Home | History | Annotate | Line # | Download | only in net
      1 /*	$NetBSD: if_tap.c,v 1.136 2024/11/10 10:57:52 mlelstv Exp $	*/
      2 
      3 /*
      4  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
      5  *  All rights reserved.
      6  *
      7  *  Redistribution and use in source and binary forms, with or without
      8  *  modification, are permitted provided that the following conditions
      9  *  are met:
     10  *  1. Redistributions of source code must retain the above copyright
     11  *     notice, this list of conditions and the following disclaimer.
     12  *  2. Redistributions in binary form must reproduce the above copyright
     13  *     notice, this list of conditions and the following disclaimer in the
     14  *     documentation and/or other materials provided with the distribution.
     15  *
     16  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  *  POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     31  * device to the system, but can also be accessed by userland through a
     32  * character device interface, which allows reading and injecting frames.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.136 2024/11/10 10:57:52 mlelstv Exp $");
     37 
     38 #if defined(_KERNEL_OPT)
     39 #include "opt_modular.h"
     40 #include "opt_net_mpsafe.h"
     41 #endif
     42 
     43 #include <sys/param.h>
     44 #include <sys/atomic.h>
     45 #include <sys/conf.h>
     46 #include <sys/cprng.h>
     47 #include <sys/device.h>
     48 #include <sys/file.h>
     49 #include <sys/filedesc.h>
     50 #include <sys/intr.h>
     51 #include <sys/kauth.h>
     52 #include <sys/kernel.h>
     53 #include <sys/kmem.h>
     54 #include <sys/module.h>
     55 #include <sys/mutex.h>
     56 #include <sys/condvar.h>
     57 #include <sys/poll.h>
     58 #include <sys/proc.h>
     59 #include <sys/select.h>
     60 #include <sys/sockio.h>
     61 #include <sys/stat.h>
     62 #include <sys/sysctl.h>
     63 #include <sys/systm.h>
     64 
     65 #include <net/if.h>
     66 #include <net/if_dl.h>
     67 #include <net/if_ether.h>
     68 #include <net/if_tap.h>
     69 #include <net/bpf.h>
     70 
     71 #include "ioconf.h"
     72 
     73 /*
     74  * sysctl node management
     75  *
     76  * It's not really possible to use a SYSCTL_SETUP block with
     77  * current module implementation, so it is easier to just define
     78  * our own function.
     79  *
     80  * The handler function is a "helper" in Andrew Brown's sysctl
     81  * framework terminology.  It is used as a gateway for sysctl
     82  * requests over the nodes.
     83  *
     84  * tap_log allows the module to log creations of nodes and
     85  * destroy them all at once using sysctl_teardown.
     86  */
     87 static int	tap_node;
     88 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     89 static void	sysctl_tap_setup(struct sysctllog **);
     90 
     91 struct tap_softc {
     92 	device_t	sc_dev;
     93 	struct ethercom	sc_ec;
     94 	int		sc_flags;
     95 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
     96 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
     97 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
     98 #define TAP_GOING	0x00000008	/* interface is being destroyed */
     99 	struct selinfo	sc_rsel;
    100 	pid_t		sc_pgid; /* For async. IO */
    101 	kmutex_t	sc_lock;
    102 	kcondvar_t	sc_cv;
    103 	void		*sc_sih;
    104 	struct timespec sc_atime;
    105 	struct timespec sc_mtime;
    106 	struct timespec sc_btime;
    107 };
    108 
    109 /* autoconf(9) glue */
    110 
    111 static int	tap_match(device_t, cfdata_t, void *);
    112 static void	tap_attach(device_t, device_t, void *);
    113 static int	tap_detach(device_t, int);
    114 
    115 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
    116     tap_match, tap_attach, tap_detach, NULL);
    117 extern struct cfdriver tap_cd;
    118 
    119 /* Real device access routines */
    120 static void	tap_dev_close(struct tap_softc *);
    121 static int	tap_dev_read(int, struct uio *, int);
    122 static int	tap_dev_write(int, struct uio *, int);
    123 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
    124 static int	tap_dev_poll(int, int, struct lwp *);
    125 static int	tap_dev_kqfilter(int, struct knote *);
    126 
    127 /* Fileops access routines */
    128 static int	tap_fops_close(file_t *);
    129 static int	tap_fops_read(file_t *, off_t *, struct uio *,
    130     kauth_cred_t, int);
    131 static int	tap_fops_write(file_t *, off_t *, struct uio *,
    132     kauth_cred_t, int);
    133 static int	tap_fops_ioctl(file_t *, u_long, void *);
    134 static int	tap_fops_poll(file_t *, int);
    135 static int	tap_fops_stat(file_t *, struct stat *);
    136 static int	tap_fops_kqfilter(file_t *, struct knote *);
    137 
    138 static const struct fileops tap_fileops = {
    139 	.fo_name = "tap",
    140 	.fo_read = tap_fops_read,
    141 	.fo_write = tap_fops_write,
    142 	.fo_ioctl = tap_fops_ioctl,
    143 	.fo_fcntl = fnullop_fcntl,
    144 	.fo_poll = tap_fops_poll,
    145 	.fo_stat = tap_fops_stat,
    146 	.fo_close = tap_fops_close,
    147 	.fo_kqfilter = tap_fops_kqfilter,
    148 	.fo_restart = fnullop_restart,
    149 };
    150 
    151 /* Helper for cloning open() */
    152 static int	tap_dev_cloner(struct lwp *);
    153 
    154 /* Character device routines */
    155 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    156 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    157 static int	tap_cdev_read(dev_t, struct uio *, int);
    158 static int	tap_cdev_write(dev_t, struct uio *, int);
    159 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
    160 static int	tap_cdev_poll(dev_t, int, struct lwp *);
    161 static int	tap_cdev_kqfilter(dev_t, struct knote *);
    162 
    163 const struct cdevsw tap_cdevsw = {
    164 	.d_open = tap_cdev_open,
    165 	.d_close = tap_cdev_close,
    166 	.d_read = tap_cdev_read,
    167 	.d_write = tap_cdev_write,
    168 	.d_ioctl = tap_cdev_ioctl,
    169 	.d_stop = nostop,
    170 	.d_tty = notty,
    171 	.d_poll = tap_cdev_poll,
    172 	.d_mmap = nommap,
    173 	.d_kqfilter = tap_cdev_kqfilter,
    174 	.d_discard = nodiscard,
    175 	.d_flag = D_OTHER | D_MPSAFE
    176 };
    177 
    178 #define TAP_CLONER	0xfffff		/* Maximal minor value */
    179 
    180 /* kqueue-related routines */
    181 static void	tap_kqdetach(struct knote *);
    182 static int	tap_kqread(struct knote *, long);
    183 
    184 /*
    185  * Those are needed by the ifnet interface, and would typically be
    186  * there for any network interface driver.
    187  * Some other routines are optional: watchdog and drain.
    188  */
    189 static void	tap_start(struct ifnet *);
    190 static void	tap_stop(struct ifnet *, int);
    191 static int	tap_init(struct ifnet *);
    192 static int	tap_ioctl(struct ifnet *, u_long, void *);
    193 
    194 /* Internal functions */
    195 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    196 static void	tap_softintr(void *);
    197 
    198 /*
    199  * tap is a clonable interface, although it is highly unrealistic for
    200  * an Ethernet device.
    201  *
    202  * Here are the bits needed for a clonable interface.
    203  */
    204 static int	tap_clone_create(struct if_clone *, int);
    205 static int	tap_clone_destroy(struct ifnet *);
    206 
    207 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    208 					tap_clone_create,
    209 					tap_clone_destroy);
    210 
    211 /* Helper functions shared by the two cloning code paths */
    212 static struct tap_softc *	tap_clone_creator(int);
    213 static void			tap_clone_destroyer(device_t);
    214 
    215 static struct sysctllog *tap_sysctl_clog;
    216 
    217 #ifdef _MODULE
    218 devmajor_t tap_bmajor = -1, tap_cmajor = -1;
    219 #endif
    220 
    221 static u_int tap_count;
    222 
    223 void
    224 tapattach(int n)
    225 {
    226 
    227 	/*
    228 	 * Nothing to do here, initialization is handled by the
    229 	 * module initialization code in tapinit() below).
    230 	 */
    231 }
    232 
    233 static void
    234 tapinit(void)
    235 {
    236 	int error;
    237 
    238 #ifdef _MODULE
    239 	devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
    240 #endif
    241 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    242 
    243 	if (error) {
    244 		aprint_error("%s: unable to register cfattach\n",
    245 		    tap_cd.cd_name);
    246 		(void)config_cfdriver_detach(&tap_cd);
    247 		return;
    248 	}
    249 
    250 	if_clone_attach(&tap_cloners);
    251 	sysctl_tap_setup(&tap_sysctl_clog);
    252 }
    253 
    254 static int
    255 tapdetach(void)
    256 {
    257 	int error = 0;
    258 
    259 	if_clone_detach(&tap_cloners);
    260 
    261 	if (tap_count != 0) {
    262 		if_clone_attach(&tap_cloners);
    263 		return EBUSY;
    264 	}
    265 
    266 	error = config_cfattach_detach(tap_cd.cd_name, &tap_ca);
    267 	if (error == 0) {
    268 #ifdef _MODULE
    269 		devsw_detach(NULL, &tap_cdevsw);
    270 #endif
    271 		sysctl_teardown(&tap_sysctl_clog);
    272 	} else
    273 		if_clone_attach(&tap_cloners);
    274 
    275 	return error;
    276 }
    277 
    278 /* Pretty much useless for a pseudo-device */
    279 static int
    280 tap_match(device_t parent, cfdata_t cfdata, void *arg)
    281 {
    282 
    283 	return 1;
    284 }
    285 
    286 void
    287 tap_attach(device_t parent, device_t self, void *aux)
    288 {
    289 	struct tap_softc *sc = device_private(self);
    290 	struct ifnet *ifp;
    291 	const struct sysctlnode *node;
    292 	int error;
    293 	uint8_t enaddr[ETHER_ADDR_LEN] =
    294 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    295 	char enaddrstr[3 * ETHER_ADDR_LEN];
    296 
    297 	sc->sc_dev = self;
    298 	sc->sc_sih = NULL;
    299 	getnanotime(&sc->sc_btime);
    300 	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
    301 	sc->sc_flags = 0;
    302 	selinit(&sc->sc_rsel);
    303 
    304 	cv_init(&sc->sc_cv, "tapread");
    305 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NET);
    306 
    307 	if (!pmf_device_register(self, NULL, NULL))
    308 		aprint_error_dev(self, "couldn't establish power handler\n");
    309 
    310 	/*
    311 	 * In order to obtain unique initial Ethernet address on a host,
    312 	 * do some randomisation.  It's not meant for anything but avoiding
    313 	 * hard-coding an address.
    314 	 */
    315 	cprng_fast(&enaddr[3], 3);
    316 
    317 	aprint_verbose_dev(self, "Ethernet address %s\n",
    318 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    319 
    320 	/*
    321 	 * One should note that an interface must do multicast in order
    322 	 * to support IPv6.
    323 	 */
    324 	ifp = &sc->sc_ec.ec_if;
    325 	strcpy(ifp->if_xname, device_xname(self));
    326 	ifp->if_softc	= sc;
    327 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    328 #ifdef NET_MPSAFE
    329 	ifp->if_extflags = IFEF_MPSAFE;
    330 #endif
    331 	ifp->if_ioctl	= tap_ioctl;
    332 	ifp->if_start	= tap_start;
    333 	ifp->if_stop	= tap_stop;
    334 	ifp->if_init	= tap_init;
    335 	IFQ_SET_READY(&ifp->if_snd);
    336 
    337 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    338 
    339 	/* Those steps are mandatory for an Ethernet driver. */
    340 	if_initialize(ifp);
    341 	ifp->if_percpuq = if_percpuq_create(ifp);
    342 	ether_ifattach(ifp, enaddr);
    343 	/* Opening the device will bring the link state up. */
    344 	ifp->if_link_state = LINK_STATE_DOWN;
    345 	if_register(ifp);
    346 
    347 	/*
    348 	 * Add a sysctl node for that interface.
    349 	 *
    350 	 * The pointer transmitted is not a string, but instead a pointer to
    351 	 * the softc structure, which we can use to build the string value on
    352 	 * the fly in the helper function of the node.  See the comments for
    353 	 * tap_sysctl_handler for details.
    354 	 *
    355 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    356 	 * component.  However, we can allocate a number ourselves, as we are
    357 	 * the only consumer of the net.link.<iface> node.  In this case, the
    358 	 * unit number is conveniently used to number the node.  CTL_CREATE
    359 	 * would just work, too.
    360 	 */
    361 	if ((error = sysctl_createv(NULL, 0, NULL,
    362 	    &node, CTLFLAG_READWRITE,
    363 	    CTLTYPE_STRING, device_xname(self), NULL,
    364 	    tap_sysctl_handler, 0, (void *)sc, 18,
    365 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
    366 	    CTL_EOL)) != 0)
    367 		aprint_error_dev(self,
    368 		    "sysctl_createv returned %d, ignoring\n", error);
    369 }
    370 
    371 /*
    372  * When detaching, we do the inverse of what is done in the attach
    373  * routine, in reversed order.
    374  */
    375 static int
    376 tap_detach(device_t self, int flags)
    377 {
    378 	struct tap_softc *sc = device_private(self);
    379 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    380 	int error;
    381 
    382 	sc->sc_flags |= TAP_GOING;
    383 	tap_stop(ifp, 1);
    384 	if_down(ifp);
    385 
    386 	if (sc->sc_sih != NULL) {
    387 		softint_disestablish(sc->sc_sih);
    388 		sc->sc_sih = NULL;
    389 	}
    390 
    391 	/*
    392 	 * Destroying a single leaf is a very straightforward operation using
    393 	 * sysctl_destroyv.  One should be sure to always end the path with
    394 	 * CTL_EOL.
    395 	 */
    396 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    397 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
    398 		aprint_error_dev(self,
    399 		    "sysctl_destroyv returned %d, ignoring\n", error);
    400 	ether_ifdetach(ifp);
    401 	if_detach(ifp);
    402 	seldestroy(&sc->sc_rsel);
    403 	mutex_destroy(&sc->sc_lock);
    404 	cv_destroy(&sc->sc_cv);
    405 
    406 	pmf_device_deregister(self);
    407 
    408 	return 0;
    409 }
    410 
    411 /*
    412  * This is the function where we SEND packets.
    413  *
    414  * There is no 'receive' equivalent.  A typical driver will get
    415  * interrupts from the hardware, and from there will inject new packets
    416  * into the network stack.
    417  *
    418  * Once handled, a packet must be freed.  A real driver might not be able
    419  * to fit all the pending packets into the hardware, and is allowed to
    420  * return before having sent all the packets.  It should then use the
    421  * if_flags flag IFF_OACTIVE to notify the upper layer.
    422  *
    423  * There are also other flags one should check, such as IFF_PAUSE.
    424  *
    425  * It is our duty to make packets available to BPF listeners.
    426  *
    427  * You should be aware that this function is called by the Ethernet layer
    428  * at splnet().
    429  *
    430  * When the device is opened, we have to pass the packet(s) to the
    431  * userland.  For that we stay in OACTIVE mode while the userland gets
    432  * the packets, and we send a signal to the processes waiting to read.
    433  *
    434  * wakeup(sc) is the counterpart to the tsleep call in
    435  * tap_dev_read, while selnotify() is used for kevent(2) and
    436  * poll(2) (which includes select(2)) listeners.
    437  */
    438 static void
    439 tap_start(struct ifnet *ifp)
    440 {
    441 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    442 	struct mbuf *m0;
    443 
    444 	mutex_enter(&sc->sc_lock);
    445 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    446 		/* Simply drop packets */
    447 		for (;;) {
    448 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    449 			if (m0 == NULL)
    450 				goto done;
    451 
    452 			if_statadd2(ifp, if_opackets, 1, if_obytes, m0->m_len);
    453 			bpf_mtap(ifp, m0, BPF_D_OUT);
    454 
    455 			m_freem(m0);
    456 		}
    457 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    458 		ifp->if_flags |= IFF_OACTIVE;
    459 		cv_broadcast(&sc->sc_cv);
    460 		selnotify(&sc->sc_rsel, 0, 1);
    461 		if (sc->sc_flags & TAP_ASYNCIO) {
    462 			kpreempt_disable();
    463 			softint_schedule(sc->sc_sih);
    464 			kpreempt_enable();
    465 		}
    466 	}
    467 done:
    468 	mutex_exit(&sc->sc_lock);
    469 }
    470 
    471 static void
    472 tap_softintr(void *cookie)
    473 {
    474 	struct tap_softc *sc;
    475 	struct ifnet *ifp;
    476 	int a, b;
    477 
    478 	sc = cookie;
    479 
    480 	if (sc->sc_flags & TAP_ASYNCIO) {
    481 		ifp = &sc->sc_ec.ec_if;
    482 		if (ifp->if_flags & IFF_RUNNING) {
    483 			a = POLL_IN;
    484 			b = POLLIN | POLLRDNORM;
    485 		} else {
    486 			a = POLL_HUP;
    487 			b = 0;
    488 		}
    489 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
    490 	}
    491 }
    492 
    493 /*
    494  * A typical driver will only contain the following handlers for
    495  * ioctl calls, except SIOCSIFPHYADDR.
    496  * The latter is a hack I used to set the Ethernet address of the
    497  * faked device.
    498  *
    499  * Note that ether_ioctl() has to be called under splnet().
    500  */
    501 static int
    502 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    503 {
    504 	int s, error;
    505 
    506 	s = splnet();
    507 
    508 	switch (cmd) {
    509 	case SIOCSIFPHYADDR:
    510 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    511 		break;
    512 	default:
    513 		error = ether_ioctl(ifp, cmd, data);
    514 		if (error == ENETRESET)
    515 			error = 0;
    516 		break;
    517 	}
    518 
    519 	splx(s);
    520 
    521 	return error;
    522 }
    523 
    524 /*
    525  * Helper function to set Ethernet address.  This has been replaced by
    526  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
    527  */
    528 static int
    529 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    530 {
    531 	const struct sockaddr *sa = &ifra->ifra_addr;
    532 
    533 	if (sa->sa_family != AF_LINK)
    534 		return EINVAL;
    535 
    536 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
    537 
    538 	return 0;
    539 }
    540 
    541 /*
    542  * _init() would typically be called when an interface goes up,
    543  * meaning it should configure itself into the state in which it
    544  * can send packets.
    545  */
    546 static int
    547 tap_init(struct ifnet *ifp)
    548 {
    549 	ifp->if_flags |= IFF_RUNNING;
    550 
    551 	tap_start(ifp);
    552 
    553 	return 0;
    554 }
    555 
    556 /*
    557  * _stop() is called when an interface goes down.  It is our
    558  * responsibility to validate that state by clearing the
    559  * IFF_RUNNING flag.
    560  *
    561  * We have to wake up all the sleeping processes to have the pending
    562  * read requests cancelled.
    563  */
    564 static void
    565 tap_stop(struct ifnet *ifp, int disable)
    566 {
    567 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    568 
    569 	mutex_enter(&sc->sc_lock);
    570 	ifp->if_flags &= ~IFF_RUNNING;
    571 	cv_broadcast(&sc->sc_cv);
    572 	selnotify(&sc->sc_rsel, 0, 1);
    573 	if (sc->sc_flags & TAP_ASYNCIO) {
    574 		kpreempt_disable();
    575 		softint_schedule(sc->sc_sih);
    576 		kpreempt_enable();
    577 	}
    578 	mutex_exit(&sc->sc_lock);
    579 }
    580 
    581 /*
    582  * The 'create' command of ifconfig can be used to create
    583  * any numbered instance of a given device.  Thus we have to
    584  * make sure we have enough room in cd_devs to create the
    585  * user-specified instance.  config_attach_pseudo will do this
    586  * for us.
    587  */
    588 static int
    589 tap_clone_create(struct if_clone *ifc, int unit)
    590 {
    591 
    592 	if (tap_clone_creator(unit) == NULL) {
    593 		aprint_error("%s%d: unable to attach an instance\n",
    594 		    tap_cd.cd_name, unit);
    595 		return ENXIO;
    596 	}
    597 	atomic_inc_uint(&tap_count);
    598 	return 0;
    599 }
    600 
    601 /*
    602  * tap(4) can be cloned by two ways:
    603  *   using 'ifconfig tap0 create', which will use the network
    604  *     interface cloning API, and call tap_clone_create above.
    605  *   opening the cloning device node, whose minor number is TAP_CLONER.
    606  *     See below for an explanation on how this part work.
    607  */
    608 static struct tap_softc *
    609 tap_clone_creator(int unit)
    610 {
    611 	cfdata_t cf;
    612 
    613 	cf = kmem_alloc(sizeof(*cf), KM_SLEEP);
    614 	cf->cf_name = tap_cd.cd_name;
    615 	cf->cf_atname = tap_ca.ca_name;
    616 	if (unit == -1) {
    617 		/* let autoconf find the first free one */
    618 		cf->cf_unit = 0;
    619 		cf->cf_fstate = FSTATE_STAR;
    620 	} else {
    621 		cf->cf_unit = unit;
    622 		cf->cf_fstate = FSTATE_NOTFOUND;
    623 	}
    624 
    625 	return device_private(config_attach_pseudo(cf));
    626 }
    627 
    628 static int
    629 tap_clone_destroy(struct ifnet *ifp)
    630 {
    631 	struct tap_softc *sc = ifp->if_softc;
    632 
    633 	tap_clone_destroyer(sc->sc_dev);
    634 	atomic_dec_uint(&tap_count);
    635 	return 0;
    636 }
    637 
    638 static void
    639 tap_clone_destroyer(device_t dev)
    640 {
    641 	cfdata_t cf = device_cfdata(dev);
    642 	int error;
    643 
    644 	error = config_detach(dev, DETACH_FORCE);
    645 	KASSERTMSG(error == 0, "error=%d", error);
    646 	kmem_free(cf, sizeof(*cf));
    647 }
    648 
    649 /*
    650  * tap(4) is a bit of an hybrid device.  It can be used in two different
    651  * ways:
    652  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    653  *  2. open /dev/tap, get a new interface created and read/write off it.
    654  *     That interface is destroyed when the process that had it created exits.
    655  *
    656  * The first way is managed by the cdevsw structure, and you access interfaces
    657  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    658  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    659  *
    660  * The second way is the so-called "cloning" device.  It's a special minor
    661  * number (chosen as the maximal number, to allow as much tap devices as
    662  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    663  * call ends in tap_cdev_open.  The actual place where it is handled is
    664  * tap_dev_cloner.
    665  *
    666  * A tap device cannot be opened more than once at a time, so the cdevsw
    667  * part of open() does nothing but noting that the interface is being used and
    668  * hence ready to actually handle packets.
    669  */
    670 
    671 static int
    672 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    673 {
    674 	struct tap_softc *sc;
    675 
    676 	if (minor(dev) == TAP_CLONER)
    677 		return tap_dev_cloner(l);
    678 
    679 	sc = device_lookup_private(&tap_cd, minor(dev));
    680 	if (sc == NULL)
    681 		return ENXIO;
    682 
    683 	/* The device can only be opened once */
    684 	if (sc->sc_flags & TAP_INUSE)
    685 		return EBUSY;
    686 	sc->sc_flags |= TAP_INUSE;
    687 	if_link_state_change(&sc->sc_ec.ec_if, LINK_STATE_UP);
    688 
    689 	return 0;
    690 }
    691 
    692 /*
    693  * There are several kinds of cloning devices, and the most simple is the one
    694  * tap(4) uses.  What it does is change the file descriptor with a new one,
    695  * with its own fileops structure (which maps to the various read, write,
    696  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    697  * then actually creates the new tap devices.
    698  *
    699  * Once those two steps are successful, we can re-wire the existing file
    700  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    701  * structure as needed (notably f_devunit gets filled with the fifth parameter
    702  * passed, the unit of the tap device which will allows us identifying the
    703  * device later), and returns EMOVEFD.
    704  *
    705  * That magic value is interpreted by sys_open() which then replaces the
    706  * current file descriptor by the new one (through a magic member of struct
    707  * lwp, l_dupfd).
    708  *
    709  * The tap device is flagged as being busy since it otherwise could be
    710  * externally accessed through the corresponding device node with the cdevsw
    711  * interface.
    712  */
    713 
    714 static int
    715 tap_dev_cloner(struct lwp *l)
    716 {
    717 	struct tap_softc *sc;
    718 	file_t *fp;
    719 	int error, fd;
    720 
    721 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    722 		return error;
    723 
    724 	if ((sc = tap_clone_creator(-1)) == NULL) {
    725 		fd_abort(curproc, fp, fd);
    726 		return ENXIO;
    727 	}
    728 
    729 	sc->sc_flags |= TAP_INUSE;
    730 	if_link_state_change(&sc->sc_ec.ec_if, LINK_STATE_UP);
    731 
    732 	return fd_clone(fp, fd, FREAD | FWRITE, &tap_fileops,
    733 	    (void *)(intptr_t)device_unit(sc->sc_dev));
    734 }
    735 
    736 /*
    737  * While all other operations (read, write, ioctl, poll and kqfilter) are
    738  * really the same whether we are in cdevsw or fileops mode, the close()
    739  * function is slightly different in the two cases.
    740  *
    741  * As for the other, the core of it is shared in tap_dev_close.  What
    742  * it does is sufficient for the cdevsw interface, but the cloning interface
    743  * needs another thing:  the interface is destroyed when the processes that
    744  * created it closes it.
    745  */
    746 static int
    747 tap_cdev_close(dev_t dev, int flags, int fmt, struct lwp *l)
    748 {
    749 	struct tap_softc *sc = device_lookup_private(&tap_cd, minor(dev));
    750 
    751 	if (sc == NULL)
    752 		return ENXIO;
    753 
    754 	tap_dev_close(sc);
    755 	return 0;
    756 }
    757 
    758 /*
    759  * It might happen that the administrator used ifconfig to externally destroy
    760  * the interface.  In that case, tap_fops_close will be called while
    761  * tap_detach is already happening.  If we called it again from here, we
    762  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    763  */
    764 static int
    765 tap_fops_close(file_t *fp)
    766 {
    767 	struct tap_softc *sc;
    768 	int unit = fp->f_devunit;
    769 
    770 	sc = device_lookup_private(&tap_cd, unit);
    771 	if (sc == NULL)
    772 		return ENXIO;
    773 
    774 	KERNEL_LOCK(1, NULL);
    775 	tap_dev_close(sc);
    776 
    777 	/*
    778 	 * Destroy the device now that it is no longer useful, unless
    779 	 * it's already being destroyed.
    780 	 */
    781 	if ((sc->sc_flags & TAP_GOING) != 0)
    782 		goto out;
    783 	tap_clone_destroyer(sc->sc_dev);
    784 
    785 out:	KERNEL_UNLOCK_ONE(NULL);
    786 	return 0;
    787 }
    788 
    789 static void
    790 tap_dev_close(struct tap_softc *sc)
    791 {
    792 	struct ifnet *ifp;
    793 	int s;
    794 
    795 	s = splnet();
    796 	/* Let tap_start handle packets again */
    797 	ifp = &sc->sc_ec.ec_if;
    798 	ifp->if_flags &= ~IFF_OACTIVE;
    799 
    800 	/* Purge output queue */
    801 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    802 		struct mbuf *m;
    803 
    804 		for (;;) {
    805 			IFQ_DEQUEUE(&ifp->if_snd, m);
    806 			if (m == NULL)
    807 				break;
    808 
    809 			if_statadd2(ifp, if_opackets, 1, if_obytes, m->m_len);
    810 			bpf_mtap(ifp, m, BPF_D_OUT);
    811 			m_freem(m);
    812 		}
    813 	}
    814 	splx(s);
    815 
    816 	if (sc->sc_sih != NULL) {
    817 		softint_disestablish(sc->sc_sih);
    818 		sc->sc_sih = NULL;
    819 	}
    820 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    821 	if_link_state_change(ifp, LINK_STATE_DOWN);
    822 }
    823 
    824 static int
    825 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    826 {
    827 
    828 	return tap_dev_read(minor(dev), uio, flags);
    829 }
    830 
    831 static int
    832 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
    833     kauth_cred_t cred, int flags)
    834 {
    835 	int error;
    836 
    837 	KERNEL_LOCK(1, NULL);
    838 	error = tap_dev_read(fp->f_devunit, uio, flags);
    839 	KERNEL_UNLOCK_ONE(NULL);
    840 	return error;
    841 }
    842 
    843 static int
    844 tap_dev_read(int unit, struct uio *uio, int flags)
    845 {
    846 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
    847 	struct ifnet *ifp;
    848 	struct mbuf *m, *n;
    849 	int error = 0;
    850 
    851 	if (sc == NULL)
    852 		return ENXIO;
    853 
    854 	getnanotime(&sc->sc_atime);
    855 
    856 	ifp = &sc->sc_ec.ec_if;
    857 	if ((ifp->if_flags & IFF_UP) == 0)
    858 		return EHOSTDOWN;
    859 
    860 	mutex_enter(&sc->sc_lock);
    861 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    862 		ifp->if_flags &= ~IFF_OACTIVE;
    863 		if (sc->sc_flags & TAP_NBIO)
    864 			error = EWOULDBLOCK;
    865 		else
    866 			error = cv_wait_sig(&sc->sc_cv, &sc->sc_lock);
    867 
    868 		if (error != 0) {
    869 			mutex_exit(&sc->sc_lock);
    870 			return error;
    871 		}
    872 		/* The device might have been downed */
    873 		if ((ifp->if_flags & IFF_UP) == 0) {
    874 			mutex_exit(&sc->sc_lock);
    875 			return EHOSTDOWN;
    876 		}
    877 	}
    878 
    879 	IFQ_DEQUEUE(&ifp->if_snd, m);
    880 	mutex_exit(&sc->sc_lock);
    881 
    882 	ifp->if_flags &= ~IFF_OACTIVE;
    883 	if (m == NULL) {
    884 		error = 0;
    885 		goto out;
    886 	}
    887 
    888 	if_statadd2(ifp, if_opackets, 1,
    889 	    if_obytes, m->m_len);		/* XXX only first in chain */
    890 	bpf_mtap(ifp, m, BPF_D_OUT);
    891 	if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
    892 		goto out;
    893 	if (m == NULL)
    894 		goto out;
    895 
    896 	/*
    897 	 * One read is one packet.
    898 	 */
    899 	do {
    900 		error = uiomove(mtod(m, void *),
    901 		    uimin(m->m_len, uio->uio_resid), uio);
    902 		m = n = m_free(m);
    903 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    904 
    905 	m_freem(m);
    906 
    907 out:
    908 	return error;
    909 }
    910 
    911 static int
    912 tap_fops_stat(file_t *fp, struct stat *st)
    913 {
    914 	int error = 0;
    915 	struct tap_softc *sc;
    916 	int unit = fp->f_devunit;
    917 
    918 	(void)memset(st, 0, sizeof(*st));
    919 
    920 	KERNEL_LOCK(1, NULL);
    921 	sc = device_lookup_private(&tap_cd, unit);
    922 	if (sc == NULL) {
    923 		error = ENXIO;
    924 		goto out;
    925 	}
    926 
    927 	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
    928 	st->st_atimespec = sc->sc_atime;
    929 	st->st_mtimespec = sc->sc_mtime;
    930 	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
    931 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
    932 	st->st_gid = kauth_cred_getegid(fp->f_cred);
    933 out:
    934 	KERNEL_UNLOCK_ONE(NULL);
    935 	return error;
    936 }
    937 
    938 static int
    939 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
    940 {
    941 
    942 	return tap_dev_write(minor(dev), uio, flags);
    943 }
    944 
    945 static int
    946 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
    947     kauth_cred_t cred, int flags)
    948 {
    949 	int error;
    950 
    951 	KERNEL_LOCK(1, NULL);
    952 	error = tap_dev_write(fp->f_devunit, uio, flags);
    953 	KERNEL_UNLOCK_ONE(NULL);
    954 	return error;
    955 }
    956 
    957 static int
    958 tap_dev_write(int unit, struct uio *uio, int flags)
    959 {
    960 	struct tap_softc *sc =
    961 	    device_lookup_private(&tap_cd, unit);
    962 	struct ifnet *ifp;
    963 	struct mbuf *m, **mp;
    964 	size_t len = 0;
    965 	int error = 0;
    966 
    967 	if (sc == NULL)
    968 		return ENXIO;
    969 
    970 	getnanotime(&sc->sc_mtime);
    971 	ifp = &sc->sc_ec.ec_if;
    972 
    973 	/* One write, one packet, that's the rule */
    974 	MGETHDR(m, M_DONTWAIT, MT_DATA);
    975 	if (m == NULL) {
    976 		if_statinc(ifp, if_ierrors);
    977 		return ENOBUFS;
    978 	}
    979 	MCLAIM(m, &sc->sc_ec.ec_rx_mowner);
    980 	m->m_pkthdr.len = uio->uio_resid;
    981 
    982 	mp = &m;
    983 	while (error == 0 && uio->uio_resid > 0) {
    984 		if (*mp != m) {
    985 			MGET(*mp, M_DONTWAIT, MT_DATA);
    986 			if (*mp == NULL) {
    987 				error = ENOBUFS;
    988 				break;
    989 			}
    990 			MCLAIM(*mp, &sc->sc_ec.ec_rx_mowner);
    991 		}
    992 		(*mp)->m_len = uimin(MHLEN, uio->uio_resid);
    993 		len += (*mp)->m_len;
    994 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
    995 		mp = &(*mp)->m_next;
    996 	}
    997 	if (error) {
    998 		if_statinc(ifp, if_ierrors);
    999 		m_freem(m);
   1000 		return error;
   1001 	}
   1002 
   1003 	m_set_rcvif(m, ifp);
   1004 
   1005 	if_statadd2(ifp, if_ipackets, 1, if_ibytes, len);
   1006 	bpf_mtap(ifp, m, BPF_D_IN);
   1007 	if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN)) != 0)
   1008 		return error;
   1009 	if (m == NULL)
   1010 		return 0;
   1011 
   1012 	if_percpuq_enqueue(ifp->if_percpuq, m);
   1013 
   1014 	return 0;
   1015 }
   1016 
   1017 static int
   1018 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags, struct lwp *l)
   1019 {
   1020 
   1021 	return tap_dev_ioctl(minor(dev), cmd, data, l);
   1022 }
   1023 
   1024 static int
   1025 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
   1026 {
   1027 
   1028 	return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
   1029 }
   1030 
   1031 static int
   1032 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
   1033 {
   1034 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
   1035 
   1036 	if (sc == NULL)
   1037 		return ENXIO;
   1038 
   1039 	switch (cmd) {
   1040 	case FIONREAD:
   1041 		{
   1042 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1043 			struct mbuf *m;
   1044 			int s;
   1045 
   1046 			s = splnet();
   1047 			IFQ_POLL(&ifp->if_snd, m);
   1048 
   1049 			if (m == NULL)
   1050 				*(int *)data = 0;
   1051 			else
   1052 				*(int *)data = m->m_pkthdr.len;
   1053 			splx(s);
   1054 			return 0;
   1055 		}
   1056 	case TIOCSPGRP:
   1057 	case FIOSETOWN:
   1058 		return fsetown(&sc->sc_pgid, cmd, data);
   1059 	case TIOCGPGRP:
   1060 	case FIOGETOWN:
   1061 		return fgetown(sc->sc_pgid, cmd, data);
   1062 	case FIOASYNC:
   1063 		if (*(int *)data) {
   1064 			if (sc->sc_sih == NULL) {
   1065 				sc->sc_sih = softint_establish(SOFTINT_CLOCK,
   1066 				    tap_softintr, sc);
   1067 				if (sc->sc_sih == NULL)
   1068 					return EBUSY; /* XXX */
   1069 			}
   1070 			sc->sc_flags |= TAP_ASYNCIO;
   1071 		} else {
   1072 			sc->sc_flags &= ~TAP_ASYNCIO;
   1073 			if (sc->sc_sih != NULL) {
   1074 				softint_disestablish(sc->sc_sih);
   1075 				sc->sc_sih = NULL;
   1076 			}
   1077 		}
   1078 		return 0;
   1079 	case FIONBIO:
   1080 		if (*(int *)data)
   1081 			sc->sc_flags |= TAP_NBIO;
   1082 		else
   1083 			sc->sc_flags &= ~TAP_NBIO;
   1084 		return 0;
   1085 	case TAPGIFNAME:
   1086 		{
   1087 			struct ifreq *ifr = (struct ifreq *)data;
   1088 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1089 
   1090 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1091 			return 0;
   1092 		}
   1093 	default:
   1094 		return ENOTTY;
   1095 	}
   1096 }
   1097 
   1098 static int
   1099 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1100 {
   1101 
   1102 	return tap_dev_poll(minor(dev), events, l);
   1103 }
   1104 
   1105 static int
   1106 tap_fops_poll(file_t *fp, int events)
   1107 {
   1108 
   1109 	return tap_dev_poll(fp->f_devunit, events, curlwp);
   1110 }
   1111 
   1112 static int
   1113 tap_dev_poll(int unit, int events, struct lwp *l)
   1114 {
   1115 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
   1116 	int revents = 0;
   1117 
   1118 	if (sc == NULL)
   1119 		return POLLERR;
   1120 
   1121 	if (events & (POLLIN | POLLRDNORM)) {
   1122 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1123 		struct mbuf *m;
   1124 		int s;
   1125 
   1126 		s = splnet();
   1127 		IFQ_POLL(&ifp->if_snd, m);
   1128 
   1129 		if (m != NULL)
   1130 			revents |= events & (POLLIN | POLLRDNORM);
   1131 		else {
   1132 			mutex_spin_enter(&sc->sc_lock);
   1133 			selrecord(l, &sc->sc_rsel);
   1134 			mutex_spin_exit(&sc->sc_lock);
   1135 		}
   1136 		splx(s);
   1137 	}
   1138 	revents |= events & (POLLOUT | POLLWRNORM);
   1139 
   1140 	return revents;
   1141 }
   1142 
   1143 static struct filterops tap_read_filterops = {
   1144 	.f_flags = FILTEROP_ISFD,
   1145 	.f_attach = NULL,
   1146 	.f_detach = tap_kqdetach,
   1147 	.f_event = tap_kqread,
   1148 };
   1149 
   1150 static int
   1151 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1152 {
   1153 
   1154 	return tap_dev_kqfilter(minor(dev), kn);
   1155 }
   1156 
   1157 static int
   1158 tap_fops_kqfilter(file_t *fp, struct knote *kn)
   1159 {
   1160 
   1161 	return tap_dev_kqfilter(fp->f_devunit, kn);
   1162 }
   1163 
   1164 static int
   1165 tap_dev_kqfilter(int unit, struct knote *kn)
   1166 {
   1167 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
   1168 
   1169 	if (sc == NULL)
   1170 		return ENXIO;
   1171 
   1172 	switch(kn->kn_filter) {
   1173 	case EVFILT_READ:
   1174 		kn->kn_fop = &tap_read_filterops;
   1175 		kn->kn_hook = sc;
   1176 		KERNEL_LOCK(1, NULL);
   1177 		mutex_spin_enter(&sc->sc_lock);
   1178 		selrecord_knote(&sc->sc_rsel, kn);
   1179 		mutex_spin_exit(&sc->sc_lock);
   1180 		KERNEL_UNLOCK_ONE(NULL);
   1181 		break;
   1182 
   1183 	case EVFILT_WRITE:
   1184 		kn->kn_fop = &seltrue_filtops;
   1185 		break;
   1186 
   1187 	default:
   1188 		return EINVAL;
   1189 	}
   1190 
   1191 	return 0;
   1192 }
   1193 
   1194 static void
   1195 tap_kqdetach(struct knote *kn)
   1196 {
   1197 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1198 
   1199 	KERNEL_LOCK(1, NULL);
   1200 	mutex_spin_enter(&sc->sc_lock);
   1201 	selremove_knote(&sc->sc_rsel, kn);
   1202 	mutex_spin_exit(&sc->sc_lock);
   1203 	KERNEL_UNLOCK_ONE(NULL);
   1204 }
   1205 
   1206 static int
   1207 tap_kqread(struct knote *kn, long hint)
   1208 {
   1209 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1210 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1211 	struct mbuf *m;
   1212 	int s, rv;
   1213 
   1214 	KERNEL_LOCK(1, NULL);
   1215 	s = splnet();
   1216 	IFQ_POLL(&ifp->if_snd, m);
   1217 
   1218 	if (m == NULL)
   1219 		kn->kn_data = 0;
   1220 	else
   1221 		kn->kn_data = m->m_pkthdr.len;
   1222 	splx(s);
   1223 	rv = (kn->kn_data != 0 ? 1 : 0);
   1224 	KERNEL_UNLOCK_ONE(NULL);
   1225 	return rv;
   1226 }
   1227 
   1228 /*
   1229  * sysctl management routines
   1230  * You can set the address of an interface through:
   1231  * net.link.tap.tap<number>
   1232  *
   1233  * Note the consistent use of tap_log in order to use
   1234  * sysctl_teardown at unload time.
   1235  *
   1236  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1237  * blocks register a function in a special section of the kernel
   1238  * (called a link set) which is used at init_sysctl() time to cycle
   1239  * through all those functions to create the kernel's sysctl tree.
   1240  *
   1241  * It is not possible to use link sets in a module, so the
   1242  * easiest is to simply call our own setup routine at load time.
   1243  *
   1244  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1245  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1246  * whole kernel sysctl tree is built, it is not possible to add any
   1247  * permanent node.
   1248  *
   1249  * It should be noted that we're not saving the sysctlnode pointer
   1250  * we are returned when creating the "tap" node.  That structure
   1251  * cannot be trusted once out of the calling function, as it might
   1252  * get reused.  So we just save the MIB number, and always give the
   1253  * full path starting from the root for later calls to sysctl_createv
   1254  * and sysctl_destroyv.
   1255  */
   1256 static void
   1257 sysctl_tap_setup(struct sysctllog **clog)
   1258 {
   1259 	const struct sysctlnode *node;
   1260 	int error = 0;
   1261 
   1262 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1263 	    CTLFLAG_PERMANENT,
   1264 	    CTLTYPE_NODE, "link", NULL,
   1265 	    NULL, 0, NULL, 0,
   1266 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1267 		return;
   1268 
   1269 	/*
   1270 	 * The first four parameters of sysctl_createv are for management.
   1271 	 *
   1272 	 * The four that follows, here starting with a '0' for the flags,
   1273 	 * describe the node.
   1274 	 *
   1275 	 * The next series of four set its value, through various possible
   1276 	 * means.
   1277 	 *
   1278 	 * Last but not least, the path to the node is described.  That path
   1279 	 * is relative to the given root (third argument).  Here we're
   1280 	 * starting from the root.
   1281 	 */
   1282 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1283 	    CTLFLAG_PERMANENT,
   1284 	    CTLTYPE_NODE, "tap", NULL,
   1285 	    NULL, 0, NULL, 0,
   1286 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1287 		return;
   1288 	tap_node = node->sysctl_num;
   1289 }
   1290 
   1291 /*
   1292  * The helper functions make Andrew Brown's interface really
   1293  * shine.  It makes possible to create value on the fly whether
   1294  * the sysctl value is read or written.
   1295  *
   1296  * As shown as an example in the man page, the first step is to
   1297  * create a copy of the node to have sysctl_lookup work on it.
   1298  *
   1299  * Here, we have more work to do than just a copy, since we have
   1300  * to create the string.  The first step is to collect the actual
   1301  * value of the node, which is a convenient pointer to the softc
   1302  * of the interface.  From there we create the string and use it
   1303  * as the value, but only for the *copy* of the node.
   1304  *
   1305  * Then we let sysctl_lookup do the magic, which consists in
   1306  * setting oldp and newp as required by the operation.  When the
   1307  * value is read, that means that the string will be copied to
   1308  * the user, and when it is written, the new value will be copied
   1309  * over in the addr array.
   1310  *
   1311  * If newp is NULL, the user was reading the value, so we don't
   1312  * have anything else to do.  If a new value was written, we
   1313  * have to check it.
   1314  *
   1315  * If it is incorrect, we can return an error and leave 'node' as
   1316  * it is:  since it is a copy of the actual node, the change will
   1317  * be forgotten.
   1318  *
   1319  * Upon a correct input, we commit the change to the ifnet
   1320  * structure of our interface.
   1321  */
   1322 static int
   1323 tap_sysctl_handler(SYSCTLFN_ARGS)
   1324 {
   1325 	struct sysctlnode node;
   1326 	struct tap_softc *sc;
   1327 	struct ifnet *ifp;
   1328 	int error;
   1329 	size_t len;
   1330 	char addr[3 * ETHER_ADDR_LEN];
   1331 	uint8_t enaddr[ETHER_ADDR_LEN];
   1332 
   1333 	node = *rnode;
   1334 	sc = node.sysctl_data;
   1335 	ifp = &sc->sc_ec.ec_if;
   1336 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
   1337 	node.sysctl_data = addr;
   1338 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1339 	if (error || newp == NULL)
   1340 		return error;
   1341 
   1342 	len = strlen(addr);
   1343 	if (len < 11 || len > 17)
   1344 		return EINVAL;
   1345 
   1346 	/* Commit change */
   1347 	if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
   1348 		return EINVAL;
   1349 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
   1350 	return error;
   1351 }
   1352 
   1353 /*
   1354  * Module infrastructure
   1355  */
   1356 #include "if_module.h"
   1357 
   1358 IF_MODULE(MODULE_CLASS_DRIVER, tap, NULL)
   1359