Home | History | Annotate | Line # | Download | only in kern
      1 /*	$NetBSD: kern_fork.c,v 1.234 2026/01/04 01:33:56 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2001, 2004, 2006, 2007, 2008, 2019
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     10  * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * Copyright (c) 1982, 1986, 1989, 1991, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  * (c) UNIX System Laboratories, Inc.
     38  * All or some portions of this file are derived from material licensed
     39  * to the University of California by American Telephone and Telegraph
     40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     41  * the permission of UNIX System Laboratories, Inc.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)kern_fork.c	8.8 (Berkeley) 2/14/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: kern_fork.c,v 1.234 2026/01/04 01:33:56 riastradh Exp $");
     72 
     73 #include "opt_ktrace.h"
     74 #include "opt_dtrace.h"
     75 
     76 #include <sys/param.h>
     77 #include <sys/types.h>
     78 
     79 #include <sys/acct.h>
     80 #include <sys/atomic.h>
     81 #include <sys/file.h>
     82 #include <sys/filedesc.h>
     83 #include <sys/kauth.h>
     84 #include <sys/kernel.h>
     85 #include <sys/ktrace.h>
     86 #include <sys/mount.h>
     87 #include <sys/pool.h>
     88 #include <sys/proc.h>
     89 #include <sys/ptrace.h>
     90 #include <sys/ras.h>
     91 #include <sys/resourcevar.h>
     92 #include <sys/sched.h>
     93 #include <sys/sdt.h>
     94 #include <sys/signalvar.h>
     95 #include <sys/syscall.h>
     96 #include <sys/syscallargs.h>
     97 #include <sys/systm.h>
     98 #include <sys/uidinfo.h>
     99 #include <sys/vnode.h>
    100 
    101 /*
    102  * DTrace SDT provider definitions
    103  */
    104 SDT_PROVIDER_DECLARE(proc);
    105 SDT_PROBE_DEFINE3(proc, kernel, , create,
    106     "struct proc *", /* new process */
    107     "struct proc *", /* parent process */
    108     "int" /* flags */);
    109 
    110 u_int	nprocs __cacheline_aligned = 1;		/* process 0 */
    111 
    112 /*
    113  * Number of ticks to sleep if fork() would fail due to process hitting
    114  * limits. Exported in milliseconds to userland via sysctl.
    115  */
    116 int	forkfsleep = 0;
    117 
    118 int
    119 sys_fork(struct lwp *l, const void *v, register_t *retval)
    120 {
    121 
    122 	return fork1(l, 0, SIGCHLD, NULL, 0, NULL, NULL, retval);
    123 }
    124 
    125 /*
    126  * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
    127  * Address space is not shared, but parent is blocked until child exit.
    128  */
    129 int
    130 sys_vfork(struct lwp *l, const void *v, register_t *retval)
    131 {
    132 
    133 	return fork1(l, FORK_PPWAIT, SIGCHLD, NULL, 0, NULL, NULL,
    134 	    retval);
    135 }
    136 
    137 /*
    138  * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
    139  * semantics.  Address space is shared, and parent is blocked until child exit.
    140  */
    141 int
    142 sys___vfork14(struct lwp *l, const void *v, register_t *retval)
    143 {
    144 
    145 	return fork1(l, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0,
    146 	    NULL, NULL, retval);
    147 }
    148 
    149 /*
    150  * Linux-compatible __clone(2) system call.
    151  */
    152 int
    153 sys___clone(struct lwp *l, const struct sys___clone_args *uap,
    154     register_t *retval)
    155 {
    156 	/* {
    157 		syscallarg(int) flags;
    158 		syscallarg(void *) stack;
    159 	} */
    160 	int flags, sig;
    161 
    162 	/*
    163 	 * We don't support the CLONE_PTRACE flag.
    164 	 */
    165 	if (SCARG(uap, flags) & CLONE_PTRACE)
    166 		return SET_ERROR(EINVAL);
    167 
    168 	/*
    169 	 * Linux enforces CLONE_VM with CLONE_SIGHAND, do same.
    170 	 */
    171 	if (SCARG(uap, flags) & CLONE_SIGHAND
    172 	    && (SCARG(uap, flags) & CLONE_VM) == 0)
    173 		return SET_ERROR(EINVAL);
    174 
    175 	flags = 0;
    176 
    177 	if (SCARG(uap, flags) & CLONE_VM)
    178 		flags |= FORK_SHAREVM;
    179 	if (SCARG(uap, flags) & CLONE_FS)
    180 		flags |= FORK_SHARECWD;
    181 	if (SCARG(uap, flags) & CLONE_FILES)
    182 		flags |= FORK_SHAREFILES;
    183 	if (SCARG(uap, flags) & CLONE_SIGHAND)
    184 		flags |= FORK_SHARESIGS;
    185 	if (SCARG(uap, flags) & CLONE_VFORK)
    186 		flags |= FORK_PPWAIT;
    187 
    188 	sig = SCARG(uap, flags) & CLONE_CSIGNAL;
    189 	if (sig < 0 || sig >= _NSIG)
    190 		return SET_ERROR(EINVAL);
    191 
    192 	/*
    193 	 * Linux doesn't have close-on-fork yet, so we don't
    194 	 * know what they will do combining CLONE_FILES with
    195 	 * close-on-fork (which are not really compatible).
    196 	 * This might need to be changed in the future (another
    197 	 * option would be to just disable FORK_SHAREFILES)
    198 	 */
    199 	if ((flags & FORK_SHAREFILES) != 0) {
    200 		if (l->l_fd != NULL && l->l_fd->fd_foclose)
    201 			return SET_ERROR(EINVAL);
    202 	}
    203 
    204 	/*
    205 	 * Note that the Linux API does not provide a portable way of
    206 	 * specifying the stack area; the caller must know if the stack
    207 	 * grows up or down.  So, we pass a stack size of 0, so that the
    208 	 * code that makes this adjustment is a noop.
    209 	 */
    210 	return fork1(l, flags, sig, SCARG(uap, stack), 0,
    211 	    NULL, NULL, retval);
    212 }
    213 
    214 /*
    215  * Print the 'table full' message once per 10 seconds.
    216  */
    217 static struct timeval fork_tfmrate = { 10, 0 };
    218 
    219 /*
    220  * Check if a process is traced and shall inform about FORK events.
    221  */
    222 static inline bool
    223 tracefork(struct proc *p, int flags)
    224 {
    225 
    226 	return (p->p_slflag & (PSL_TRACEFORK|PSL_TRACED)) ==
    227 	    (PSL_TRACEFORK|PSL_TRACED) && (flags & FORK_PPWAIT) == 0;
    228 }
    229 
    230 /*
    231  * Check if a process is traced and shall inform about VFORK events.
    232  */
    233 static inline bool
    234 tracevfork(struct proc *p, int flags)
    235 {
    236 
    237 	return (p->p_slflag & (PSL_TRACEVFORK|PSL_TRACED)) ==
    238 	    (PSL_TRACEVFORK|PSL_TRACED) && (flags & FORK_PPWAIT) != 0;
    239 }
    240 
    241 /*
    242  * Check if a process is traced and shall inform about VFORK_DONE events.
    243  */
    244 static inline bool
    245 tracevforkdone(struct proc *p, int flags)
    246 {
    247 
    248 	return (p->p_slflag & (PSL_TRACEVFORK_DONE|PSL_TRACED)) ==
    249 	    (PSL_TRACEVFORK_DONE|PSL_TRACED) && (flags & FORK_PPWAIT);
    250 }
    251 
    252 /*
    253  * General fork call.  Note that another LWP in the process may call exec()
    254  * or exit() while we are forking.  It's safe to continue here, because
    255  * neither operation will complete until all LWPs have exited the process.
    256  */
    257 int
    258 fork1(struct lwp *l1, int flags, int exitsig, void *stack, size_t stacksize,
    259     void (*func)(void *), void *arg, register_t *retval)
    260 {
    261 	struct proc	*p1, *p2, *parent;
    262 	struct plimit   *p1_lim;
    263 	uid_t		uid;
    264 	struct lwp	*l2;
    265 	int		count;
    266 	vaddr_t		uaddr;
    267 	int		tnprocs;
    268 	int		error = 0;
    269 
    270 	p1 = l1->l_proc;
    271 	uid = kauth_cred_getuid(l1->l_cred);
    272 	tnprocs = atomic_inc_uint_nv(&nprocs);
    273 
    274 	/*
    275 	 * Although process entries are dynamically created, we still keep
    276 	 * a global limit on the maximum number we will create.
    277 	 */
    278 	if (__predict_false(tnprocs >= maxproc))
    279 		error = -1;
    280 	else
    281 		error = kauth_authorize_process(l1->l_cred,
    282 		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
    283 
    284 	if (error) {
    285 		static struct timeval lasttfm;
    286 		atomic_dec_uint(&nprocs);
    287 		if (ratecheck(&lasttfm, &fork_tfmrate))
    288 			tablefull("proc", "increase kern.maxproc or NPROC");
    289 		if (forkfsleep)
    290 			kpause("forkmx", false, forkfsleep, NULL);
    291 		return SET_ERROR(EAGAIN);
    292 	}
    293 
    294 	/*
    295 	 * Enforce limits.
    296 	 */
    297 	count = chgproccnt(uid, 1);
    298 	if (__predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
    299 		if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
    300 		    p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
    301 		    &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0) {
    302 			(void)chgproccnt(uid, -1);
    303 			atomic_dec_uint(&nprocs);
    304 			if (forkfsleep)
    305 				kpause("forkulim", false, forkfsleep, NULL);
    306 			return SET_ERROR(EAGAIN);
    307 		}
    308 	}
    309 
    310 	/*
    311 	 * Allocate virtual address space for the U-area now, while it
    312 	 * is still easy to abort the fork operation if we're out of
    313 	 * kernel virtual address space.
    314 	 */
    315 	uaddr = uvm_uarea_alloc();
    316 	if (__predict_false(uaddr == 0)) {
    317 		(void)chgproccnt(uid, -1);
    318 		atomic_dec_uint(&nprocs);
    319 		return SET_ERROR(ENOMEM);
    320 	}
    321 
    322 	/* Allocate new proc. */
    323 	p2 = proc_alloc();
    324 	if (p2 == NULL) {
    325 		/* We were unable to allocate a process ID. */
    326 		uvm_uarea_free(uaddr);
    327 		mutex_enter(p1->p_lock);
    328 		uid = kauth_cred_getuid(p1->p_cred);
    329 		(void)chgproccnt(uid, -1);
    330 		mutex_exit(p1->p_lock);
    331 		atomic_dec_uint(&nprocs);
    332 		return SET_ERROR(EAGAIN);
    333 	}
    334 
    335 	/*
    336 	 * We are now committed to the fork.  From here on, we may
    337 	 * block on resources, but resource allocation may NOT fail.
    338 	 */
    339 
    340 	/*
    341 	 * Make a proc table entry for the new process.
    342 	 * Start by zeroing the section of proc that is zero-initialized,
    343 	 * then copy the section that is copied directly from the parent.
    344 	 */
    345 	memset(&p2->p_startzero, 0,
    346 	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
    347 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
    348 	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
    349 
    350 	TAILQ_INIT(&p2->p_sigpend.sp_info);
    351 
    352 	LIST_INIT(&p2->p_lwps);
    353 	LIST_INIT(&p2->p_sigwaiters);
    354 
    355 	/*
    356 	 * Duplicate sub-structures as needed.
    357 	 * Increase reference counts on shared objects.
    358 	 * Inherit flags we want to keep.  The flags related to SIGCHLD
    359 	 * handling are important in order to keep a consistent behaviour
    360 	 * for the child after the fork.  If we are a 32-bit process, the
    361 	 * child will be too.
    362 	 */
    363 	p2->p_flag =
    364 	    p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
    365 	p2->p_emul = p1->p_emul;
    366 	p2->p_execsw = p1->p_execsw;
    367 
    368 	if (flags & FORK_SYSTEM) {
    369 		/*
    370 		 * Mark it as a system process.  Set P_NOCLDWAIT so that
    371 		 * children are reparented to init(8) when they exit.
    372 		 * init(8) can easily wait them out for us.
    373 		 */
    374 		p2->p_flag |= (PK_SYSTEM | PK_NOCLDWAIT);
    375 	}
    376 
    377 	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
    378 	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
    379 	rw_init(&p2->p_reflock);
    380 	cv_init(&p2->p_waitcv, "wait");
    381 	cv_init(&p2->p_lwpcv, "lwpwait");
    382 
    383 	/*
    384 	 * Share a lock between the processes if they are to share signal
    385 	 * state: we must synchronize access to it.
    386 	 */
    387 	if (flags & FORK_SHARESIGS) {
    388 		p2->p_lock = p1->p_lock;
    389 		mutex_obj_hold(p1->p_lock);
    390 	} else
    391 		p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    392 
    393 	kauth_proc_fork(p1, p2);
    394 
    395 	p2->p_raslist = NULL;
    396 #if defined(__HAVE_RAS)
    397 	ras_fork(p1, p2);
    398 #endif
    399 
    400 	/* bump references to the text vnode (for procfs) */
    401 	p2->p_textvp = p1->p_textvp;
    402 	if (p2->p_textvp)
    403 		vref(p2->p_textvp);
    404 	if (p1->p_path)
    405 		p2->p_path = kmem_strdupsize(p1->p_path, NULL, KM_SLEEP);
    406 	else
    407 		p2->p_path = NULL;
    408 
    409 	if (flags & FORK_SHAREFILES)
    410 		fd_share(p2);
    411 	else if (flags & FORK_CLEANFILES)
    412 		p2->p_fd = fd_init(NULL);
    413 	else
    414 		p2->p_fd = fd_copy();
    415 
    416 	/* XXX racy */
    417 	p2->p_mqueue_cnt = p1->p_mqueue_cnt;
    418 
    419 	if (flags & FORK_SHARECWD)
    420 		cwdshare(p2);
    421 	else
    422 		p2->p_cwdi = cwdinit();
    423 
    424 	/*
    425 	 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
    426 	 * we just need increase pl_refcnt.
    427 	 */
    428 	p1_lim = p1->p_limit;
    429 	if (!p1_lim->pl_writeable) {
    430 		lim_addref(p1_lim);
    431 		p2->p_limit = p1_lim;
    432 	} else {
    433 		p2->p_limit = lim_copy(p1_lim);
    434 	}
    435 
    436 	if (flags & FORK_PPWAIT) {
    437 		/* Mark ourselves as waiting for a child. */
    438 		p2->p_lflag = PL_PPWAIT;
    439 		l1->l_vforkwaiting = true;
    440 		p2->p_vforklwp = l1;
    441 	} else {
    442 		p2->p_lflag = 0;
    443 		l1->l_vforkwaiting = false;
    444 	}
    445 	p2->p_sflag = 0;
    446 	p2->p_slflag = 0;
    447 	parent = (flags & FORK_NOWAIT) ? initproc : p1;
    448 	p2->p_pptr = parent;
    449 	p2->p_ppid = parent->p_pid;
    450 	LIST_INIT(&p2->p_children);
    451 
    452 	p2->p_aio = NULL;
    453 
    454 #ifdef KTRACE
    455 	/*
    456 	 * Copy traceflag and tracefile if enabled.
    457 	 * If not inherited, these were zeroed above.
    458 	 */
    459 	if (p1->p_traceflag & KTRFAC_INHERIT) {
    460 		mutex_enter(&ktrace_lock);
    461 		p2->p_traceflag = p1->p_traceflag;
    462 		if ((p2->p_tracep = p1->p_tracep) != NULL)
    463 			ktradref(p2);
    464 		mutex_exit(&ktrace_lock);
    465 	}
    466 #endif
    467 
    468 	/*
    469 	 * Create signal actions for the child process.
    470 	 */
    471 	p2->p_sigacts = sigactsinit(p1, flags & FORK_SHARESIGS);
    472 	mutex_enter(p1->p_lock);
    473 	p2->p_sflag |=
    474 	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
    475 	sched_proc_fork(p1, p2);
    476 	mutex_exit(p1->p_lock);
    477 
    478 	p2->p_stflag = p1->p_stflag;
    479 
    480 	/*
    481 	 * p_stats.
    482 	 * Copy parts of p_stats, and zero out the rest.
    483 	 */
    484 	p2->p_stats = pstatscopy(p1->p_stats);
    485 
    486 	/*
    487 	 * Set up the new process address space.
    488 	 */
    489 	uvm_proc_fork(p1, p2, (flags & FORK_SHAREVM) ? true : false);
    490 
    491 	/*
    492 	 * Finish creating the child process.
    493 	 * It will return through a different path later.
    494 	 */
    495 	lwp_create(l1, p2, uaddr, (flags & FORK_PPWAIT) ? LWP_VFORK : 0,
    496 	    stack, stacksize, (func != NULL) ? func : child_return, arg, &l2,
    497 	    l1->l_class, &l1->l_sigmask, &l1->l_sigstk);
    498 
    499 	/*
    500 	 * Inherit l_private from the parent.
    501 	 * Note that we cannot use lwp_setprivate() here since that
    502 	 * also sets the CPU TLS register, which is incorrect if the
    503 	 * process has changed that without letting the kernel know.
    504 	 */
    505 	l2->l_private = l1->l_private;
    506 
    507 	/*
    508 	 * If emulation has a process fork hook, call it now.
    509 	 */
    510 	if (p2->p_emul->e_proc_fork)
    511 		(*p2->p_emul->e_proc_fork)(p2, l1, flags);
    512 
    513 	/*
    514 	 * ...and finally, any other random fork hooks that subsystems
    515 	 * might have registered.
    516 	 */
    517 	doforkhooks(p2, p1);
    518 
    519 	SDT_PROBE(proc, kernel, , create, p2, p1, flags, 0, 0);
    520 
    521 	/*
    522 	 * It's now safe for the scheduler and other processes to see the
    523 	 * child process.
    524 	 */
    525 	mutex_enter(&proc_lock);
    526 
    527 	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
    528 		p2->p_lflag |= PL_CONTROLT;
    529 
    530 	LIST_INSERT_HEAD(&parent->p_children, p2, p_sibling);
    531 	p2->p_exitsig = exitsig;		/* signal for parent on exit */
    532 
    533 	/*
    534 	 * Trace fork(2) and vfork(2)-like events on demand in a debugger.
    535 	 */
    536 	if (tracefork(p1, flags) || tracevfork(p1, flags)) {
    537 		proc_changeparent(p2, p1->p_pptr);
    538 		SET(p2->p_slflag, PSL_TRACEDCHILD);
    539 	}
    540 
    541 	p2->p_oppid = p1->p_pid; /* Remember the original parent id. */
    542 
    543 	LIST_INSERT_AFTER(p1, p2, p_pglist);
    544 	LIST_INSERT_HEAD(&allproc, p2, p_list);
    545 
    546 	p2->p_trace_enabled = trace_is_enabled(p2);
    547 #ifdef __HAVE_SYSCALL_INTERN
    548 	(*p2->p_emul->e_syscall_intern)(p2);
    549 #endif
    550 
    551 	/*
    552 	 * Update stats now that we know the fork was successful.
    553 	 */
    554 	KPREEMPT_DISABLE(l1);
    555 	CPU_COUNT(CPU_COUNT_FORKS, 1);
    556 	if (flags & FORK_PPWAIT)
    557 		CPU_COUNT(CPU_COUNT_FORKS_PPWAIT, 1);
    558 	if (flags & FORK_SHAREVM)
    559 		CPU_COUNT(CPU_COUNT_FORKS_SHAREVM, 1);
    560 	KPREEMPT_ENABLE(l1);
    561 
    562 	if (ktrpoint(KTR_EMUL))
    563 		p2->p_traceflag |= KTRFAC_TRC_EMUL;
    564 
    565 	/*
    566 	 * Notify any interested parties about the new process.
    567 	 */
    568 	if (!SLIST_EMPTY(&p1->p_klist)) {
    569 		mutex_exit(&proc_lock);
    570 		knote_proc_fork(p1, p2);
    571 		mutex_enter(&proc_lock);
    572 	}
    573 
    574 	/*
    575 	 * Make child runnable, set start time, and add to run queue except
    576 	 * if the parent requested the child to start in SSTOP state.
    577 	 */
    578 	mutex_enter(p2->p_lock);
    579 
    580 	/*
    581 	 * Start profiling.
    582 	 */
    583 	if ((p2->p_stflag & PST_PROFIL) != 0) {
    584 		mutex_spin_enter(&p2->p_stmutex);
    585 		startprofclock(p2);
    586 		mutex_spin_exit(&p2->p_stmutex);
    587 	}
    588 
    589 	getmicrotime(&p2->p_stats->p_start);
    590 	p2->p_acflag = AFORK;
    591 	lwp_lock(l2);
    592 	KASSERT(p2->p_nrlwps == 1);
    593 	KASSERT(l2->l_stat == LSIDL);
    594 	if (p2->p_sflag & PS_STOPFORK) {
    595 		p2->p_nrlwps = 0;
    596 		p2->p_stat = SSTOP;
    597 		p2->p_waited = 0;
    598 		p1->p_nstopchild++;
    599 		l2->l_stat = LSSTOP;
    600 		KASSERT(l2->l_wchan == NULL);
    601 		lwp_unlock(l2);
    602 	} else {
    603 		p2->p_nrlwps = 1;
    604 		p2->p_stat = SACTIVE;
    605 		setrunnable(l2);
    606 		/* LWP now unlocked */
    607 	}
    608 
    609 	/*
    610 	 * Return child pid to parent process,
    611 	 * marking us as parent via retval[1].
    612 	 */
    613 	if (retval != NULL) {
    614 		retval[0] = p2->p_pid;
    615 		retval[1] = 0;
    616 	}
    617 
    618 	mutex_exit(p2->p_lock);
    619 
    620 	/*
    621 	 * Let the parent know that we are tracing its child.
    622 	 */
    623 	if (tracefork(p1, flags) || tracevfork(p1, flags)) {
    624 		mutex_enter(p1->p_lock);
    625 		eventswitch(TRAP_CHLD,
    626 		    tracefork(p1, flags) ? PTRACE_FORK : PTRACE_VFORK,
    627 		    retval[0]);
    628 		mutex_enter(&proc_lock);
    629 	}
    630 
    631 	/*
    632 	 * Preserve synchronization semantics of vfork.  If waiting for
    633 	 * child to exec or exit, sleep until it clears p_vforkwaiting.
    634 	 */
    635 	while (l1->l_vforkwaiting)
    636 		cv_wait(&l1->l_waitcv, &proc_lock);
    637 
    638 	/*
    639 	 * Let the parent know that we are tracing its child.
    640 	 */
    641 	if (tracevforkdone(p1, flags)) {
    642 		mutex_enter(p1->p_lock);
    643 		eventswitch(TRAP_CHLD, PTRACE_VFORK_DONE, retval[0]);
    644 	} else
    645 		mutex_exit(&proc_lock);
    646 
    647 	return 0;
    648 }
    649 
    650 /*
    651  * MI code executed in each newly spawned process before returning to userland.
    652  */
    653 void
    654 child_return(void *arg)
    655 {
    656 	struct lwp *l = curlwp;
    657 	struct proc *p = l->l_proc;
    658 
    659 	if ((p->p_slflag & (PSL_TRACED|PSL_TRACEDCHILD)) ==
    660 	    (PSL_TRACED|PSL_TRACEDCHILD)) {
    661 		eventswitchchild(p, TRAP_CHLD,
    662 		    ISSET(p->p_lflag, PL_PPWAIT) ? PTRACE_VFORK : PTRACE_FORK);
    663 	}
    664 
    665 	md_child_return(l);
    666 
    667 	/*
    668 	 * Return SYS_fork for all fork types, including vfork(2) and clone(2).
    669 	 *
    670 	 * This approach simplifies the code and avoids extra locking.
    671 	 */
    672 	ktrsysret(SYS_fork, 0, 0);
    673 }
    674