Home | History | Annotate | Line # | Download | only in kern
      1 /*	$NetBSD: kern_resource.c,v 1.197 2026/01/04 01:37:47 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1982, 1986, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)kern_resource.c	8.8 (Berkeley) 2/14/95
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.197 2026/01/04 01:37:47 riastradh Exp $");
     41 
     42 #include <sys/param.h>
     43 #include <sys/types.h>
     44 
     45 #include <sys/atomic.h>
     46 #include <sys/file.h>
     47 #include <sys/kauth.h>
     48 #include <sys/kernel.h>
     49 #include <sys/kmem.h>
     50 #include <sys/mount.h>
     51 #include <sys/namei.h>
     52 #include <sys/pool.h>
     53 #include <sys/proc.h>
     54 #include <sys/resourcevar.h>
     55 #include <sys/sdt.h>
     56 #include <sys/syscallargs.h>
     57 #include <sys/sysctl.h>
     58 #include <sys/systm.h>
     59 #include <sys/timevar.h>
     60 
     61 #include <uvm/uvm_extern.h>
     62 
     63 /*
     64  * Maximum process data and stack limits.
     65  * They are variables so they are patchable.
     66  */
     67 rlim_t			maxdmap = MAXDSIZ;
     68 rlim_t			maxsmap = MAXSSIZ;
     69 
     70 static kauth_listener_t	resource_listener;
     71 static struct sysctllog	*proc_sysctllog;
     72 
     73 static int	donice(struct lwp *, struct proc *, int);
     74 static void	sysctl_proc_setup(void);
     75 
     76 static int
     77 resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
     78     void *arg0, void *arg1, void *arg2, void *arg3)
     79 {
     80 	struct proc *p;
     81 	int result;
     82 
     83 	result = KAUTH_RESULT_DEFER;
     84 	p = arg0;
     85 
     86 	switch (action) {
     87 	case KAUTH_PROCESS_NICE:
     88 		if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) &&
     89 		    kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) {
     90 			break;
     91 		}
     92 
     93 		if ((u_long)arg1 >= p->p_nice)
     94 			result = KAUTH_RESULT_ALLOW;
     95 
     96 		break;
     97 
     98 	case KAUTH_PROCESS_RLIMIT: {
     99 		enum kauth_process_req req;
    100 
    101 		req = (enum kauth_process_req)(uintptr_t)arg1;
    102 
    103 		switch (req) {
    104 		case KAUTH_REQ_PROCESS_RLIMIT_GET:
    105 			result = KAUTH_RESULT_ALLOW;
    106 			break;
    107 
    108 		case KAUTH_REQ_PROCESS_RLIMIT_SET: {
    109 			struct rlimit *new_rlimit;
    110 			u_long which;
    111 
    112 			if ((p != curlwp->l_proc) &&
    113 			    (proc_uidmatch(cred, p->p_cred) != 0))
    114 				break;
    115 
    116 			new_rlimit = arg2;
    117 			which = (u_long)arg3;
    118 
    119 			if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max)
    120 				result = KAUTH_RESULT_ALLOW;
    121 
    122 			break;
    123 			}
    124 
    125 		default:
    126 			break;
    127 		}
    128 
    129 		break;
    130 	}
    131 
    132 	default:
    133 		break;
    134 	}
    135 
    136 	return result;
    137 }
    138 
    139 void
    140 resource_init(void)
    141 {
    142 
    143 	resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    144 	    resource_listener_cb, NULL);
    145 
    146 	sysctl_proc_setup();
    147 }
    148 
    149 /*
    150  * Resource controls and accounting.
    151  */
    152 
    153 int
    154 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
    155     register_t *retval)
    156 {
    157 	/* {
    158 		syscallarg(int) which;
    159 		syscallarg(id_t) who;
    160 	} */
    161 	struct proc *curp = l->l_proc, *p;
    162 	id_t who = SCARG(uap, who);
    163 	int low = NZERO + PRIO_MAX + 1;
    164 
    165 	mutex_enter(&proc_lock);
    166 	switch (SCARG(uap, which)) {
    167 	case PRIO_PROCESS:
    168 		p = who ? proc_find(who) : curp;
    169 		if (p != NULL)
    170 			low = p->p_nice;
    171 		break;
    172 
    173 	case PRIO_PGRP: {
    174 		struct pgrp *pg;
    175 
    176 		if (who == 0)
    177 			pg = curp->p_pgrp;
    178 		else if ((pg = pgrp_find(who)) == NULL)
    179 			break;
    180 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    181 			if (p->p_nice < low)
    182 				low = p->p_nice;
    183 		}
    184 		break;
    185 	}
    186 
    187 	case PRIO_USER:
    188 		if (who == 0)
    189 			who = (int)kauth_cred_geteuid(l->l_cred);
    190 		PROCLIST_FOREACH(p, &allproc) {
    191 			mutex_enter(p->p_lock);
    192 			if (kauth_cred_geteuid(p->p_cred) ==
    193 			    (uid_t)who && p->p_nice < low)
    194 				low = p->p_nice;
    195 			mutex_exit(p->p_lock);
    196 		}
    197 		break;
    198 
    199 	default:
    200 		mutex_exit(&proc_lock);
    201 		return SET_ERROR(EINVAL);
    202 	}
    203 	mutex_exit(&proc_lock);
    204 
    205 	if (low == NZERO + PRIO_MAX + 1) {
    206 		return SET_ERROR(ESRCH);
    207 	}
    208 	*retval = low - NZERO;
    209 	return 0;
    210 }
    211 
    212 int
    213 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
    214     register_t *retval)
    215 {
    216 	/* {
    217 		syscallarg(int) which;
    218 		syscallarg(id_t) who;
    219 		syscallarg(int) prio;
    220 	} */
    221 	struct proc *curp = l->l_proc, *p;
    222 	id_t who = SCARG(uap, who);
    223 	int found = 0, error = 0;
    224 
    225 	mutex_enter(&proc_lock);
    226 	switch (SCARG(uap, which)) {
    227 	case PRIO_PROCESS:
    228 		p = who ? proc_find(who) : curp;
    229 		if (p != NULL) {
    230 			mutex_enter(p->p_lock);
    231 			found++;
    232 			error = donice(l, p, SCARG(uap, prio));
    233 			mutex_exit(p->p_lock);
    234 		}
    235 		break;
    236 
    237 	case PRIO_PGRP: {
    238 		struct pgrp *pg;
    239 
    240 		if (who == 0)
    241 			pg = curp->p_pgrp;
    242 		else if ((pg = pgrp_find(who)) == NULL)
    243 			break;
    244 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
    245 			mutex_enter(p->p_lock);
    246 			found++;
    247 			error = donice(l, p, SCARG(uap, prio));
    248 			mutex_exit(p->p_lock);
    249 			if (error)
    250 				break;
    251 		}
    252 		break;
    253 	}
    254 
    255 	case PRIO_USER:
    256 		if (who == 0)
    257 			who = (int)kauth_cred_geteuid(l->l_cred);
    258 		PROCLIST_FOREACH(p, &allproc) {
    259 			mutex_enter(p->p_lock);
    260 			if (kauth_cred_geteuid(p->p_cred) ==
    261 			    (uid_t)SCARG(uap, who)) {
    262 				found++;
    263 				error = donice(l, p, SCARG(uap, prio));
    264 			}
    265 			mutex_exit(p->p_lock);
    266 			if (error)
    267 				break;
    268 		}
    269 		break;
    270 
    271 	default:
    272 		mutex_exit(&proc_lock);
    273 		return SET_ERROR(EINVAL);
    274 	}
    275 	mutex_exit(&proc_lock);
    276 
    277 	return (found == 0) ? SET_ERROR(ESRCH) : error;
    278 }
    279 
    280 /*
    281  * Renice a process.
    282  *
    283  * Call with the target process' credentials locked.
    284  */
    285 static int
    286 donice(struct lwp *l, struct proc *chgp, int n)
    287 {
    288 	kauth_cred_t cred = l->l_cred;
    289 
    290 	KASSERT(mutex_owned(chgp->p_lock));
    291 
    292 	if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
    293 	    kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
    294 	    kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
    295 		return SET_ERROR(EPERM);
    296 
    297 	if (n > PRIO_MAX) {
    298 		n = PRIO_MAX;
    299 	}
    300 	if (n < PRIO_MIN) {
    301 		n = PRIO_MIN;
    302 	}
    303 	n += NZERO;
    304 
    305 	if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
    306 	    KAUTH_ARG(n), NULL, NULL)) {
    307 		return SET_ERROR(EACCES);
    308 	}
    309 
    310 	sched_nice(chgp, n);
    311 	return 0;
    312 }
    313 
    314 int
    315 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
    316     register_t *retval)
    317 {
    318 	/* {
    319 		syscallarg(int) which;
    320 		syscallarg(const struct rlimit *) rlp;
    321 	} */
    322 	int error, which = SCARG(uap, which);
    323 	struct rlimit alim;
    324 
    325 	error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
    326 	if (error) {
    327 		return error;
    328 	}
    329 	return dosetrlimit(l, l->l_proc, which, &alim);
    330 }
    331 
    332 int
    333 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
    334 {
    335 	struct rlimit *alimp;
    336 	int error;
    337 
    338 	if ((u_int)which >= RLIM_NLIMITS)
    339 		return SET_ERROR(EINVAL);
    340 
    341 	if (limp->rlim_cur > limp->rlim_max) {
    342 		/*
    343 		 * This is programming error. According to SUSv2, we should
    344 		 * return error in this case.
    345 		 */
    346 		return SET_ERROR(EINVAL);
    347 	}
    348 
    349 	alimp = &p->p_rlimit[which];
    350 	/* if we don't change the value, no need to limcopy() */
    351 	if (limp->rlim_cur == alimp->rlim_cur &&
    352 	    limp->rlim_max == alimp->rlim_max)
    353 		return 0;
    354 
    355 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    356 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
    357 	if (error)
    358 		return error;
    359 
    360 	lim_privatise(p);
    361 	/* p->p_limit is now unchangeable */
    362 	alimp = &p->p_rlimit[which];
    363 
    364 	switch (which) {
    365 
    366 	case RLIMIT_DATA:
    367 		if (limp->rlim_cur > maxdmap)
    368 			limp->rlim_cur = maxdmap;
    369 		if (limp->rlim_max > maxdmap)
    370 			limp->rlim_max = maxdmap;
    371 		break;
    372 
    373 	case RLIMIT_STACK:
    374 		if (limp->rlim_cur > maxsmap)
    375 			limp->rlim_cur = maxsmap;
    376 		if (limp->rlim_max > maxsmap)
    377 			limp->rlim_max = maxsmap;
    378 
    379 		/*
    380 		 * Return EINVAL if the new stack size limit is lower than
    381 		 * current usage. Otherwise, the process would get SIGSEGV the
    382 		 * moment it would try to access anything on its current stack.
    383 		 * This conforms to SUSv2.
    384 		 */
    385 		if (btoc(limp->rlim_cur) < p->p_vmspace->vm_ssize ||
    386 		    btoc(limp->rlim_max) < p->p_vmspace->vm_ssize) {
    387 			return SET_ERROR(EINVAL);
    388 		}
    389 
    390 		/*
    391 		 * Stack is allocated to the max at exec time with
    392 		 * only "rlim_cur" bytes accessible (In other words,
    393 		 * allocates stack dividing two contiguous regions at
    394 		 * "rlim_cur" bytes boundary).
    395 		 *
    396 		 * Since allocation is done in terms of page, roundup
    397 		 * "rlim_cur" (otherwise, contiguous regions
    398 		 * overlap).  If stack limit is going up make more
    399 		 * accessible, if going down make inaccessible.
    400 		 */
    401 		limp->rlim_max = round_page(limp->rlim_max);
    402 		limp->rlim_cur = round_page(limp->rlim_cur);
    403 		if (limp->rlim_cur != alimp->rlim_cur) {
    404 			vaddr_t addr;
    405 			vsize_t size;
    406 			vm_prot_t prot;
    407 			char *base, *tmp;
    408 
    409 			base = p->p_vmspace->vm_minsaddr;
    410 			if (limp->rlim_cur > alimp->rlim_cur) {
    411 				prot = VM_PROT_READ | VM_PROT_WRITE;
    412 				size = limp->rlim_cur - alimp->rlim_cur;
    413 				tmp = STACK_GROW(base, alimp->rlim_cur);
    414 			} else {
    415 				prot = VM_PROT_NONE;
    416 				size = alimp->rlim_cur - limp->rlim_cur;
    417 				tmp = STACK_GROW(base, limp->rlim_cur);
    418 			}
    419 			addr = (vaddr_t)STACK_ALLOC(tmp, size);
    420 			(void) uvm_map_protect(&p->p_vmspace->vm_map,
    421 			    addr, addr + size, prot, false);
    422 		}
    423 		break;
    424 
    425 	case RLIMIT_NOFILE:
    426 		if (limp->rlim_cur > maxfiles)
    427 			limp->rlim_cur = maxfiles;
    428 		if (limp->rlim_max > maxfiles)
    429 			limp->rlim_max = maxfiles;
    430 		break;
    431 
    432 	case RLIMIT_NPROC:
    433 		if (limp->rlim_cur > maxproc)
    434 			limp->rlim_cur = maxproc;
    435 		if (limp->rlim_max > maxproc)
    436 			limp->rlim_max = maxproc;
    437 		break;
    438 
    439 	case RLIMIT_NTHR:
    440 		if (limp->rlim_cur > maxlwp)
    441 			limp->rlim_cur = maxlwp;
    442 		if (limp->rlim_max > maxlwp)
    443 			limp->rlim_max = maxlwp;
    444 		break;
    445 	}
    446 
    447 	mutex_enter(&p->p_limit->pl_lock);
    448 	*alimp = *limp;
    449 	mutex_exit(&p->p_limit->pl_lock);
    450 	return 0;
    451 }
    452 
    453 int
    454 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
    455     register_t *retval)
    456 {
    457 	/* {
    458 		syscallarg(int) which;
    459 		syscallarg(struct rlimit *) rlp;
    460 	} */
    461 	struct proc *p = l->l_proc;
    462 	int which = SCARG(uap, which);
    463 	struct rlimit rl;
    464 
    465 	if ((u_int)which >= RLIM_NLIMITS)
    466 		return SET_ERROR(EINVAL);
    467 
    468 	mutex_enter(p->p_lock);
    469 	memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
    470 	mutex_exit(p->p_lock);
    471 
    472 	return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
    473 }
    474 
    475 void
    476 addrulwp(struct lwp *l, struct bintime *tm)
    477 {
    478 
    479 	lwp_lock(l);
    480 	bintime_add(tm, &l->l_rtime);
    481 	if ((l->l_pflag & LP_RUNNING) != 0 &&
    482 	    (l->l_pflag & (LP_INTR | LP_TIMEINTR)) != LP_INTR) {
    483 		struct bintime diff;
    484 		/*
    485 		 * Adjust for the current time slice.  This is
    486 		 * actually fairly important since the error
    487 		 * here is on the order of a time quantum,
    488 		 * which is much greater than the sampling
    489 		 * error.
    490 		 */
    491 		binuptime(&diff);
    492 		membar_consumer(); /* for softint_dispatch() */
    493 		bintime_sub(&diff, &l->l_stime);
    494 		bintime_add(tm, &diff);
    495 	}
    496 	lwp_unlock(l);
    497 }
    498 
    499 /*
    500  * Transform the running time and tick information in proc p into user,
    501  * system, and interrupt time usage.
    502  *
    503  * Should be called with p->p_lock held unless called from exit1().
    504  */
    505 void
    506 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
    507     struct timeval *ip, struct timeval *rp)
    508 {
    509 	uint64_t u, st, ut, it, tot, dt;
    510 	struct lwp *l;
    511 	struct bintime tm;
    512 	struct timeval tv;
    513 
    514 	KASSERT(p->p_stat == SDEAD || mutex_owned(p->p_lock));
    515 
    516 	mutex_spin_enter(&p->p_stmutex);
    517 	st = p->p_sticks;
    518 	ut = p->p_uticks;
    519 	it = p->p_iticks;
    520 	mutex_spin_exit(&p->p_stmutex);
    521 
    522 	tm = p->p_rtime;
    523 
    524 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    525 		addrulwp(l, &tm);
    526 	}
    527 
    528 	tot = st + ut + it;
    529 	bintime2timeval(&tm, &tv);
    530 	u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
    531 
    532 	if (tot == 0) {
    533 		/* No ticks, so can't use to share time out, split 50-50 */
    534 		st = ut = u / 2;
    535 	} else {
    536 		st = (u * st) / tot;
    537 		ut = (u * ut) / tot;
    538 	}
    539 
    540 	/*
    541 	 * Try to avoid lying to the users (too much)
    542 	 *
    543 	 * Of course, user/sys time are based on sampling (ie: statistics)
    544 	 * so that would be impossible, but convincing the mark
    545 	 * that we have used less ?time this call than we had
    546 	 * last time, is beyond reasonable...  (the con fails!)
    547 	 *
    548 	 * Note that since actual used time cannot decrease, either
    549 	 * utime or stime (or both) must be greater now than last time
    550 	 * (or both the same) - if one seems to have decreased, hold
    551 	 * it constant and steal the necessary bump from the other
    552 	 * which must have increased.
    553 	 */
    554 	if (p->p_xutime > ut) {
    555 		dt = p->p_xutime - ut;
    556 		st -= uimin(dt, st);
    557 		ut = p->p_xutime;
    558 	} else if (p->p_xstime > st) {
    559 		dt = p->p_xstime - st;
    560 		ut -= uimin(dt, ut);
    561 		st = p->p_xstime;
    562 	}
    563 
    564 	if (sp != NULL) {
    565 		p->p_xstime = st;
    566 		sp->tv_sec = st / 1000000;
    567 		sp->tv_usec = st % 1000000;
    568 	}
    569 	if (up != NULL) {
    570 		p->p_xutime = ut;
    571 		up->tv_sec = ut / 1000000;
    572 		up->tv_usec = ut % 1000000;
    573 	}
    574 	if (ip != NULL) {
    575 		if (it != 0)		/* it != 0 --> tot != 0 */
    576 			it = (u * it) / tot;
    577 		ip->tv_sec = it / 1000000;
    578 		ip->tv_usec = it % 1000000;
    579 	}
    580 	if (rp != NULL) {
    581 		*rp = tv;
    582 	}
    583 }
    584 
    585 int
    586 sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
    587     register_t *retval)
    588 {
    589 	/* {
    590 		syscallarg(int) who;
    591 		syscallarg(struct rusage *) rusage;
    592 	} */
    593 	int error;
    594 	struct rusage ru;
    595 	struct proc *p = l->l_proc;
    596 
    597 	error = getrusage1(p, SCARG(uap, who), &ru);
    598 	if (error != 0)
    599 		return error;
    600 
    601 	return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
    602 }
    603 
    604 int
    605 getrusage1(struct proc *p, int who, struct rusage *ru)
    606 {
    607 
    608 	switch (who) {
    609 	case RUSAGE_SELF:
    610 		mutex_enter(p->p_lock);
    611 		ruspace(p);
    612 		memcpy(ru, &p->p_stats->p_ru, sizeof(*ru));
    613 		calcru(p, &ru->ru_utime, &ru->ru_stime, NULL, NULL);
    614 		rulwps(p, ru);
    615 		mutex_exit(p->p_lock);
    616 		break;
    617 	case RUSAGE_CHILDREN:
    618 		mutex_enter(p->p_lock);
    619 		memcpy(ru, &p->p_stats->p_cru, sizeof(*ru));
    620 		mutex_exit(p->p_lock);
    621 		break;
    622 	default:
    623 		return SET_ERROR(EINVAL);
    624 	}
    625 
    626 	return 0;
    627 }
    628 
    629 void
    630 ruspace(struct proc *p)
    631 {
    632 	struct vmspace *vm = p->p_vmspace;
    633 	struct rusage *ru = &p->p_stats->p_ru;
    634 
    635 	ru->ru_ixrss = vm->vm_tsize << (PAGE_SHIFT - 10);
    636 	ru->ru_idrss = vm->vm_dsize << (PAGE_SHIFT - 10);
    637 	ru->ru_isrss = vm->vm_ssize << (PAGE_SHIFT - 10);
    638 #ifdef __HAVE_NO_PMAP_STATS
    639 	/* We don't keep track of the max so we get the current */
    640 	ru->ru_maxrss = vm_resident_count(vm) << (PAGE_SHIFT - 10);
    641 #else
    642 	ru->ru_maxrss = vm->vm_rssmax << (PAGE_SHIFT - 10);
    643 #endif
    644 }
    645 
    646 void
    647 ruadd(struct rusage *ru, struct rusage *ru2)
    648 {
    649 	long *ip, *ip2;
    650 	int i;
    651 
    652 	timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
    653 	timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
    654 	if (ru->ru_maxrss < ru2->ru_maxrss)
    655 		ru->ru_maxrss = ru2->ru_maxrss;
    656 	ip = &ru->ru_first; ip2 = &ru2->ru_first;
    657 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
    658 		*ip++ += *ip2++;
    659 }
    660 
    661 void
    662 rulwps(proc_t *p, struct rusage *ru)
    663 {
    664 	lwp_t *l;
    665 
    666 	KASSERT(mutex_owned(p->p_lock));
    667 
    668 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    669 		ruadd(ru, &l->l_ru);
    670 	}
    671 }
    672 
    673 /*
    674  * lim_copy: make a copy of the plimit structure.
    675  *
    676  * We use copy-on-write after fork, and copy when a limit is changed.
    677  */
    678 struct plimit *
    679 lim_copy(struct plimit *lim)
    680 {
    681 	struct plimit *newlim;
    682 	char *corename;
    683 	size_t alen, len;
    684 
    685 	newlim = kmem_alloc(sizeof(*newlim), KM_SLEEP);
    686 	mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
    687 	newlim->pl_writeable = false;
    688 	newlim->pl_refcnt = 1;
    689 	newlim->pl_sv_limit = NULL;
    690 
    691 	mutex_enter(&lim->pl_lock);
    692 	memcpy(newlim->pl_rlimit, lim->pl_rlimit,
    693 	    sizeof(struct rlimit) * RLIM_NLIMITS);
    694 
    695 	/*
    696 	 * Note: the common case is a use of default core name.
    697 	 */
    698 	alen = 0;
    699 	corename = NULL;
    700 	for (;;) {
    701 		if (lim->pl_corename == defcorename) {
    702 			newlim->pl_corename = defcorename;
    703 			newlim->pl_cnlen = 0;
    704 			break;
    705 		}
    706 		len = lim->pl_cnlen;
    707 		if (len == alen) {
    708 			newlim->pl_corename = corename;
    709 			newlim->pl_cnlen = len;
    710 			memcpy(corename, lim->pl_corename, len);
    711 			corename = NULL;
    712 			break;
    713 		}
    714 		mutex_exit(&lim->pl_lock);
    715 		if (corename) {
    716 			kmem_free(corename, alen);
    717 		}
    718 		alen = len;
    719 		corename = kmem_alloc(alen, KM_SLEEP);
    720 		mutex_enter(&lim->pl_lock);
    721 	}
    722 	mutex_exit(&lim->pl_lock);
    723 
    724 	if (corename) {
    725 		kmem_free(corename, alen);
    726 	}
    727 	return newlim;
    728 }
    729 
    730 void
    731 lim_addref(struct plimit *lim)
    732 {
    733 	atomic_inc_uint(&lim->pl_refcnt);
    734 }
    735 
    736 /*
    737  * lim_privatise: give a process its own private plimit structure.
    738  */
    739 void
    740 lim_privatise(proc_t *p)
    741 {
    742 	struct plimit *lim = p->p_limit, *newlim;
    743 
    744 	if (lim->pl_writeable) {
    745 		return;
    746 	}
    747 
    748 	newlim = lim_copy(lim);
    749 
    750 	mutex_enter(p->p_lock);
    751 	if (p->p_limit->pl_writeable) {
    752 		/* Other thread won the race. */
    753 		mutex_exit(p->p_lock);
    754 		lim_free(newlim);
    755 		return;
    756 	}
    757 
    758 	/*
    759 	 * Since p->p_limit can be accessed without locked held,
    760 	 * old limit structure must not be deleted yet.
    761 	 */
    762 	newlim->pl_sv_limit = p->p_limit;
    763 	newlim->pl_writeable = true;
    764 	p->p_limit = newlim;
    765 	mutex_exit(p->p_lock);
    766 }
    767 
    768 void
    769 lim_setcorename(proc_t *p, char *name, size_t len)
    770 {
    771 	struct plimit *lim;
    772 	char *oname;
    773 	size_t olen;
    774 
    775 	lim_privatise(p);
    776 	lim = p->p_limit;
    777 
    778 	mutex_enter(&lim->pl_lock);
    779 	oname = lim->pl_corename;
    780 	olen = lim->pl_cnlen;
    781 	lim->pl_corename = name;
    782 	lim->pl_cnlen = len;
    783 	mutex_exit(&lim->pl_lock);
    784 
    785 	if (oname != defcorename) {
    786 		kmem_free(oname, olen);
    787 	}
    788 }
    789 
    790 void
    791 lim_free(struct plimit *lim)
    792 {
    793 	struct plimit *sv_lim;
    794 
    795 	do {
    796 		membar_release();
    797 		if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) {
    798 			return;
    799 		}
    800 		membar_acquire();
    801 		if (lim->pl_corename != defcorename) {
    802 			kmem_free(lim->pl_corename, lim->pl_cnlen);
    803 		}
    804 		sv_lim = lim->pl_sv_limit;
    805 		mutex_destroy(&lim->pl_lock);
    806 		kmem_free(lim, sizeof(*lim));
    807 	} while ((lim = sv_lim) != NULL);
    808 }
    809 
    810 struct pstats *
    811 pstatscopy(struct pstats *ps)
    812 {
    813 	struct pstats *nps;
    814 	size_t len;
    815 
    816 	nps = kmem_alloc(sizeof(*nps), KM_SLEEP);
    817 
    818 	len = (char *)&nps->pstat_endzero - (char *)&nps->pstat_startzero;
    819 	memset(&nps->pstat_startzero, 0, len);
    820 
    821 	len = (char *)&nps->pstat_endcopy - (char *)&nps->pstat_startcopy;
    822 	memcpy(&nps->pstat_startcopy, &ps->pstat_startcopy, len);
    823 
    824 	return nps;
    825 }
    826 
    827 void
    828 pstatsfree(struct pstats *ps)
    829 {
    830 
    831 	kmem_free(ps, sizeof(*ps));
    832 }
    833 
    834 /*
    835  * sysctl_proc_findproc: a routine for sysctl proc subtree helpers that
    836  * need to pick a valid process by PID.
    837  *
    838  * => Hold a reference on the process, on success.
    839  */
    840 static int
    841 sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2)
    842 {
    843 	proc_t *p;
    844 	int error;
    845 
    846 	if (pid == PROC_CURPROC) {
    847 		p = l->l_proc;
    848 	} else {
    849 		mutex_enter(&proc_lock);
    850 		p = proc_find(pid);
    851 		if (p == NULL) {
    852 			mutex_exit(&proc_lock);
    853 			return SET_ERROR(ESRCH);
    854 		}
    855 	}
    856 	error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : SET_ERROR(EBUSY);
    857 	if (pid != PROC_CURPROC) {
    858 		mutex_exit(&proc_lock);
    859 	}
    860 	*p2 = p;
    861 	return error;
    862 }
    863 
    864 /*
    865  * sysctl_proc_paxflags: helper routine to get process's paxctl flags
    866  */
    867 static int
    868 sysctl_proc_paxflags(SYSCTLFN_ARGS)
    869 {
    870 	struct proc *p;
    871 	struct sysctlnode node;
    872 	int paxflags;
    873 	int error;
    874 
    875 	/* First, validate the request. */
    876 	if (namelen != 0 || name[-1] != PROC_PID_PAXFLAGS)
    877 		return SET_ERROR(EINVAL);
    878 
    879 	/* Find the process.  Hold a reference (p_reflock), if found. */
    880 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
    881 	if (error)
    882 		return error;
    883 
    884 	/* XXX-elad */
    885 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
    886 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    887 	if (error) {
    888 		rw_exit(&p->p_reflock);
    889 		return error;
    890 	}
    891 
    892 	/* Retrieve the limits. */
    893 	node = *rnode;
    894 	paxflags = p->p_pax;
    895 	node.sysctl_data = &paxflags;
    896 
    897 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    898 
    899 	/* If attempting to write new value, it's an error */
    900 	if (error == 0 && newp != NULL)
    901 		error = SET_ERROR(EACCES);
    902 
    903 	rw_exit(&p->p_reflock);
    904 	return error;
    905 }
    906 
    907 /*
    908  * sysctl_proc_corename: helper routine to get or set the core file name
    909  * for a process specified by PID.
    910  */
    911 static int
    912 sysctl_proc_corename(SYSCTLFN_ARGS)
    913 {
    914 	struct proc *p;
    915 	struct plimit *lim;
    916 	char *cnbuf, *cname;
    917 	struct sysctlnode node;
    918 	size_t len;
    919 	int error;
    920 
    921 	/* First, validate the request. */
    922 	if (namelen != 0 || name[-1] != PROC_PID_CORENAME)
    923 		return SET_ERROR(EINVAL);
    924 
    925 	/* Find the process.  Hold a reference (p_reflock), if found. */
    926 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
    927 	if (error)
    928 		return error;
    929 
    930 	/* XXX-elad */
    931 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
    932 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    933 	if (error) {
    934 		rw_exit(&p->p_reflock);
    935 		return error;
    936 	}
    937 
    938 	cnbuf = PNBUF_GET();
    939 
    940 	if (oldp) {
    941 		/* Get case: copy the core name into the buffer. */
    942 		error = kauth_authorize_process(l->l_cred,
    943 		    KAUTH_PROCESS_CORENAME, p,
    944 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
    945 		if (error) {
    946 			goto done;
    947 		}
    948 		lim = p->p_limit;
    949 		mutex_enter(&lim->pl_lock);
    950 		strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN);
    951 		mutex_exit(&lim->pl_lock);
    952 	}
    953 
    954 	node = *rnode;
    955 	node.sysctl_data = cnbuf;
    956 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    957 
    958 	/* Return if error, or if caller is only getting the core name. */
    959 	if (error || newp == NULL) {
    960 		goto done;
    961 	}
    962 
    963 	/*
    964 	 * Set case.  Check permission and then validate new core name.
    965 	 * It must be either "core", "/core", or end in ".core".
    966 	 */
    967 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
    968 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL);
    969 	if (error) {
    970 		goto done;
    971 	}
    972 	len = strlen(cnbuf);
    973 	if ((len < 4 || strcmp(cnbuf + len - 4, "core") != 0) ||
    974 	    (len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) {
    975 		error = SET_ERROR(EINVAL);
    976 		goto done;
    977 	}
    978 
    979 	/* Allocate, copy and set the new core name for plimit structure. */
    980 	cname = kmem_alloc(++len, KM_NOSLEEP);
    981 	if (cname == NULL) {
    982 		error = SET_ERROR(ENOMEM);
    983 		goto done;
    984 	}
    985 	memcpy(cname, cnbuf, len);
    986 	lim_setcorename(p, cname, len);
    987 done:
    988 	rw_exit(&p->p_reflock);
    989 	PNBUF_PUT(cnbuf);
    990 	return error;
    991 }
    992 
    993 /*
    994  * sysctl_proc_stop: helper routine for checking/setting the stop flags.
    995  */
    996 static int
    997 sysctl_proc_stop(SYSCTLFN_ARGS)
    998 {
    999 	struct proc *p;
   1000 	int isset, flag, error = 0;
   1001 	struct sysctlnode node;
   1002 
   1003 	if (namelen != 0)
   1004 		return SET_ERROR(EINVAL);
   1005 
   1006 	/* Find the process.  Hold a reference (p_reflock), if found. */
   1007 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
   1008 	if (error)
   1009 		return error;
   1010 
   1011 	/* XXX-elad */
   1012 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
   1013 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
   1014 	if (error) {
   1015 		goto out;
   1016 	}
   1017 
   1018 	/* Determine the flag. */
   1019 	switch (rnode->sysctl_num) {
   1020 	case PROC_PID_STOPFORK:
   1021 		flag = PS_STOPFORK;
   1022 		break;
   1023 	case PROC_PID_STOPEXEC:
   1024 		flag = PS_STOPEXEC;
   1025 		break;
   1026 	case PROC_PID_STOPEXIT:
   1027 		flag = PS_STOPEXIT;
   1028 		break;
   1029 	default:
   1030 		error = SET_ERROR(EINVAL);
   1031 		goto out;
   1032 	}
   1033 	isset = (p->p_flag & flag) ? 1 : 0;
   1034 	node = *rnode;
   1035 	node.sysctl_data = &isset;
   1036 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1037 
   1038 	/* Return if error, or if callers is only getting the flag. */
   1039 	if (error || newp == NULL) {
   1040 		goto out;
   1041 	}
   1042 
   1043 	/* Check if caller can set the flags. */
   1044 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
   1045 	    p, KAUTH_ARG(flag), NULL, NULL);
   1046 	if (error) {
   1047 		goto out;
   1048 	}
   1049 	mutex_enter(p->p_lock);
   1050 	if (isset) {
   1051 		p->p_sflag |= flag;
   1052 	} else {
   1053 		p->p_sflag &= ~flag;
   1054 	}
   1055 	mutex_exit(p->p_lock);
   1056 out:
   1057 	rw_exit(&p->p_reflock);
   1058 	return error;
   1059 }
   1060 
   1061 /*
   1062  * sysctl_proc_plimit: helper routine to get/set rlimits of a process.
   1063  */
   1064 static int
   1065 sysctl_proc_plimit(SYSCTLFN_ARGS)
   1066 {
   1067 	struct proc *p;
   1068 	u_int limitno;
   1069 	int which, error = 0;
   1070         struct rlimit alim;
   1071 	struct sysctlnode node;
   1072 
   1073 	if (namelen != 0)
   1074 		return SET_ERROR(EINVAL);
   1075 
   1076 	which = name[-1];
   1077 	if (which != PROC_PID_LIMIT_TYPE_SOFT &&
   1078 	    which != PROC_PID_LIMIT_TYPE_HARD)
   1079 		return SET_ERROR(EINVAL);
   1080 
   1081 	limitno = name[-2] - 1;
   1082 	if (limitno >= RLIM_NLIMITS)
   1083 		return SET_ERROR(EINVAL);
   1084 
   1085 	if (name[-3] != PROC_PID_LIMIT)
   1086 		return SET_ERROR(EINVAL);
   1087 
   1088 	/* Find the process.  Hold a reference (p_reflock), if found. */
   1089 	error = sysctl_proc_findproc(l, (pid_t)name[-4], &p);
   1090 	if (error)
   1091 		return error;
   1092 
   1093 	/* XXX-elad */
   1094 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
   1095 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
   1096 	if (error)
   1097 		goto out;
   1098 
   1099 	/* Check if caller can retrieve the limits. */
   1100 	if (newp == NULL) {
   1101 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
   1102 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
   1103 		    KAUTH_ARG(which));
   1104 		if (error)
   1105 			goto out;
   1106 	}
   1107 
   1108 	/* Retrieve the limits. */
   1109 	node = *rnode;
   1110 	memcpy(&alim, &p->p_rlimit[limitno], sizeof(alim));
   1111 	if (which == PROC_PID_LIMIT_TYPE_HARD) {
   1112 		node.sysctl_data = &alim.rlim_max;
   1113 	} else {
   1114 		node.sysctl_data = &alim.rlim_cur;
   1115 	}
   1116 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1117 
   1118 	/* Return if error, or if we are only retrieving the limits. */
   1119 	if (error || newp == NULL) {
   1120 		goto out;
   1121 	}
   1122 	error = dosetrlimit(l, p, limitno, &alim);
   1123 out:
   1124 	rw_exit(&p->p_reflock);
   1125 	return error;
   1126 }
   1127 
   1128 /*
   1129  * Setup sysctl nodes.
   1130  */
   1131 static void
   1132 sysctl_proc_setup(void)
   1133 {
   1134 
   1135 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1136 		       CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
   1137 		       CTLTYPE_NODE, "curproc",
   1138 		       SYSCTL_DESCR("Per-process settings"),
   1139 		       NULL, 0, NULL, 0,
   1140 		       CTL_PROC, PROC_CURPROC, CTL_EOL);
   1141 
   1142 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1143 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
   1144 		       CTLTYPE_INT, "paxflags",
   1145 		       SYSCTL_DESCR("Process PAX control flags"),
   1146 		       sysctl_proc_paxflags, 0, NULL, 0,
   1147 		       CTL_PROC, PROC_CURPROC, PROC_PID_PAXFLAGS, CTL_EOL);
   1148 
   1149 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1150 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1151 		       CTLTYPE_STRING, "corename",
   1152 		       SYSCTL_DESCR("Core file name"),
   1153 		       sysctl_proc_corename, 0, NULL, MAXPATHLEN,
   1154 		       CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
   1155 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1156 		       CTLFLAG_PERMANENT,
   1157 		       CTLTYPE_NODE, "rlimit",
   1158 		       SYSCTL_DESCR("Process limits"),
   1159 		       NULL, 0, NULL, 0,
   1160 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
   1161 
   1162 #define create_proc_plimit(s, n) do {					\
   1163 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1164 		       CTLFLAG_PERMANENT,				\
   1165 		       CTLTYPE_NODE, s,					\
   1166 		       SYSCTL_DESCR("Process " s " limits"),		\
   1167 		       NULL, 0, NULL, 0,				\
   1168 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1169 		       CTL_EOL);					\
   1170 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1171 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
   1172 		       CTLTYPE_QUAD, "soft",				\
   1173 		       SYSCTL_DESCR("Process soft " s " limit"),	\
   1174 		       sysctl_proc_plimit, 0, NULL, 0,			\
   1175 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1176 		       PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL);		\
   1177 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
   1178 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
   1179 		       CTLTYPE_QUAD, "hard",				\
   1180 		       SYSCTL_DESCR("Process hard " s " limit"),	\
   1181 		       sysctl_proc_plimit, 0, NULL, 0,			\
   1182 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
   1183 		       PROC_PID_LIMIT_TYPE_HARD, CTL_EOL);		\
   1184 	} while (0/*CONSTCOND*/)
   1185 
   1186 	create_proc_plimit("cputime",		PROC_PID_LIMIT_CPU);
   1187 	create_proc_plimit("filesize",		PROC_PID_LIMIT_FSIZE);
   1188 	create_proc_plimit("datasize",		PROC_PID_LIMIT_DATA);
   1189 	create_proc_plimit("stacksize",		PROC_PID_LIMIT_STACK);
   1190 	create_proc_plimit("coredumpsize",	PROC_PID_LIMIT_CORE);
   1191 	create_proc_plimit("memoryuse",		PROC_PID_LIMIT_RSS);
   1192 	create_proc_plimit("memorylocked",	PROC_PID_LIMIT_MEMLOCK);
   1193 	create_proc_plimit("maxproc",		PROC_PID_LIMIT_NPROC);
   1194 	create_proc_plimit("descriptors",	PROC_PID_LIMIT_NOFILE);
   1195 	create_proc_plimit("sbsize",		PROC_PID_LIMIT_SBSIZE);
   1196 	create_proc_plimit("vmemoryuse",	PROC_PID_LIMIT_AS);
   1197 	create_proc_plimit("maxlwp",		PROC_PID_LIMIT_NTHR);
   1198 
   1199 #undef create_proc_plimit
   1200 
   1201 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1202 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1203 		       CTLTYPE_INT, "stopfork",
   1204 		       SYSCTL_DESCR("Stop process at fork(2)"),
   1205 		       sysctl_proc_stop, 0, NULL, 0,
   1206 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
   1207 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1208 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1209 		       CTLTYPE_INT, "stopexec",
   1210 		       SYSCTL_DESCR("Stop process at execve(2)"),
   1211 		       sysctl_proc_stop, 0, NULL, 0,
   1212 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
   1213 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
   1214 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
   1215 		       CTLTYPE_INT, "stopexit",
   1216 		       SYSCTL_DESCR("Stop process before completing exit"),
   1217 		       sysctl_proc_stop, 0, NULL, 0,
   1218 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
   1219 }
   1220