1 /* $NetBSD: vm.c,v 1.197 2023/09/24 09:33:26 martin Exp $ */ 2 3 /* 4 * Copyright (c) 2007-2011 Antti Kantee. All Rights Reserved. 5 * 6 * Development of this software was supported by 7 * The Finnish Cultural Foundation and the Research Foundation of 8 * The Helsinki University of Technology. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS 20 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /* 33 * Virtual memory emulation routines. 34 */ 35 36 /* 37 * XXX: we abuse pg->uanon for the virtual address of the storage 38 * for each page. phys_addr would fit the job description better, 39 * except that it will create unnecessary lossage on some platforms 40 * due to not being a pointer type. 41 */ 42 43 #include <sys/cdefs.h> 44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.197 2023/09/24 09:33:26 martin Exp $"); 45 46 #include <sys/param.h> 47 #include <sys/atomic.h> 48 #include <sys/buf.h> 49 #include <sys/kernel.h> 50 #include <sys/kmem.h> 51 #include <sys/vmem.h> 52 #include <sys/mman.h> 53 #include <sys/null.h> 54 #include <sys/vnode.h> 55 #include <sys/radixtree.h> 56 #include <sys/module.h> 57 58 #include <machine/pmap.h> 59 60 #if defined(__i386__) || defined(__x86_64__) 61 /* 62 * This file abuses the pmap abstraction to create its own statically 63 * allocated struct pmap object, even though it can't do anything 64 * useful with such a thing from userland. On x86 the struct pmap 65 * definition is private, so we have to go to extra effort to abuse it 66 * there. This should be fixed -- all of the struct pmap definitions 67 * should be private, and then rump can furnish its own fake struct 68 * pmap without clashing with anything. 69 */ 70 #include <machine/pmap_private.h> 71 #endif 72 73 #include <uvm/uvm.h> 74 #include <uvm/uvm_ddb.h> 75 #include <uvm/uvm_pdpolicy.h> 76 #include <uvm/uvm_prot.h> 77 #include <uvm/uvm_readahead.h> 78 #include <uvm/uvm_device.h> 79 80 #include <rump-sys/kern.h> 81 #include <rump-sys/vfs.h> 82 83 #include <rump/rumpuser.h> 84 85 kmutex_t vmpage_lruqueue_lock; /* non-free page lock */ 86 kmutex_t uvm_swap_data_lock; 87 88 struct uvmexp uvmexp; 89 struct uvm uvm; 90 91 #ifdef __uvmexp_pagesize 92 const int * const uvmexp_pagesize = &uvmexp.pagesize; 93 const int * const uvmexp_pagemask = &uvmexp.pagemask; 94 const int * const uvmexp_pageshift = &uvmexp.pageshift; 95 #endif 96 97 static struct vm_map kernel_map_store; 98 struct vm_map *kernel_map = &kernel_map_store; 99 100 static struct vm_map module_map_store; 101 102 static struct pmap pmap_kernel; 103 struct pmap rump_pmap_local; 104 struct pmap *const kernel_pmap_ptr = &pmap_kernel; 105 106 vmem_t *kmem_arena; 107 vmem_t *kmem_va_arena; 108 109 static unsigned int pdaemon_waiters; 110 static kmutex_t pdaemonmtx; 111 static kcondvar_t pdaemoncv, oomwait; 112 113 /* all local non-proc0 processes share this vmspace */ 114 struct vmspace *rump_vmspace_local; 115 116 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED; 117 static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */ 118 static unsigned long curphysmem; 119 static unsigned long dddlim; /* 90% of memory limit used */ 120 #define NEED_PAGEDAEMON() \ 121 (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim) 122 #define PDRESERVE (2*MAXPHYS) 123 124 /* 125 * Try to free two pages worth of pages from objects. 126 * If this successfully frees a full page cache page, we'll 127 * free the released page plus PAGE_SIZE/sizeof(vm_page). 128 */ 129 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page)) 130 131 /* 132 * Keep a list of least recently used pages. Since the only way a 133 * rump kernel can "access" a page is via lookup, we put the page 134 * at the back of queue every time a lookup for it is done. If the 135 * page is in front of this global queue and we're short of memory, 136 * it's a candidate for pageout. 137 */ 138 static struct pglist vmpage_lruqueue; 139 static unsigned vmpage_onqueue; 140 141 /* 142 * vm pages 143 */ 144 145 static int 146 pgctor(void *arg, void *obj, int flags) 147 { 148 struct vm_page *pg = obj; 149 150 memset(pg, 0, sizeof(*pg)); 151 pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE, 152 (flags & PR_WAITOK) == PR_WAITOK, "pgalloc"); 153 return pg->uanon == NULL; 154 } 155 156 static void 157 pgdtor(void *arg, void *obj) 158 { 159 struct vm_page *pg = obj; 160 161 rump_hyperfree(pg->uanon, PAGE_SIZE); 162 } 163 164 static struct pool_cache pagecache; 165 166 /* stub for UVM_OBJ_IS_VNODE */ 167 struct uvm_pagerops rump_uvm_vnodeops; 168 __weak_alias(uvm_vnodeops,rump_uvm_vnodeops); 169 170 /* 171 * Called with the object locked. We don't support anons. 172 */ 173 struct vm_page * 174 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon, 175 int flags, int strat, int free_list) 176 { 177 struct vm_page *pg; 178 179 KASSERT(uobj && rw_write_held(uobj->vmobjlock)); 180 KASSERT(anon == NULL); 181 182 pg = pool_cache_get(&pagecache, PR_NOWAIT); 183 if (__predict_false(pg == NULL)) { 184 return NULL; 185 } 186 mutex_init(&pg->interlock, MUTEX_DEFAULT, IPL_NONE); 187 188 pg->offset = off; 189 pg->uobject = uobj; 190 191 if (radix_tree_insert_node(&uobj->uo_pages, off >> PAGE_SHIFT, 192 pg) != 0) { 193 pool_cache_put(&pagecache, pg); 194 return NULL; 195 } 196 197 if (UVM_OBJ_IS_VNODE(uobj)) { 198 if (uobj->uo_npages == 0) { 199 struct vnode *vp = (struct vnode *)uobj; 200 mutex_enter(vp->v_interlock); 201 vp->v_iflag |= VI_PAGES; 202 mutex_exit(vp->v_interlock); 203 } 204 pg->flags |= PG_FILE; 205 } 206 uobj->uo_npages++; 207 208 pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE; 209 if (flags & UVM_PGA_ZERO) { 210 uvm_pagezero(pg); 211 } 212 213 /* 214 * Don't put anons on the LRU page queue. We can't flush them 215 * (there's no concept of swap in a rump kernel), so no reason 216 * to bother with them. 217 */ 218 if (!UVM_OBJ_IS_AOBJ(uobj)) { 219 atomic_inc_uint(&vmpage_onqueue); 220 mutex_enter(&vmpage_lruqueue_lock); 221 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue); 222 mutex_exit(&vmpage_lruqueue_lock); 223 } else { 224 pg->flags |= PG_AOBJ; 225 } 226 227 return pg; 228 } 229 230 /* 231 * Release a page. 232 * 233 * Called with the vm object locked. 234 */ 235 void 236 uvm_pagefree(struct vm_page *pg) 237 { 238 struct uvm_object *uobj = pg->uobject; 239 struct vm_page *pg2 __unused; 240 241 KASSERT(rw_write_held(uobj->vmobjlock)); 242 243 mutex_enter(&pg->interlock); 244 uvm_pagewakeup(pg); 245 mutex_exit(&pg->interlock); 246 247 uobj->uo_npages--; 248 pg2 = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT); 249 KASSERT(pg == pg2); 250 251 if (!UVM_OBJ_IS_AOBJ(uobj)) { 252 mutex_enter(&vmpage_lruqueue_lock); 253 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue); 254 mutex_exit(&vmpage_lruqueue_lock); 255 atomic_dec_uint(&vmpage_onqueue); 256 } 257 258 if (UVM_OBJ_IS_VNODE(uobj) && uobj->uo_npages == 0) { 259 struct vnode *vp = (struct vnode *)uobj; 260 mutex_enter(vp->v_interlock); 261 vp->v_iflag &= ~VI_PAGES; 262 mutex_exit(vp->v_interlock); 263 } 264 265 mutex_destroy(&pg->interlock); 266 pool_cache_put(&pagecache, pg); 267 } 268 269 void 270 uvm_pagezero(struct vm_page *pg) 271 { 272 273 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY); 274 memset((void *)pg->uanon, 0, PAGE_SIZE); 275 } 276 277 /* 278 * uvm_page_owner_locked_p: return true if object associated with page is 279 * locked. this is a weak check for runtime assertions only. 280 */ 281 282 bool 283 uvm_page_owner_locked_p(struct vm_page *pg, bool exclusive) 284 { 285 286 if (exclusive) 287 return rw_write_held(pg->uobject->vmobjlock); 288 else 289 return rw_lock_held(pg->uobject->vmobjlock); 290 } 291 292 /* 293 * Misc routines 294 */ 295 296 static kmutex_t pagermtx; 297 298 void 299 uvm_init(void) 300 { 301 char buf[64]; 302 303 if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) { 304 unsigned long tmp; 305 char *ep; 306 int mult; 307 308 tmp = strtoul(buf, &ep, 10); 309 if (strlen(ep) > 1) 310 panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf); 311 312 /* mini-dehumanize-number */ 313 mult = 1; 314 switch (*ep) { 315 case 'k': 316 mult = 1024; 317 break; 318 case 'm': 319 mult = 1024*1024; 320 break; 321 case 'g': 322 mult = 1024*1024*1024; 323 break; 324 case 0: 325 break; 326 default: 327 panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf); 328 } 329 rump_physmemlimit = tmp * mult; 330 331 if (rump_physmemlimit / mult != tmp) 332 panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf); 333 334 /* reserve some memory for the pager */ 335 if (rump_physmemlimit <= PDRESERVE) 336 panic("uvm_init: system reserves %d bytes of mem, " 337 "only %lu bytes given", 338 PDRESERVE, rump_physmemlimit); 339 pdlimit = rump_physmemlimit; 340 rump_physmemlimit -= PDRESERVE; 341 342 if (pdlimit < 1024*1024) 343 printf("uvm_init: WARNING: <1MB RAM limit, " 344 "hope you know what you're doing\n"); 345 346 #define HUMANIZE_BYTES 9 347 CTASSERT(sizeof(buf) >= HUMANIZE_BYTES); 348 format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit); 349 #undef HUMANIZE_BYTES 350 dddlim = 9 * (rump_physmemlimit / 10); 351 } else { 352 strlcpy(buf, "unlimited (host limit)", sizeof(buf)); 353 } 354 aprint_verbose("total memory = %s\n", buf); 355 356 TAILQ_INIT(&vmpage_lruqueue); 357 358 if (rump_physmemlimit == RUMPMEM_UNLIMITED) { 359 uvmexp.npages = physmem; 360 } else { 361 uvmexp.npages = pdlimit >> PAGE_SHIFT; 362 uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT; 363 uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT; 364 } 365 /* 366 * uvmexp.free is not used internally or updated. The reason is 367 * that the memory hypercall allocator is allowed to allocate 368 * non-page sized chunks. We use a byte count in curphysmem 369 * instead. 370 */ 371 uvmexp.free = uvmexp.npages; 372 373 #ifndef __uvmexp_pagesize 374 uvmexp.pagesize = PAGE_SIZE; 375 uvmexp.pagemask = PAGE_MASK; 376 uvmexp.pageshift = PAGE_SHIFT; 377 #else 378 uvmexp.pagesize = rumpuser_getpagesize(); 379 uvmexp.pagemask = uvmexp.pagesize-1; 380 uvmexp.pageshift = ffs(uvmexp.pagesize)-1; 381 #endif 382 383 mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE); 384 mutex_init(&vmpage_lruqueue_lock, MUTEX_DEFAULT, IPL_NONE); 385 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE); 386 mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE); 387 388 cv_init(&pdaemoncv, "pdaemon"); 389 cv_init(&oomwait, "oomwait"); 390 391 module_map = &module_map_store; 392 393 kernel_map->pmap = pmap_kernel(); 394 395 pool_subsystem_init(); 396 397 kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE, 398 NULL, NULL, NULL, 399 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM); 400 401 vmem_subsystem_init(kmem_arena); 402 403 kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE, 404 vmem_alloc, vmem_free, kmem_arena, 405 8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM); 406 407 pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0, 408 "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL); 409 410 radix_tree_init(); 411 412 /* create vmspace used by local clients */ 413 rump_vmspace_local = kmem_zalloc(sizeof(*rump_vmspace_local), KM_SLEEP); 414 uvmspace_init(rump_vmspace_local, &rump_pmap_local, 0, 0, false); 415 } 416 417 void 418 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax, 419 bool topdown) 420 { 421 422 vm->vm_map.pmap = pmap; 423 vm->vm_refcnt = 1; 424 } 425 426 int 427 uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end, 428 bool new_pageable, int lockflags) 429 { 430 return 0; 431 } 432 433 void 434 uvm_pagewire(struct vm_page *pg) 435 { 436 437 /* nada */ 438 } 439 440 void 441 uvm_pageunwire(struct vm_page *pg) 442 { 443 444 /* nada */ 445 } 446 447 int 448 uvm_availmem(bool cached) 449 { 450 451 return uvmexp.free; 452 } 453 454 void 455 uvm_pagelock(struct vm_page *pg) 456 { 457 458 mutex_enter(&pg->interlock); 459 } 460 461 void 462 uvm_pagelock2(struct vm_page *pg1, struct vm_page *pg2) 463 { 464 465 if (pg1 < pg2) { 466 mutex_enter(&pg1->interlock); 467 mutex_enter(&pg2->interlock); 468 } else { 469 mutex_enter(&pg2->interlock); 470 mutex_enter(&pg1->interlock); 471 } 472 } 473 474 void 475 uvm_pageunlock(struct vm_page *pg) 476 { 477 478 mutex_exit(&pg->interlock); 479 } 480 481 void 482 uvm_pageunlock2(struct vm_page *pg1, struct vm_page *pg2) 483 { 484 485 mutex_exit(&pg1->interlock); 486 mutex_exit(&pg2->interlock); 487 } 488 489 /* where's your schmonz now? */ 490 #define PUNLIMIT(a) \ 491 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY; 492 void 493 uvm_init_limits(struct proc *p) 494 { 495 496 #ifndef DFLSSIZ 497 #define DFLSSIZ (16*1024*1024) 498 #endif 499 p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ; 500 p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ; 501 PUNLIMIT(RLIMIT_DATA); 502 PUNLIMIT(RLIMIT_RSS); 503 PUNLIMIT(RLIMIT_AS); 504 /* nice, cascade */ 505 } 506 #undef PUNLIMIT 507 508 /* 509 * This satisfies the "disgusting mmap hack" used by proplib. 510 */ 511 int 512 uvm_mmap_anon(struct proc *p, void **addrp, size_t size) 513 { 514 int error; 515 516 /* no reason in particular, but cf. uvm_default_mapaddr() */ 517 if (*addrp != NULL) 518 panic("uvm_mmap() variant unsupported"); 519 520 if (RUMP_LOCALPROC_P(curproc)) { 521 error = rumpuser_anonmmap(NULL, size, 0, 0, addrp); 522 } else { 523 error = rump_sysproxy_anonmmap(RUMP_SPVM2CTL(p->p_vmspace), 524 size, addrp); 525 } 526 return error; 527 } 528 529 /* 530 * Stubs for things referenced from vfs_vnode.c but not used. 531 */ 532 const dev_t zerodev; 533 534 struct uvm_object * 535 udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size) 536 { 537 return NULL; 538 } 539 540 struct pagerinfo { 541 vaddr_t pgr_kva; 542 int pgr_npages; 543 struct vm_page **pgr_pgs; 544 bool pgr_read; 545 546 LIST_ENTRY(pagerinfo) pgr_entries; 547 }; 548 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist); 549 550 /* 551 * Pager "map" in routine. Instead of mapping, we allocate memory 552 * and copy page contents there. The reason for copying instead of 553 * mapping is simple: we do not assume we are running on virtual 554 * memory. Even if we could emulate virtual memory in some envs 555 * such as userspace, copying is much faster than trying to awkardly 556 * cope with remapping (see "Design and Implementation" pp.95-98). 557 * The downside of the approach is that the pager requires MAXPHYS 558 * free memory to perform paging, but short of virtual memory or 559 * making the pager do I/O in page-sized chunks we cannot do much 560 * about that. 561 */ 562 vaddr_t 563 uvm_pagermapin(struct vm_page **pgs, int npages, int flags) 564 { 565 struct pagerinfo *pgri; 566 vaddr_t curkva; 567 int i; 568 569 /* allocate structures */ 570 pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP); 571 pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP); 572 pgri->pgr_npages = npages; 573 pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP); 574 pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0; 575 576 /* copy contents to "mapped" memory */ 577 for (i = 0, curkva = pgri->pgr_kva; 578 i < npages; 579 i++, curkva += PAGE_SIZE) { 580 /* 581 * We need to copy the previous contents of the pages to 582 * the window even if we are reading from the 583 * device, since the device might not fill the contents of 584 * the full mapped range and we will end up corrupting 585 * data when we unmap the window. 586 */ 587 memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE); 588 pgri->pgr_pgs[i] = pgs[i]; 589 } 590 591 mutex_enter(&pagermtx); 592 LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries); 593 mutex_exit(&pagermtx); 594 595 return pgri->pgr_kva; 596 } 597 598 /* 599 * map out the pager window. return contents from VA to page storage 600 * and free structures. 601 * 602 * Note: does not currently support partial frees 603 */ 604 void 605 uvm_pagermapout(vaddr_t kva, int npages) 606 { 607 struct pagerinfo *pgri; 608 vaddr_t curkva; 609 int i; 610 611 mutex_enter(&pagermtx); 612 LIST_FOREACH(pgri, &pagerlist, pgr_entries) { 613 if (pgri->pgr_kva == kva) 614 break; 615 } 616 KASSERT(pgri); 617 if (pgri->pgr_npages != npages) 618 panic("uvm_pagermapout: partial unmapping not supported"); 619 LIST_REMOVE(pgri, pgr_entries); 620 mutex_exit(&pagermtx); 621 622 if (pgri->pgr_read) { 623 for (i = 0, curkva = pgri->pgr_kva; 624 i < pgri->pgr_npages; 625 i++, curkva += PAGE_SIZE) { 626 memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE); 627 } 628 } 629 630 kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *)); 631 kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE); 632 kmem_free(pgri, sizeof(*pgri)); 633 } 634 635 /* 636 * convert va in pager window to page structure. 637 * XXX: how expensive is this (global lock, list traversal)? 638 */ 639 struct vm_page * 640 uvm_pageratop(vaddr_t va) 641 { 642 struct pagerinfo *pgri; 643 struct vm_page *pg = NULL; 644 int i; 645 646 mutex_enter(&pagermtx); 647 LIST_FOREACH(pgri, &pagerlist, pgr_entries) { 648 if (pgri->pgr_kva <= va 649 && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE) 650 break; 651 } 652 if (pgri) { 653 i = (va - pgri->pgr_kva) >> PAGE_SHIFT; 654 pg = pgri->pgr_pgs[i]; 655 } 656 mutex_exit(&pagermtx); 657 658 return pg; 659 } 660 661 /* 662 * Called with the vm object locked. 663 * 664 * Put vnode object pages at the end of the access queue to indicate 665 * they have been recently accessed and should not be immediate 666 * candidates for pageout. Do not do this for lookups done by 667 * the pagedaemon to mimic pmap_kentered mappings which don't track 668 * access information. 669 */ 670 struct vm_page * 671 uvm_pagelookup(struct uvm_object *uobj, voff_t off) 672 { 673 struct vm_page *pg; 674 bool ispagedaemon = curlwp == uvm.pagedaemon_lwp; 675 676 pg = radix_tree_lookup_node(&uobj->uo_pages, off >> PAGE_SHIFT); 677 if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) { 678 mutex_enter(&vmpage_lruqueue_lock); 679 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue); 680 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue); 681 mutex_exit(&vmpage_lruqueue_lock); 682 } 683 684 return pg; 685 } 686 687 void 688 uvm_page_unbusy(struct vm_page **pgs, int npgs) 689 { 690 struct vm_page *pg; 691 int i, pageout_done; 692 693 KASSERT(npgs > 0); 694 695 pageout_done = 0; 696 for (i = 0; i < npgs; i++) { 697 pg = pgs[i]; 698 if (pg == NULL || pg == PGO_DONTCARE) { 699 continue; 700 } 701 702 #if 0 703 KASSERT(uvm_page_owner_locked_p(pg, true)); 704 #else 705 /* 706 * uvm_page_owner_locked_p() is not available in rump, 707 * and rump doesn't support amaps anyway. 708 */ 709 KASSERT(rw_write_held(pg->uobject->vmobjlock)); 710 #endif 711 KASSERT(pg->flags & PG_BUSY); 712 713 if (pg->flags & PG_PAGEOUT) { 714 pg->flags &= ~PG_PAGEOUT; 715 pg->flags |= PG_RELEASED; 716 pageout_done++; 717 atomic_inc_uint(&uvmexp.pdfreed); 718 } 719 if (pg->flags & PG_RELEASED) { 720 KASSERT(pg->uobject != NULL || 721 (pg->uanon != NULL && pg->uanon->an_ref > 0)); 722 pg->flags &= ~PG_RELEASED; 723 uvm_pagefree(pg); 724 } else { 725 KASSERT((pg->flags & PG_FAKE) == 0); 726 pg->flags &= ~PG_BUSY; 727 uvm_pagelock(pg); 728 uvm_pagewakeup(pg); 729 uvm_pageunlock(pg); 730 UVM_PAGE_OWN(pg, NULL); 731 } 732 } 733 if (pageout_done != 0) { 734 uvm_pageout_done(pageout_done); 735 } 736 } 737 738 void 739 uvm_pagewait(struct vm_page *pg, krwlock_t *lock, const char *wmesg) 740 { 741 742 KASSERT(rw_lock_held(lock)); 743 KASSERT((pg->flags & PG_BUSY) != 0); 744 745 mutex_enter(&pg->interlock); 746 pg->pqflags |= PQ_WANTED; 747 rw_exit(lock); 748 UVM_UNLOCK_AND_WAIT(pg, &pg->interlock, false, wmesg, 0); 749 } 750 751 void 752 uvm_pagewakeup(struct vm_page *pg) 753 { 754 755 KASSERT(mutex_owned(&pg->interlock)); 756 757 if ((pg->pqflags & PQ_WANTED) != 0) { 758 pg->pqflags &= ~PQ_WANTED; 759 wakeup(pg); 760 } 761 } 762 763 void 764 uvm_estimatepageable(int *active, int *inactive) 765 { 766 767 /* XXX: guessing game */ 768 *active = 1024; 769 *inactive = 1024; 770 } 771 772 int 773 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags) 774 { 775 776 panic("%s: unimplemented", __func__); 777 } 778 779 void 780 uvm_unloan(void *v, int npages, int flags) 781 { 782 783 panic("%s: unimplemented", __func__); 784 } 785 786 int 787 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages, 788 struct vm_page **opp) 789 { 790 791 return EBUSY; 792 } 793 794 struct vm_page * 795 uvm_loanbreak(struct vm_page *pg) 796 { 797 798 panic("%s: unimplemented", __func__); 799 } 800 801 void 802 ubc_purge(struct uvm_object *uobj) 803 { 804 805 } 806 807 vaddr_t 808 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz, int topdown) 809 { 810 811 return 0; 812 } 813 814 int 815 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end, 816 vm_prot_t prot, bool set_max) 817 { 818 819 return EOPNOTSUPP; 820 } 821 822 int 823 uvm_map(struct vm_map *map, vaddr_t *startp, vsize_t size, 824 struct uvm_object *uobj, voff_t uoffset, vsize_t align, 825 uvm_flag_t flags) 826 { 827 828 *startp = (vaddr_t)rump_hypermalloc(size, align, true, "uvm_map"); 829 return *startp != 0 ? 0 : ENOMEM; 830 } 831 832 void 833 uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags) 834 { 835 836 rump_hyperfree((void*)start, end-start); 837 } 838 839 840 /* 841 * UVM km 842 */ 843 844 vaddr_t 845 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags) 846 { 847 void *rv, *desired = NULL; 848 int alignbit, error; 849 850 #ifdef __x86_64__ 851 /* 852 * On amd64, allocate all module memory from the lowest 2GB. 853 * This is because NetBSD kernel modules are compiled 854 * with -mcmodel=kernel and reserve only 4 bytes for 855 * offsets. If we load code compiled with -mcmodel=kernel 856 * anywhere except the lowest or highest 2GB, it will not 857 * work. Since userspace does not have access to the highest 858 * 2GB, use the lowest 2GB. 859 * 860 * Note: this assumes the rump kernel resides in 861 * the lowest 2GB as well. 862 * 863 * Note2: yes, it's a quick hack, but since this the only 864 * place where we care about the map we're allocating from, 865 * just use a simple "if" instead of coming up with a fancy 866 * generic solution. 867 */ 868 if (map == module_map) { 869 desired = (void *)(0x80000000 - size); 870 } 871 #endif 872 873 if (__predict_false(map == module_map)) { 874 alignbit = 0; 875 if (align) { 876 alignbit = ffs(align)-1; 877 } 878 error = rumpuser_anonmmap(desired, size, alignbit, 879 flags & UVM_KMF_EXEC, &rv); 880 } else { 881 error = rumpuser_malloc(size, align, &rv); 882 } 883 884 if (error) { 885 if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT)) 886 return 0; 887 else 888 panic("uvm_km_alloc failed"); 889 } 890 891 if (flags & UVM_KMF_ZERO) 892 memset(rv, 0, size); 893 894 return (vaddr_t)rv; 895 } 896 897 void 898 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags) 899 { 900 901 if (__predict_false(map == module_map)) 902 rumpuser_unmap((void *)vaddr, size); 903 else 904 rumpuser_free((void *)vaddr, size); 905 } 906 907 int 908 uvm_km_protect(struct vm_map *map, vaddr_t vaddr, vsize_t size, vm_prot_t prot) 909 { 910 return 0; 911 } 912 913 struct vm_map * 914 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr, 915 vsize_t size, int pageable, bool fixed, struct vm_map *submap) 916 { 917 918 return (struct vm_map *)417416; 919 } 920 921 int 922 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, 923 vmem_addr_t *addr) 924 { 925 vaddr_t va; 926 va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE, 927 (flags & VM_SLEEP), "kmalloc"); 928 929 if (va) { 930 *addr = va; 931 return 0; 932 } else { 933 return ENOMEM; 934 } 935 } 936 937 void 938 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size) 939 { 940 941 rump_hyperfree((void *)addr, size); 942 } 943 944 /* 945 * VM space locking routines. We don't really have to do anything, 946 * since the pages are always "wired" (both local and remote processes). 947 */ 948 int 949 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access) 950 { 951 952 return 0; 953 } 954 955 void 956 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len) 957 { 958 959 } 960 961 /* 962 * For the local case the buffer mappers don't need to do anything. 963 * For the remote case we need to reserve space and copy data in or 964 * out, depending on B_READ/B_WRITE. 965 */ 966 int 967 vmapbuf(struct buf *bp, vsize_t len) 968 { 969 int error = 0; 970 971 bp->b_saveaddr = bp->b_data; 972 973 /* remote case */ 974 if (!RUMP_LOCALPROC_P(curproc)) { 975 bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf"); 976 if (BUF_ISWRITE(bp)) { 977 error = copyin(bp->b_saveaddr, bp->b_data, len); 978 if (error) { 979 rump_hyperfree(bp->b_data, len); 980 bp->b_data = bp->b_saveaddr; 981 bp->b_saveaddr = 0; 982 } 983 } 984 } 985 986 return error; 987 } 988 989 void 990 vunmapbuf(struct buf *bp, vsize_t len) 991 { 992 993 /* remote case */ 994 if (!RUMP_LOCALPROC_P(bp->b_proc)) { 995 if (BUF_ISREAD(bp)) { 996 bp->b_error = copyout_proc(bp->b_proc, 997 bp->b_data, bp->b_saveaddr, len); 998 } 999 rump_hyperfree(bp->b_data, len); 1000 } 1001 1002 bp->b_data = bp->b_saveaddr; 1003 bp->b_saveaddr = 0; 1004 } 1005 1006 void 1007 uvmspace_addref(struct vmspace *vm) 1008 { 1009 1010 /* 1011 * No dynamically allocated vmspaces exist. 1012 */ 1013 } 1014 1015 void 1016 uvmspace_free(struct vmspace *vm) 1017 { 1018 1019 /* nothing for now */ 1020 } 1021 1022 /* 1023 * page life cycle stuff. it really doesn't exist, so just stubs. 1024 */ 1025 1026 void 1027 uvm_pageactivate(struct vm_page *pg) 1028 { 1029 1030 /* nada */ 1031 } 1032 1033 void 1034 uvm_pagedeactivate(struct vm_page *pg) 1035 { 1036 1037 /* nada */ 1038 } 1039 1040 void 1041 uvm_pagedequeue(struct vm_page *pg) 1042 { 1043 1044 /* nada*/ 1045 } 1046 1047 void 1048 uvm_pageenqueue(struct vm_page *pg) 1049 { 1050 1051 /* nada */ 1052 } 1053 1054 void 1055 uvmpdpol_anfree(struct vm_anon *an) 1056 { 1057 1058 /* nada */ 1059 } 1060 1061 /* 1062 * Physical address accessors. 1063 */ 1064 1065 struct vm_page * 1066 uvm_phys_to_vm_page(paddr_t pa) 1067 { 1068 1069 return NULL; 1070 } 1071 1072 paddr_t 1073 uvm_vm_page_to_phys(const struct vm_page *pg) 1074 { 1075 1076 return 0; 1077 } 1078 1079 vaddr_t 1080 uvm_uarea_alloc(void) 1081 { 1082 1083 /* non-zero */ 1084 return (vaddr_t)11; 1085 } 1086 1087 void 1088 uvm_uarea_free(vaddr_t uarea) 1089 { 1090 1091 /* nata, so creamy */ 1092 } 1093 1094 /* 1095 * Routines related to the Page Baroness. 1096 */ 1097 1098 void 1099 uvm_wait(const char *msg) 1100 { 1101 1102 if (__predict_false(rump_threads == 0)) 1103 panic("pagedaemon missing (RUMP_THREADS = 0)"); 1104 1105 if (curlwp == uvm.pagedaemon_lwp) { 1106 /* is it possible for us to later get memory? */ 1107 if (!uvmexp.paging) 1108 panic("pagedaemon out of memory"); 1109 } 1110 1111 mutex_enter(&pdaemonmtx); 1112 pdaemon_waiters++; 1113 cv_signal(&pdaemoncv); 1114 cv_wait(&oomwait, &pdaemonmtx); 1115 mutex_exit(&pdaemonmtx); 1116 } 1117 1118 void 1119 uvm_pageout_start(int npages) 1120 { 1121 1122 mutex_enter(&pdaemonmtx); 1123 uvmexp.paging += npages; 1124 mutex_exit(&pdaemonmtx); 1125 } 1126 1127 void 1128 uvm_pageout_done(int npages) 1129 { 1130 1131 if (!npages) 1132 return; 1133 1134 mutex_enter(&pdaemonmtx); 1135 KASSERT(uvmexp.paging >= npages); 1136 uvmexp.paging -= npages; 1137 1138 if (pdaemon_waiters) { 1139 pdaemon_waiters = 0; 1140 cv_broadcast(&oomwait); 1141 } 1142 mutex_exit(&pdaemonmtx); 1143 } 1144 1145 static bool 1146 processpage(struct vm_page *pg) 1147 { 1148 struct uvm_object *uobj; 1149 1150 uobj = pg->uobject; 1151 if (rw_tryenter(uobj->vmobjlock, RW_WRITER)) { 1152 if ((pg->flags & PG_BUSY) == 0) { 1153 mutex_exit(&vmpage_lruqueue_lock); 1154 uobj->pgops->pgo_put(uobj, pg->offset, 1155 pg->offset + PAGE_SIZE, 1156 PGO_CLEANIT|PGO_FREE); 1157 KASSERT(!rw_write_held(uobj->vmobjlock)); 1158 return true; 1159 } else { 1160 rw_exit(uobj->vmobjlock); 1161 } 1162 } 1163 1164 return false; 1165 } 1166 1167 /* 1168 * The Diabolical pageDaemon Director (DDD). 1169 * 1170 * This routine can always use better heuristics. 1171 */ 1172 void 1173 uvm_pageout(void *arg) 1174 { 1175 struct vm_page *pg; 1176 struct pool *pp, *pp_first; 1177 int cleaned, skip, skipped; 1178 bool succ; 1179 1180 mutex_enter(&pdaemonmtx); 1181 for (;;) { 1182 if (pdaemon_waiters) { 1183 pdaemon_waiters = 0; 1184 cv_broadcast(&oomwait); 1185 } 1186 if (!NEED_PAGEDAEMON()) { 1187 kernel_map->flags &= ~VM_MAP_WANTVA; 1188 cv_wait(&pdaemoncv, &pdaemonmtx); 1189 } 1190 uvmexp.pdwoke++; 1191 1192 /* tell the world that we are hungry */ 1193 kernel_map->flags |= VM_MAP_WANTVA; 1194 mutex_exit(&pdaemonmtx); 1195 1196 /* 1197 * step one: reclaim the page cache. this should give 1198 * us the biggest earnings since whole pages are released 1199 * into backing memory. 1200 */ 1201 pool_cache_reclaim(&pagecache); 1202 if (!NEED_PAGEDAEMON()) { 1203 mutex_enter(&pdaemonmtx); 1204 continue; 1205 } 1206 1207 /* 1208 * Ok, so that didn't help. Next, try to hunt memory 1209 * by pushing out vnode pages. The pages might contain 1210 * useful cached data, but we need the memory. 1211 */ 1212 cleaned = 0; 1213 skip = 0; 1214 again: 1215 mutex_enter(&vmpage_lruqueue_lock); 1216 while (cleaned < PAGEDAEMON_OBJCHUNK) { 1217 skipped = 0; 1218 TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) { 1219 1220 /* 1221 * skip over pages we _might_ have tried 1222 * to handle earlier. they might not be 1223 * exactly the same ones, but I'm not too 1224 * concerned. 1225 */ 1226 while (skipped++ < skip) 1227 continue; 1228 1229 if (processpage(pg)) { 1230 cleaned++; 1231 goto again; 1232 } 1233 1234 skip++; 1235 } 1236 break; 1237 } 1238 mutex_exit(&vmpage_lruqueue_lock); 1239 1240 /* 1241 * And of course we need to reclaim the page cache 1242 * again to actually release memory. 1243 */ 1244 pool_cache_reclaim(&pagecache); 1245 if (!NEED_PAGEDAEMON()) { 1246 mutex_enter(&pdaemonmtx); 1247 continue; 1248 } 1249 1250 /* 1251 * And then drain the pools. Wipe them out ... all of them. 1252 */ 1253 for (pp_first = NULL;;) { 1254 rump_vfs_drainbufs(10 /* XXX: estimate! */); 1255 1256 succ = pool_drain(&pp); 1257 if (succ || pp == pp_first) 1258 break; 1259 1260 if (pp_first == NULL) 1261 pp_first = pp; 1262 } 1263 1264 /* 1265 * Need to use PYEC on our bag of tricks. 1266 * Unfortunately, the wife just borrowed it. 1267 */ 1268 1269 mutex_enter(&pdaemonmtx); 1270 if (!succ && cleaned == 0 && pdaemon_waiters && 1271 uvmexp.paging == 0) { 1272 kpause("pddlk", false, hz, &pdaemonmtx); 1273 } 1274 } 1275 1276 panic("you can swap out any time you like, but you can never leave"); 1277 } 1278 1279 void 1280 uvm_kick_pdaemon() 1281 { 1282 1283 /* 1284 * Wake up the diabolical pagedaemon director if we are over 1285 * 90% of the memory limit. This is a complete and utter 1286 * stetson-harrison decision which you are allowed to finetune. 1287 * Don't bother locking. If we have some unflushed caches, 1288 * other waker-uppers will deal with the issue. 1289 */ 1290 if (NEED_PAGEDAEMON()) { 1291 cv_signal(&pdaemoncv); 1292 } 1293 } 1294 1295 void * 1296 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg) 1297 { 1298 const unsigned long thelimit = 1299 curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit; 1300 unsigned long newmem; 1301 void *rv; 1302 int error; 1303 1304 uvm_kick_pdaemon(); /* ouch */ 1305 1306 /* first we must be within the limit */ 1307 limitagain: 1308 if (thelimit != RUMPMEM_UNLIMITED) { 1309 newmem = atomic_add_long_nv(&curphysmem, howmuch); 1310 if (newmem > thelimit) { 1311 newmem = atomic_add_long_nv(&curphysmem, -howmuch); 1312 if (!waitok) { 1313 return NULL; 1314 } 1315 uvm_wait(wmsg); 1316 goto limitagain; 1317 } 1318 } 1319 1320 /* second, we must get something from the backend */ 1321 again: 1322 error = rumpuser_malloc(howmuch, alignment, &rv); 1323 if (__predict_false(error && waitok)) { 1324 uvm_wait(wmsg); 1325 goto again; 1326 } 1327 1328 return rv; 1329 } 1330 1331 void 1332 rump_hyperfree(void *what, size_t size) 1333 { 1334 1335 if (rump_physmemlimit != RUMPMEM_UNLIMITED) { 1336 atomic_add_long(&curphysmem, -size); 1337 } 1338 rumpuser_free(what, size); 1339 } 1340 1341 /* 1342 * UBC 1343 */ 1344 1345 #define PAGERFLAGS (PGO_SYNCIO | PGO_NOBLOCKALLOC | PGO_NOTIMESTAMP) 1346 1347 void 1348 ubc_zerorange(struct uvm_object *uobj, off_t off, size_t len, int flags) 1349 { 1350 struct vm_page **pgs; 1351 int maxpages = MIN(32, round_page(len) >> PAGE_SHIFT); 1352 int npages, i; 1353 1354 if (maxpages == 0) 1355 return; 1356 1357 pgs = kmem_alloc(maxpages * sizeof(pgs), KM_SLEEP); 1358 rw_enter(uobj->vmobjlock, RW_WRITER); 1359 while (len) { 1360 npages = MIN(maxpages, round_page(len) >> PAGE_SHIFT); 1361 memset(pgs, 0, npages * sizeof(struct vm_page *)); 1362 (void)uobj->pgops->pgo_get(uobj, trunc_page(off), 1363 pgs, &npages, 0, VM_PROT_READ | VM_PROT_WRITE, 1364 0, PAGERFLAGS | PGO_PASTEOF); 1365 KASSERT(npages > 0); 1366 1367 rw_enter(uobj->vmobjlock, RW_WRITER); 1368 for (i = 0; i < npages; i++) { 1369 struct vm_page *pg; 1370 uint8_t *start; 1371 size_t chunkoff, chunklen; 1372 1373 pg = pgs[i]; 1374 if (pg == NULL) 1375 break; 1376 1377 KASSERT(pg->uobject != NULL); 1378 KASSERT(uobj->vmobjlock == pg->uobject->vmobjlock); 1379 1380 chunkoff = off & PAGE_MASK; 1381 chunklen = MIN(PAGE_SIZE - chunkoff, len); 1382 start = (uint8_t *)pg->uanon + chunkoff; 1383 1384 memset(start, 0, chunklen); 1385 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY); 1386 1387 off += chunklen; 1388 len -= chunklen; 1389 } 1390 uvm_page_unbusy(pgs, npages); 1391 } 1392 rw_exit(uobj->vmobjlock); 1393 kmem_free(pgs, maxpages * sizeof(pgs)); 1394 } 1395 1396 #define len2npages(off, len) \ 1397 ((round_page(off+len) - trunc_page(off)) >> PAGE_SHIFT) 1398 1399 int 1400 ubc_uiomove(struct uvm_object *uobj, struct uio *uio, vsize_t todo, 1401 int advice, int flags) 1402 { 1403 struct vm_page **pgs; 1404 int npages = len2npages(uio->uio_offset, todo); 1405 size_t pgalloc; 1406 int i, rv, pagerflags; 1407 vm_prot_t prot; 1408 1409 pgalloc = npages * sizeof(pgs); 1410 pgs = kmem_alloc(pgalloc, KM_SLEEP); 1411 1412 pagerflags = PAGERFLAGS; 1413 if (flags & UBC_WRITE) 1414 pagerflags |= PGO_PASTEOF; 1415 if (flags & UBC_FAULTBUSY) 1416 pagerflags |= PGO_OVERWRITE; 1417 1418 prot = VM_PROT_READ; 1419 if (flags & UBC_WRITE) 1420 prot |= VM_PROT_WRITE; 1421 1422 rw_enter(uobj->vmobjlock, RW_WRITER); 1423 do { 1424 npages = len2npages(uio->uio_offset, todo); 1425 memset(pgs, 0, pgalloc); 1426 rv = uobj->pgops->pgo_get(uobj, trunc_page(uio->uio_offset), 1427 pgs, &npages, 0, prot, 0, pagerflags); 1428 if (rv) 1429 goto out; 1430 1431 rw_enter(uobj->vmobjlock, RW_WRITER); 1432 for (i = 0; i < npages; i++) { 1433 struct vm_page *pg; 1434 size_t xfersize; 1435 off_t pageoff; 1436 1437 pg = pgs[i]; 1438 if (pg == NULL) 1439 break; 1440 1441 KASSERT(pg->uobject != NULL); 1442 KASSERT(uobj->vmobjlock == pg->uobject->vmobjlock); 1443 pageoff = uio->uio_offset & PAGE_MASK; 1444 1445 xfersize = MIN(MIN(todo, PAGE_SIZE), PAGE_SIZE-pageoff); 1446 KASSERT(xfersize > 0); 1447 rv = uiomove((uint8_t *)pg->uanon + pageoff, 1448 xfersize, uio); 1449 if (rv) { 1450 uvm_page_unbusy(pgs, npages); 1451 rw_exit(uobj->vmobjlock); 1452 goto out; 1453 } 1454 if (uio->uio_rw == UIO_WRITE) { 1455 pg->flags &= ~PG_FAKE; 1456 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY); 1457 } 1458 todo -= xfersize; 1459 } 1460 uvm_page_unbusy(pgs, npages); 1461 } while (todo); 1462 rw_exit(uobj->vmobjlock); 1463 1464 out: 1465 kmem_free(pgs, pgalloc); 1466 return rv; 1467 } 1468