(&uvm_swap_data_lock);
   1798 
   1799 ReTry:	/* XXXMRG */
   1800 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1801 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1802 			uint64_t result;
   1803 
   1804 			/* if it's not enabled, then we can't swap from it */
   1805 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1806 				continue;
   1807 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1808 				continue;
   1809 			result = blist_alloc(sdp->swd_blist, *nslots);
   1810 			if (result == BLIST_NONE) {
   1811 				continue;
   1812 			}
   1813 			KASSERT(result < sdp->swd_drumsize);
   1814 
   1815 			/*
   1816 			 * successful allocation!  now rotate the tailq.
   1817 			 */
   1818 			TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1819 			TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1820 			sdp->swd_npginuse += *nslots;
   1821 			uvmexp.swpginuse += *nslots;
   1822 			mutex_exit(&uvm_swap_data_lock);
   1823 			/* done!  return drum slot number */
   1824 			UVMHIST_LOG(pdhist,
   1825 			    "success!  returning %jd slots starting at %jd",
   1826 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1827 			return (result + sdp->swd_drumoffset);
   1828 		}
   1829 	}
   1830 
   1831 	/* XXXMRG: BEGIN HACK */
   1832 	if (*nslots > 1 && lessok) {
   1833 		*nslots = 1;
   1834 		/* XXXMRG: ugh!  blist should support this for us */
   1835 		goto ReTry;
   1836 	}
   1837 	/* XXXMRG: END HACK */
   1838 
   1839 	mutex_exit(&uvm_swap_data_lock);
   1840 	return 0;
   1841 }
   1842 
   1843 /*
   1844  * uvm_swapisfull: return true if most of available swap is allocated
   1845  * and in use.  we don't count some small portion as it may be inaccessible
   1846  * to us at any given moment, for example if there is lock contention or if
   1847  * pages are busy.
   1848  */
   1849 bool
   1850 uvm_swapisfull(void)
   1851 {
   1852 	int swpgonly;
   1853 	bool rv;
   1854 
   1855 	if (uvmexp.swpages == 0) {
   1856 		return true;
   1857 	}
   1858 
   1859 	mutex_enter(&uvm_swap_data_lock);
   1860 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1861 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
   1862 	    uvm_swapisfull_factor);
   1863 	rv = (swpgonly >= uvmexp.swpgavail);
   1864 	mutex_exit(&uvm_swap_data_lock);
   1865 
   1866 	return (rv);
   1867 }
   1868 
   1869 /*
   1870  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1871  *
   1872  * => we lock uvm_swap_data_lock
   1873  */
   1874 void
   1875 uvm_swap_markbad(int startslot, int nslots)
   1876 {
   1877 	struct swapdev *sdp;
   1878 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
   1879 
   1880 	mutex_enter(&uvm_swap_data_lock);
   1881 	sdp = swapdrum_getsdp(startslot);
   1882 	KASSERT(sdp != NULL);
   1883 
   1884 	/*
   1885 	 * we just keep track of how many pages have been marked bad
   1886 	 * in this device, to make everything add up in swap_off().
   1887 	 * we assume here that the range of slots will all be within
   1888 	 * one swap device.
   1889 	 */
   1890 
   1891 	KASSERT(uvmexp.swpgonly >= nslots);
   1892 	atomic_add_int(&uvmexp.swpgonly, -nslots);
   1893 	sdp->swd_npgbad += nslots;
   1894 	UVMHIST_LOG(pdhist, "now %jd bad", sdp->swd_npgbad, 0,0,0);
   1895 	mutex_exit(&uvm_swap_data_lock);
   1896 }
   1897 
   1898 /*
   1899  * uvm_swap_free: free swap slots
   1900  *
   1901  * => this can be all or part of an allocation made by uvm_swap_alloc
   1902  * => we lock uvm_swap_data_lock
   1903  */
   1904 void
   1905 uvm_swap_free(int startslot, int nslots)
   1906 {
   1907 	struct swapdev *sdp;
   1908 	UVMHIST_FUNC(__func__);
   1909 	UVMHIST_CALLARGS(pdhist, "freeing %jd slots starting at %jd", nslots,
   1910 	    startslot, 0, 0);
   1911 
   1912 	/*
   1913 	 * ignore attempts to free the "bad" slot.
   1914 	 */
   1915 
   1916 	if (startslot == SWSLOT_BAD) {
   1917 		return;
   1918 	}
   1919 
   1920 	/*
   1921 	 * convert drum slot offset back to sdp, free the blocks
   1922 	 * in the extent, and return.   must hold pri lock to do
   1923 	 * lookup and access the extent.
   1924 	 */
   1925 
   1926 	mutex_enter(&uvm_swap_data_lock);
   1927 	sdp = swapdrum_getsdp(startslot);
   1928 	KASSERT(uvmexp.nswapdev >= 1);
   1929 	KASSERT(sdp != NULL);
   1930 	KASSERT(sdp->swd_npginuse >= nslots);
   1931 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1932 	sdp->swd_npginuse -= nslots;
   1933 	KASSERTMSG(uvmexp.swpginuse >= nslots, "swpginuse %d nslots %d",
   1934 		   uvmexp.swpginuse, nslots);
   1935 	uvmexp.swpginuse -= nslots;
   1936 	mutex_exit(&uvm_swap_data_lock);
   1937 }
   1938 
   1939 /*
   1940  * uvm_swap_put: put any number of pages into a contig place on swap
   1941  *
   1942  * => can be sync or async
   1943  */
   1944 
   1945 int
   1946 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1947 {
   1948 	int error;
   1949 
   1950 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1951 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1952 	return error;
   1953 }
   1954 
   1955 /*
   1956  * uvm_swap_get: get a single page from swap
   1957  *
   1958  * => usually a sync op (from fault)
   1959  */
   1960 
   1961 int
   1962 uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1963 {
   1964 	int error;
   1965 
   1966 	atomic_inc_uint(&uvmexp.nswget);
   1967 	KASSERT(flags & PGO_SYNCIO);
   1968 	if (swslot == SWSLOT_BAD) {
   1969 		return EIO;
   1970 	}
   1971 
   1972 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1973 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1974 	if (error == 0) {
   1975 
   1976 		/*
   1977 		 * this page is no longer only in swap.
   1978 		 */
   1979 
   1980 		KASSERT(uvmexp.swpgonly > 0);
   1981 		atomic_dec_uint(&uvmexp.swpgonly);
   1982 	}
   1983 	return error;
   1984 }
   1985 
   1986 /*
   1987  * uvm_swap_io: do an i/o operation to swap
   1988  */
   1989 
   1990 static int
   1991 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1992 {
   1993 	daddr_t startblk;
   1994 	struct	buf *bp;
   1995 	vaddr_t kva;
   1996 	int	error, mapinflags;
   1997 	bool write, async, swap_encrypt;
   1998 	UVMHIST_FUNC(__func__);
   1999 	UVMHIST_CALLARGS(pdhist,
   2000 	    "<- called, startslot=%jd, npages=%jd, flags=%#jx",
   2001 	    startslot, npages, flags, 0);
   2002 
   2003 	write = (flags & B_READ) == 0;
   2004 	async = (flags & B_ASYNC) != 0;
   2005 	swap_encrypt = atomic_load_relaxed(&uvm_swap_encrypt);
   2006 
   2007 	/*
   2008 	 * allocate a buf for the i/o.
   2009 	 */
   2010 
   2011 	KASSERT(curlwp != uvm.pagedaemon_lwp || write);
   2012 	KASSERT(curlwp != uvm.pagedaemon_lwp || async);
   2013 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
   2014 	if (bp == NULL) {
   2015 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
   2016 		return ENOMEM;
   2017 	}
   2018 
   2019 	/*
   2020 	 * convert starting drum slot to block number
   2021 	 */
   2022 
   2023 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
   2024 
   2025 	/*
   2026 	 * first, map the pages into the kernel.
   2027 	 */
   2028 
   2029 	mapinflags = !write ?
   2030 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   2031 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   2032 	if (write && swap_encrypt)	/* need to encrypt in-place */
   2033 		mapinflags |= UVMPAGER_MAPIN_READ;
   2034 	kva = uvm_pagermapin(pps, npages, mapinflags);
   2035 
   2036 	/*
   2037 	 * encrypt writes in place if requested
   2038 	 */
   2039 
   2040 	if (write) do {
   2041 		struct swapdev *sdp;
   2042 		int i;
   2043 
   2044 		/*
   2045 		 * Get the swapdev so we can discriminate on the
   2046 		 * encryption state.  There may or may not be an
   2047 		 * encryption key generated; we may or may not be asked
   2048 		 * to encrypt swap.
   2049 		 *
   2050 		 * 1. NO KEY, NO ENCRYPTION: Nothing to do.
   2051 		 *
   2052 		 * 2. NO KEY, BUT ENCRYPTION: Generate a key, encrypt,
   2053 		 *    and mark the slots encrypted.
   2054 		 *
   2055 		 * 3. KEY, BUT NO ENCRYPTION: The slots may already be
   2056 		 *    marked encrypted from a past life.  Mark them not
   2057 		 *    encrypted.
   2058 		 *
   2059 		 * 4. KEY, ENCRYPTION: Encrypt and mark the slots
   2060 		 *    encrypted.
   2061 		 */
   2062 		mutex_enter(&uvm_swap_data_lock);
   2063 		sdp = swapdrum_getsdp(startslot);
   2064 		if (!sdp->swd_encinit) {
   2065 			if (!swap_encrypt) {
   2066 				mutex_exit(&uvm_swap_data_lock);
   2067 				break;
   2068 			}
   2069 			uvm_swap_genkey(sdp);
   2070 		}
   2071 		KASSERT(sdp->swd_encinit);
   2072 		mutex_exit(&uvm_swap_data_lock);
   2073 
   2074 		for (i = 0; i < npages; i++) {
   2075 			int s = startslot + i;
   2076 			KDASSERT(swapdrum_sdp_is(s, sdp));
   2077 			KASSERT(s >= sdp->swd_drumoffset);
   2078 			s -= sdp->swd_drumoffset;
   2079 			KASSERT(s < sdp->swd_drumsize);
   2080 
   2081 			if (swap_encrypt) {
   2082 				uvm_swap_encryptpage(sdp,
   2083 				    (void *)(kva + (vsize_t)i*PAGE_SIZE), s);
   2084 				atomic_or_32(&sdp->swd_encmap[s/32],
   2085 				    __BIT(s%32));
   2086 			} else {
   2087 				atomic_and_32(&sdp->swd_encmap[s/32],
   2088 				    ~__BIT(s%32));
   2089 			}
   2090 		}
   2091 	} while (0);
   2092 
   2093 	/*
   2094 	 * fill in the bp/sbp.   we currently route our i/o through
   2095 	 * /dev/drum's vnode [swapdev_vp].
   2096 	 */
   2097 
   2098 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
   2099 	bp->b_flags = (flags & (B_READ|B_ASYNC));
   2100 	bp->b_proc = &proc0;	/* XXX */
   2101 	bp->b_vnbufs.le_next = NOLIST;
   2102 	bp->b_data = (void *)kva;
   2103 	bp->b_blkno = startblk;
   2104 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   2105 
   2106 	/*
   2107 	 * bump v_numoutput (counter of number of active outputs).
   2108 	 */
   2109 
   2110 	if (write) {
   2111 		mutex_enter(swapdev_vp->v_interlock);
   2112 		swapdev_vp->v_numoutput++;
   2113 		mutex_exit(swapdev_vp->v_interlock);
   2114 	}
   2115 
   2116 	/*
   2117 	 * for async ops we must set up the iodone handler.
   2118 	 */
   2119 
   2120 	if (async) {
   2121 		bp->b_iodone = uvm_aio_aiodone;
   2122 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   2123 		if (curlwp == uvm.pagedaemon_lwp)
   2124 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   2125 		else
   2126 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   2127 	} else {
   2128 		bp->b_iodone = NULL;
   2129 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   2130 	}
   2131 	UVMHIST_LOG(pdhist,
   2132 	    "about to start io: data = %#jx blkno = %#jx, bcount = %jd",
   2133 	    (uintptr_t)bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   2134 
   2135 	/*
   2136 	 * now we start the I/O, and if async, return.
   2137 	 */
   2138 
   2139 	VOP_STRATEGY(swapdev_vp, bp);
   2140 	if (async) {
   2141 		/*
   2142 		 * Reads are always synchronous; if this changes, we
   2143 		 * need to add an asynchronous path for decryption.
   2144 		 */
   2145 		KASSERT(write);
   2146 		return 0;
   2147 	}
   2148 
   2149 	/*
   2150 	 * must be sync i/o.   wait for it to finish
   2151 	 */
   2152 
   2153 	error = biowait(bp);
   2154 	if (error)
   2155 		goto out;
   2156 
   2157 	/*
   2158 	 * decrypt reads in place if needed
   2159 	 */
   2160 
   2161 	if (!write) do {
   2162 		struct swapdev *sdp;
   2163 		bool encinit;
   2164 		int i;
   2165 
   2166 		/*
   2167 		 * Get the sdp.  Everything about it except the encinit
   2168 		 * bit, saying whether the encryption key is
   2169 		 * initialized or not, and the encrypted bit for each
   2170 		 * page, is stable until all swap pages have been
   2171 		 * released and the device is removed.
   2172 		 */
   2173 		mutex_enter(&uvm_swap_data_lock);
   2174 		sdp = swapdrum_getsdp(startslot);
   2175 		encinit = sdp->swd_encinit;
   2176 		mutex_exit(&uvm_swap_data_lock);
   2177 
   2178 		if (!encinit)
   2179 			/*
   2180 			 * If there's no encryption key, there's no way
   2181 			 * any of these slots can be encrypted, so
   2182 			 * nothing to do here.
   2183 			 */
   2184 			break;
   2185 		for (i = 0; i < npages; i++) {
   2186 			int s = startslot + i;
   2187 			KDASSERT(swapdrum_sdp_is(s, sdp));
   2188 			KASSERT(s >= sdp->swd_drumoffset);
   2189 			s -= sdp->swd_drumoffset;
   2190 			KASSERT(s < sdp->swd_drumsize);
   2191 			if ((atomic_load_relaxed(&sdp->swd_encmap[s/32]) &
   2192 				__BIT(s%32)) == 0)
   2193 				continue;
   2194 			uvm_swap_decryptpage(sdp,
   2195 			    (void *)(kva + (vsize_t)i*PAGE_SIZE), s);
   2196 		}
   2197 	} while (0);
   2198 out:
   2199 	/*
   2200 	 * kill the pager mapping
   2201 	 */
   2202 
   2203 	uvm_pagermapout(kva, npages);
   2204 
   2205 	/*
   2206 	 * now dispose of the buf and we're done.
   2207 	 */
   2208 
   2209 	if (write) {
   2210 		mutex_enter(swapdev_vp->v_interlock);
   2211 		vwakeup(bp);
   2212 		mutex_exit(swapdev_vp->v_interlock);
   2213 	}
   2214 	putiobuf(bp);
   2215 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%jd", error, 0, 0, 0);
   2216 
   2217 	return (error);
   2218 }
   2219 
   2220 /*
   2221  * uvm_swap_genkey(sdp)
   2222  *
   2223  *	Generate a key for swap encryption.
   2224  */
   2225 static void
   2226 uvm_swap_genkey(struct swapdev *sdp)
   2227 {
   2228 	uint8_t key[32];
   2229 
   2230 	KASSERT(!sdp->swd_encinit);
   2231 
   2232 	cprng_strong(kern_cprng, key, sizeof key, 0);
   2233 	aes_setenckey256(&sdp->swd_enckey, key);
   2234 	aes_setdeckey256(&sdp->swd_deckey, key);
   2235 	explicit_memset(key, 0, sizeof key);
   2236 
   2237 	sdp->swd_encinit = true;
   2238 }
   2239 
   2240 /*
   2241  * uvm_swap_encryptpage(sdp, kva, slot)
   2242  *
   2243  *	Encrypt one page of data at kva for the specified slot number
   2244  *	in the swap device.
   2245  */
   2246 static void
   2247 uvm_swap_encryptpage(struct swapdev *sdp, void *kva, int slot)
   2248 {
   2249 	uint8_t preiv[16] __aligned(16) = {0}, iv[16] __aligned(16);
   2250 
   2251 	/* iv := AES_k(le32enc(slot) || 0^96) */
   2252 	le32enc(preiv, slot);
   2253 	aes_enc(&sdp->swd_enckey, (const void *)preiv, iv, AES_256_NROUNDS);
   2254 
   2255 	/* *kva := AES-CBC_k(iv, *kva) */
   2256 	aes_cbc_enc(&sdp->swd_enckey, kva, kva, PAGE_SIZE, iv,
   2257 	    AES_256_NROUNDS);
   2258 
   2259 	explicit_memset(&iv, 0, sizeof iv);
   2260 }
   2261 
   2262 /*
   2263  * uvm_swap_decryptpage(sdp, kva, slot)
   2264  *
   2265  *	Decrypt one page of data at kva for the specified slot number
   2266  *	in the swap device.
   2267  */
   2268 static void
   2269 uvm_swap_decryptpage(struct swapdev *sdp, void *kva, int slot)
   2270 {
   2271 	uint8_t preiv[16] __aligned(16) = {0}, iv[16] __aligned(16);
   2272 
   2273 	/* iv := AES_k(le32enc(slot) || 0^96) */
   2274 	le32enc(preiv, slot);
   2275 	aes_enc(&sdp->swd_enckey, (const void *)preiv, iv, AES_256_NROUNDS);
   2276 
   2277 	/* *kva := AES-CBC^{-1}_k(iv, *kva) */
   2278 	aes_cbc_dec(&sdp->swd_deckey, kva, kva, PAGE_SIZE, iv,
   2279 	    AES_256_NROUNDS);
   2280 
   2281 	explicit_memset(&iv, 0, sizeof iv);
   2282 }
   2283 
   2284 SYSCTL_SETUP(sysctl_uvmswap_setup, "sysctl uvmswap setup")
   2285 {
   2286 
   2287 	sysctl_createv(clog, 0, NULL, NULL,
   2288 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "swap_encrypt",
   2289 	    SYSCTL_DESCR("Encrypt data when swapped out to disk"),
   2290 	    NULL, 0, &uvm_swap_encrypt, 0,
   2291 	    CTL_VM, CTL_CREATE, CTL_EOL);
   2292 }
   2293