Home | History | Annotate | Line # | Download | only in videomode
      1 /* $NetBSD: vesagtf.c,v 1.4 2021/12/25 13:51:31 mlelstv Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2006 Itronix Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Garrett D'Amore for Itronix Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. The name of Itronix Inc. may not be used to endorse
     18  *    or promote products derived from this software without specific
     19  *    prior written permission.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY ITRONIX INC. ``AS IS'' AND ANY EXPRESS
     22  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     23  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL ITRONIX INC. BE LIABLE FOR ANY
     25  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     27  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     29  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     30  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     31  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * This was derived from a userland GTF program supplied by NVIDIA.
     36  * NVIDIA's original boilerplate follows.
     37  *
     38  * Note that I have heavily modified the program for use in the EDID
     39  * kernel code for NetBSD, including removing the use of floating
     40  * point operations and making significant adjustments to minimize
     41  * error propagation while operating with integer only math.
     42  *
     43  * This has required the use of 64-bit integers in a few places, but
     44  * the upshot is that for a calculation of 1920x1200x85 (as an
     45  * example), the error deviates by only ~.004% relative to the
     46  * floating point version.  This error is *well* within VESA
     47  * tolerances.
     48  */
     49 
     50 /*
     51  * Copyright (c) 2001, Andy Ritger  aritger (at) nvidia.com
     52  * All rights reserved.
     53  *
     54  * Redistribution and use in source and binary forms, with or without
     55  * modification, are permitted provided that the following conditions
     56  * are met:
     57  *
     58  * o Redistributions of source code must retain the above copyright
     59  *   notice, this list of conditions and the following disclaimer.
     60  * o Redistributions in binary form must reproduce the above copyright
     61  *   notice, this list of conditions and the following disclaimer
     62  *   in the documentation and/or other materials provided with the
     63  *   distribution.
     64  * o Neither the name of NVIDIA nor the names of its contributors
     65  *   may be used to endorse or promote products derived from this
     66  *   software without specific prior written permission.
     67  *
     68  *
     69  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     70  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
     71  * NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
     72  * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     73  * THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     74  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     75  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     76  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
     77  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     78  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
     79  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     80  * POSSIBILITY OF SUCH DAMAGE.
     81  *
     82  *
     83  *
     84  * This program is based on the Generalized Timing Formula(GTF TM)
     85  * Standard Version: 1.0, Revision: 1.0
     86  *
     87  * The GTF Document contains the following Copyright information:
     88  *
     89  * Copyright (c) 1994, 1995, 1996 - Video Electronics Standards
     90  * Association. Duplication of this document within VESA member
     91  * companies for review purposes is permitted. All other rights
     92  * reserved.
     93  *
     94  * While every precaution has been taken in the preparation
     95  * of this standard, the Video Electronics Standards Association and
     96  * its contributors assume no responsibility for errors or omissions,
     97  * and make no warranties, expressed or implied, of functionality
     98  * of suitability for any purpose. The sample code contained within
     99  * this standard may be used without restriction.
    100  *
    101  *
    102  *
    103  * The GTF EXCEL(TM) SPREADSHEET, a sample (and the definitive)
    104  * implementation of the GTF Timing Standard, is available at:
    105  *
    106  * ftp://ftp.vesa.org/pub/GTF/GTF_V1R1.xls
    107  *
    108  *
    109  *
    110  * This program takes a desired resolution and vertical refresh rate,
    111  * and computes mode timings according to the GTF Timing Standard.
    112  * These mode timings can then be formatted as an XFree86 modeline
    113  * or a mode description for use by fbset(8).
    114  *
    115  *
    116  *
    117  * NOTES:
    118  *
    119  * The GTF allows for computation of "margins" (the visible border
    120  * surrounding the addressable video); on most non-overscan type
    121  * systems, the margin period is zero.  I've implemented the margin
    122  * computations but not enabled it because 1) I don't really have
    123  * any experience with this, and 2) neither XFree86 modelines nor
    124  * fbset fb.modes provide an obvious way for margin timings to be
    125  * included in their mode descriptions (needs more investigation).
    126  *
    127  * The GTF provides for computation of interlaced mode timings;
    128  * I've implemented the computations but not enabled them, yet.
    129  * I should probably enable and test this at some point.
    130  *
    131  *
    132  *
    133  * TODO:
    134  *
    135  * o Add support for interlaced modes.
    136  *
    137  * o Implement the other portions of the GTF: compute mode timings
    138  *   given either the desired pixel clock or the desired horizontal
    139  *   frequency.
    140  *
    141  * o It would be nice if this were more general purpose to do things
    142  *   outside the scope of the GTF: like generate double scan mode
    143  *   timings, for example.
    144  *
    145  * o Printing digits to the right of the decimal point when the
    146  *   digits are 0 annoys me.
    147  *
    148  * o Error checking.
    149  *
    150  */
    151 
    152 
    153 #ifdef	_KERNEL
    154 #include <sys/cdefs.h>
    155 
    156 __KERNEL_RCSID(0, "$NetBSD: vesagtf.c,v 1.4 2021/12/25 13:51:31 mlelstv Exp $");
    157 #include <sys/types.h>
    158 #include <sys/param.h>
    159 #include <sys/systm.h>
    160 #else
    161 #include <stdio.h>
    162 #include <stdlib.h>
    163 #include <inttypes.h>
    164 #endif
    165 #include <dev/videomode/videomode.h>
    166 #include <dev/videomode/vesagtf.h>
    167 
    168 #define CELL_GRAN         8     /* assumed character cell granularity        */
    169 
    170 /* C' and M' are part of the Blanking Duty Cycle computation */
    171 /*
    172  * #define C_PRIME           (((C - J) * K/256.0) + J)
    173  * #define M_PRIME           (K/256.0 * M)
    174  */
    175 
    176 /*
    177  * C' and M' multiplied by 256 to give integer math.  Make sure to
    178  * scale results using these back down, appropriately.
    179  */
    180 #define	C_PRIME256(p)	  (((p->C - p->J) * p->K) + (p->J * 256))
    181 #define	M_PRIME256(p)	  (p->K * p->M)
    182 
    183 #define	DIVIDE(x,y)	(((x) + ((y) / 2)) / (y))
    184 
    185 /*
    186  * print_value() - print the result of the named computation; this is
    187  * useful when comparing against the GTF EXCEL spreadsheet.
    188  */
    189 
    190 #ifdef GTFDEBUG
    191 
    192 static void
    193 print_value(int n, const char *name, unsigned val)
    194 {
    195         printf("%2d: %-27s: %u\n", n, name, val);
    196 }
    197 #else
    198 #define	print_value(n, name, val)
    199 #endif
    200 
    201 
    202 /*
    203  * vert_refresh() - as defined by the GTF Timing Standard, compute the
    204  * Stage 1 Parameters using the vertical refresh frequency.  In other
    205  * words: input a desired resolution and desired refresh rate, and
    206  * output the GTF mode timings.
    207  *
    208  * XXX All the code is in place to compute interlaced modes, but I don't
    209  * feel like testing it right now.
    210  *
    211  * XXX margin computations are implemented but not tested (nor used by
    212  * XFree86 of fbset mode descriptions, from what I can tell).
    213  */
    214 
    215 void
    216 vesagtf_mode_params(unsigned h_pixels, unsigned v_lines, unsigned freq,
    217     struct vesagtf_params *params, int flags, struct videomode *vmp)
    218 {
    219     unsigned v_field_rqd;
    220     unsigned top_margin;
    221     unsigned bottom_margin;
    222     unsigned interlace;
    223     uint64_t h_period_est;
    224     unsigned vsync_plus_bp;
    225     unsigned v_back_porch __unused;
    226     unsigned total_v_lines;
    227     uint64_t v_field_est;
    228     uint64_t h_period;
    229     unsigned v_field_rate;
    230     unsigned v_frame_rate __unused;
    231     unsigned left_margin;
    232     unsigned right_margin;
    233     unsigned total_active_pixels;
    234     uint64_t ideal_duty_cycle;
    235     unsigned h_blank;
    236     unsigned total_pixels;
    237     unsigned pixel_freq;
    238 
    239     unsigned h_sync;
    240     unsigned h_front_porch;
    241     unsigned v_odd_front_porch_lines;
    242 
    243 #ifdef	GTFDEBUG
    244     unsigned h_freq;
    245 #endif
    246 
    247     /*  1. In order to give correct results, the number of horizontal
    248      *  pixels requested is first processed to ensure that it is divisible
    249      *  by the character size, by rounding it to the nearest character
    250      *  cell boundary:
    251      *
    252      *  [H PIXELS RND] = ((ROUND([H PIXELS]/[CELL GRAN RND],0))*[CELLGRAN RND])
    253      */
    254 
    255     h_pixels = DIVIDE(h_pixels, CELL_GRAN) * CELL_GRAN;
    256 
    257     print_value(1, "[H PIXELS RND]", h_pixels);
    258 
    259 
    260     /*  2. If interlace is requested, the number of vertical lines assumed
    261      *  by the calculation must be halved, as the computation calculates
    262      *  the number of vertical lines per field. In either case, the
    263      *  number of lines is rounded to the nearest integer.
    264      *
    265      *  [V LINES RND] = IF([INT RQD?]="y", ROUND([V LINES]/2,0),
    266      *                                     ROUND([V LINES],0))
    267      */
    268 
    269     v_lines = (flags & VESAGTF_FLAG_ILACE) ? DIVIDE(v_lines, 2) : v_lines;
    270 
    271     print_value(2, "[V LINES RND]", v_lines);
    272 
    273 
    274     /*  3. Find the frame rate required:
    275      *
    276      *  [V FIELD RATE RQD] = IF([INT RQD?]="y", [I/P FREQ RQD]*2,
    277      *                                          [I/P FREQ RQD])
    278      */
    279 
    280     v_field_rqd = (flags & VESAGTF_FLAG_ILACE) ? (freq * 2) : (freq);
    281 
    282     print_value(3, "[V FIELD RATE RQD]", v_field_rqd);
    283 
    284 
    285     /*  4. Find number of lines in Top margin:
    286      *  5. Find number of lines in Bottom margin:
    287      *
    288      *  [TOP MARGIN (LINES)] = IF([MARGINS RQD?]="Y",
    289      *          ROUND(([MARGIN%]/100*[V LINES RND]),0),
    290      *          0)
    291      *
    292      *  Ditto for bottom margin.  Note that instead of %, we use PPT, which
    293      *  is parts per thousand.  This helps us with integer math.
    294      */
    295 
    296     top_margin = bottom_margin = (flags & VESAGTF_FLAG_MARGINS) ?
    297 	DIVIDE(v_lines * params->margin_ppt, 1000) : 0;
    298 
    299     print_value(4, "[TOP MARGIN (LINES)]", top_margin);
    300     print_value(5, "[BOT MARGIN (LINES)]", bottom_margin);
    301 
    302 
    303     /*  6. If interlace is required, then set variable [INTERLACE]=0.5:
    304      *
    305      *  [INTERLACE]=(IF([INT RQD?]="y",0.5,0))
    306      *
    307      *  To make this integer friendly, we use some special hacks in step
    308      *  7 below.  Please read those comments to understand why I am using
    309      *  a whole number of 1.0 instead of 0.5 here.
    310      */
    311     interlace = (flags & VESAGTF_FLAG_ILACE) ? 1 : 0;
    312 
    313     print_value(6, "[2*INTERLACE]", interlace);
    314 
    315 
    316     /*  7. Estimate the Horizontal period
    317      *
    318      *  [H PERIOD EST] = ((1/[V FIELD RATE RQD]) - [MIN VSYNC+BP]/1000000) /
    319      *                    ([V LINES RND] + (2*[TOP MARGIN (LINES)]) +
    320      *                     [MIN PORCH RND]+[INTERLACE]) * 1000000
    321      *
    322      *  To make it integer friendly, we pre-multiply the 1000000 to get to
    323      *  usec.  This gives us:
    324      *
    325      *  [H PERIOD EST] = ((1000000/[V FIELD RATE RQD]) - [MIN VSYNC+BP]) /
    326      *			([V LINES RND] + (2 * [TOP MARGIN (LINES)]) +
    327      *			 [MIN PORCH RND]+[INTERLACE])
    328      *
    329      *  The other problem is that the interlace value is wrong.  To get
    330      *  the interlace to a whole number, we multiply both the numerator and
    331      *  divisor by 2, so we can use a value of either 1 or 0 for the interlace
    332      *  factor.
    333      *
    334      * This gives us:
    335      *
    336      * [H PERIOD EST] = ((2*((1000000/[V FIELD RATE RQD]) - [MIN VSYNC+BP])) /
    337      *			 (2*([V LINES RND] + (2*[TOP MARGIN (LINES)]) +
    338      *			  [MIN PORCH RND]) + [2*INTERLACE]))
    339      *
    340      * Finally we multiply by another 1000, to get value in picosec.
    341      * Why picosec?  To minimize rounding errors.  Gotta love integer
    342      * math and error propagation.
    343      */
    344 
    345     h_period_est = DIVIDE(((DIVIDE(2000000000000ULL, v_field_rqd)) -
    346 			      (2000000 * params->min_vsbp)),
    347 	((2 * (v_lines + (2 * top_margin) + params->min_porch)) + interlace));
    348 
    349     print_value(7, "[H PERIOD EST (ps)]", h_period_est);
    350 
    351 
    352     /*  8. Find the number of lines in V sync + back porch:
    353      *
    354      *  [V SYNC+BP] = ROUND(([MIN VSYNC+BP]/[H PERIOD EST]),0)
    355      *
    356      *  But recall that h_period_est is in psec. So multiply by 1000000.
    357      */
    358 
    359     vsync_plus_bp = DIVIDE(params->min_vsbp * 1000000, h_period_est);
    360 
    361     print_value(8, "[V SYNC+BP]", vsync_plus_bp);
    362 
    363 
    364     /*  9. Find the number of lines in V back porch alone:
    365      *
    366      *  [V BACK PORCH] = [V SYNC+BP] - [V SYNC RND]
    367      *
    368      *  XXX is "[V SYNC RND]" a typo? should be [V SYNC RQD]?
    369      */
    370 
    371     v_back_porch = vsync_plus_bp - params->vsync_rqd;
    372 
    373     print_value(9, "[V BACK PORCH]", v_back_porch);
    374 
    375 
    376     /*  10. Find the total number of lines in Vertical field period:
    377      *
    378      *  [TOTAL V LINES] = [V LINES RND] + [TOP MARGIN (LINES)] +
    379      *                    [BOT MARGIN (LINES)] + [V SYNC+BP] + [INTERLACE] +
    380      *                    [MIN PORCH RND]
    381      */
    382 
    383     total_v_lines = v_lines + top_margin + bottom_margin + vsync_plus_bp +
    384         interlace + params->min_porch;
    385 
    386     print_value(10, "[TOTAL V LINES]", total_v_lines);
    387 
    388 
    389     /*  11. Estimate the Vertical field frequency:
    390      *
    391      *  [V FIELD RATE EST] = 1 / [H PERIOD EST] / [TOTAL V LINES] * 1000000
    392      *
    393      *  Again, we want to pre multiply by 10^9 to convert for nsec, thereby
    394      *  making it usable in integer math.
    395      *
    396      *  So we get:
    397      *
    398      *  [V FIELD RATE EST] = 1000000000 / [H PERIOD EST] / [TOTAL V LINES]
    399      *
    400      *  This is all scaled to get the result in uHz.  Again, we're trying to
    401      *  minimize error propagation.
    402      */
    403     v_field_est = DIVIDE(DIVIDE(1000000000000000ULL, h_period_est),
    404 	total_v_lines);
    405 
    406     print_value(11, "[V FIELD RATE EST(uHz)]", v_field_est);
    407 
    408 
    409     /*  12. Find the actual horizontal period:
    410      *
    411      *  [H PERIOD] = [H PERIOD EST] / ([V FIELD RATE RQD] / [V FIELD RATE EST])
    412      */
    413 
    414     h_period = DIVIDE(h_period_est * v_field_est, v_field_rqd * 1000);
    415 
    416     print_value(12, "[H PERIOD(ps)]", h_period);
    417 
    418 
    419     /*  13. Find the actual Vertical field frequency:
    420      *
    421      *  [V FIELD RATE] = 1 / [H PERIOD] / [TOTAL V LINES] * 1000000
    422      *
    423      *  And again, we convert to nsec ahead of time, giving us:
    424      *
    425      *  [V FIELD RATE] = 1000000 / [H PERIOD] / [TOTAL V LINES]
    426      *
    427      *  And another rescaling back to mHz.  Gotta love it.
    428      */
    429 
    430     v_field_rate = DIVIDE(1000000000000ULL, h_period * total_v_lines);
    431 
    432     print_value(13, "[V FIELD RATE]", v_field_rate);
    433 
    434 
    435     /*  14. Find the Vertical frame frequency:
    436      *
    437      *  [V FRAME RATE] = (IF([INT RQD?]="y", [V FIELD RATE]/2, [V FIELD RATE]))
    438      *
    439      *  N.B. that the result here is in mHz.
    440      */
    441 
    442     v_frame_rate = (flags & VESAGTF_FLAG_ILACE) ?
    443 	v_field_rate / 2 : v_field_rate;
    444 
    445     print_value(14, "[V FRAME RATE]", v_frame_rate);
    446 
    447 
    448     /*  15. Find number of pixels in left margin:
    449      *  16. Find number of pixels in right margin:
    450      *
    451      *  [LEFT MARGIN (PIXELS)] = (IF( [MARGINS RQD?]="Y",
    452      *          (ROUND( ([H PIXELS RND] * [MARGIN%] / 100 /
    453      *                   [CELL GRAN RND]),0)) * [CELL GRAN RND],
    454      *          0))
    455      *
    456      *  Again, we deal with margin percentages as PPT (parts per thousand).
    457      *  And the calculations for left and right are the same.
    458      */
    459 
    460     left_margin = right_margin = (flags & VESAGTF_FLAG_MARGINS) ?
    461 	DIVIDE(DIVIDE(h_pixels * params->margin_ppt, 1000),
    462 	    CELL_GRAN) * CELL_GRAN : 0;
    463 
    464     print_value(15, "[LEFT MARGIN (PIXELS)]", left_margin);
    465     print_value(16, "[RIGHT MARGIN (PIXELS)]", right_margin);
    466 
    467 
    468     /*  17. Find total number of active pixels in image and left and right
    469      *  margins:
    470      *
    471      *  [TOTAL ACTIVE PIXELS] = [H PIXELS RND] + [LEFT MARGIN (PIXELS)] +
    472      *                          [RIGHT MARGIN (PIXELS)]
    473      */
    474 
    475     total_active_pixels = h_pixels + left_margin + right_margin;
    476 
    477     print_value(17, "[TOTAL ACTIVE PIXELS]", total_active_pixels);
    478 
    479 
    480     /*  18. Find the ideal blanking duty cycle from the blanking duty cycle
    481      *  equation:
    482      *
    483      *  [IDEAL DUTY CYCLE] = [C'] - ([M']*[H PERIOD]/1000)
    484      *
    485      *  However, we have modified values for [C'] as [256*C'] and
    486      *  [M'] as [256*M'].  Again the idea here is to get good scaling.
    487      *  We use 256 as the factor to make the math fast.
    488      *
    489      *  Note that this means that we have to scale it appropriately in
    490      *  later calculations.
    491      *
    492      *  The ending result is that our ideal_duty_cycle is 256000x larger
    493      *  than the duty cycle used by VESA.  But again, this reduces error
    494      *  propagation.
    495      */
    496 
    497     ideal_duty_cycle =
    498 	((C_PRIME256(params) * 1000) -
    499 	    (M_PRIME256(params) * h_period / 1000000));
    500 
    501     print_value(18, "[IDEAL DUTY CYCLE]", ideal_duty_cycle);
    502 
    503 
    504     /*  19. Find the number of pixels in the blanking time to the nearest
    505      *  double character cell:
    506      *
    507      *  [H BLANK (PIXELS)] = (ROUND(([TOTAL ACTIVE PIXELS] *
    508      *                               [IDEAL DUTY CYCLE] /
    509      *                               (100-[IDEAL DUTY CYCLE]) /
    510      *                               (2*[CELL GRAN RND])), 0))
    511      *                       * (2*[CELL GRAN RND])
    512      *
    513      *  Of course, we adjust to make this rounding work in integer math.
    514      */
    515 
    516     h_blank = DIVIDE(DIVIDE(total_active_pixels * ideal_duty_cycle,
    517 			 (256000 * 100ULL) - ideal_duty_cycle),
    518 	2 * CELL_GRAN) * (2 * CELL_GRAN);
    519 
    520     print_value(19, "[H BLANK (PIXELS)]", h_blank);
    521 
    522 
    523     /*  20. Find total number of pixels:
    524      *
    525      *  [TOTAL PIXELS] = [TOTAL ACTIVE PIXELS] + [H BLANK (PIXELS)]
    526      */
    527 
    528     total_pixels = total_active_pixels + h_blank;
    529 
    530     print_value(20, "[TOTAL PIXELS]", total_pixels);
    531 
    532 
    533     /*  21. Find pixel clock frequency:
    534      *
    535      *  [PIXEL FREQ] = [TOTAL PIXELS] / [H PERIOD]
    536      *
    537      *  We calculate this in Hz rather than MHz, to get a value that
    538      *  is usable with integer math.  Recall that the [H PERIOD] is in
    539      *  nsec.
    540      */
    541 
    542     pixel_freq = DIVIDE(total_pixels * 1000000, DIVIDE(h_period, 1000));
    543 
    544     print_value(21, "[PIXEL FREQ]", pixel_freq);
    545 
    546 
    547     /*  22. Find horizontal frequency:
    548      *
    549      *  [H FREQ] = 1000 / [H PERIOD]
    550      *
    551      *  I've ifdef'd this out, because we don't need it for any of
    552      *  our calculations.
    553      *  We calculate this in Hz rather than kHz, to avoid rounding
    554      *  errors.  Recall that the [H PERIOD] is in usec.
    555      */
    556 
    557 #ifdef	GTFDEBUG
    558     h_freq = 1000000000 / h_period;
    559 
    560     print_value(22, "[H FREQ]", h_freq);
    561 #endif
    562 
    563 
    564 
    565     /* Stage 1 computations are now complete; I should really pass
    566        the results to another function and do the Stage 2
    567        computations, but I only need a few more values so I'll just
    568        append the computations here for now */
    569 
    570 
    571 
    572     /*  17. Find the number of pixels in the horizontal sync period:
    573      *
    574      *  [H SYNC (PIXELS)] =(ROUND(([H SYNC%] / 100 * [TOTAL PIXELS] /
    575      *                             [CELL GRAN RND]),0))*[CELL GRAN RND]
    576      *
    577      *  Rewriting for integer math:
    578      *
    579      *  [H SYNC (PIXELS)]=(ROUND((H SYNC%] * [TOTAL PIXELS] / 100 /
    580      *				   [CELL GRAN RND),0))*[CELL GRAN RND]
    581      */
    582 
    583     h_sync = DIVIDE(((params->hsync_pct * total_pixels) / 100), CELL_GRAN) *
    584 	CELL_GRAN;
    585 
    586     print_value(17, "[H SYNC (PIXELS)]", h_sync);
    587 
    588 
    589     /*  18. Find the number of pixels in the horizontal front porch period:
    590      *
    591      *  [H FRONT PORCH (PIXELS)] = ([H BLANK (PIXELS)]/2)-[H SYNC (PIXELS)]
    592      *
    593      *  Note that h_blank is always an even number of characters (i.e.
    594      *  h_blank % (CELL_GRAN * 2) == 0)
    595      */
    596 
    597     h_front_porch = (h_blank / 2) - h_sync;
    598 
    599     print_value(18, "[H FRONT PORCH (PIXELS)]", h_front_porch);
    600 
    601 
    602     /*  36. Find the number of lines in the odd front porch period:
    603      *
    604      *  [V ODD FRONT PORCH(LINES)]=([MIN PORCH RND]+[INTERLACE])
    605      *
    606      *  Adjusting for the fact that the interlace is scaled:
    607      *
    608      *  [V ODD FRONT PORCH(LINES)]=(([MIN PORCH RND] * 2) + [2*INTERLACE]) / 2
    609      */
    610 
    611     v_odd_front_porch_lines = ((2 * params->min_porch) + interlace) / 2;
    612 
    613     print_value(36, "[V ODD FRONT PORCH(LINES)]", v_odd_front_porch_lines);
    614 
    615 
    616     /* finally, pack the results in the mode struct */
    617 
    618     vmp->hsync_start = h_pixels + h_front_porch;
    619     vmp->hsync_end = vmp->hsync_start + h_sync;
    620     vmp->htotal = total_pixels;
    621     vmp->hdisplay = h_pixels;
    622 
    623     vmp->vsync_start = v_lines + v_odd_front_porch_lines;
    624     vmp->vsync_end = vmp->vsync_start + params->vsync_rqd;
    625     vmp->vtotal = total_v_lines;
    626     vmp->vdisplay = v_lines;
    627 
    628     vmp->dot_clock = pixel_freq;
    629 
    630 }
    631 
    632 void
    633 vesagtf_mode(unsigned x, unsigned y, unsigned refresh, struct videomode *vmp)
    634 {
    635 	struct vesagtf_params	params;
    636 
    637 	params.margin_ppt = VESAGTF_MARGIN_PPT;
    638 	params.min_porch = VESAGTF_MIN_PORCH;
    639 	params.vsync_rqd = VESAGTF_VSYNC_RQD;
    640 	params.hsync_pct = VESAGTF_HSYNC_PCT;
    641 	params.min_vsbp = VESAGTF_MIN_VSBP;
    642 	params.M = VESAGTF_M;
    643 	params.C = VESAGTF_C;
    644 	params.K = VESAGTF_K;
    645 	params.J = VESAGTF_J;
    646 
    647 	vesagtf_mode_params(x, y, refresh, &params, 0, vmp);
    648 }
    649 
    650 /*
    651  * The tidbit here is so that you can compile this file as a
    652  * standalone user program to generate X11 modelines using VESA GTF.
    653  * This also allows for testing of the code itself, without
    654  * necessitating a full kernel recompile.
    655  */
    656 
    657 /* print_xf86_mode() - print the XFree86 modeline, given mode timings. */
    658 
    659 #if 0
    660 #ifndef _KERNEL
    661 void
    662 print_xf86_mode (struct videomode *vmp)
    663 {
    664 	float	vf, hf;
    665 
    666 	hf = 1000.0 * vmp->dot_clock / vmp->htotal;
    667 	vf = 1.0 * hf / vmp->vtotal;
    668 
    669     printf("\n");
    670     printf("  # %dx%d @ %.2f Hz (GTF) hsync: %.2f kHz; pclk: %.2f MHz\n",
    671 	vmp->hdisplay, vmp->vdisplay, vf, hf, vmp->dot_clock / 1000.0);
    672 
    673     printf("  Modeline \"%dx%d_%.2f\"  %.2f"
    674 	"  %d %d %d %d"
    675 	"  %d %d %d %d"
    676 	"  -HSync +Vsync\n\n",
    677 	vmp->hdisplay, vmp->vdisplay, vf, (vmp->dot_clock / 1000.0),
    678 	vmp->hdisplay, vmp->hsync_start, vmp->hsync_end, vmp->htotal,
    679 	vmp->vdisplay, vmp->vsync_start, vmp->vsync_end, vmp->vtotal);
    680 }
    681 
    682 int
    683 main (int argc, char *argv[])
    684 {
    685 	struct videomode m;
    686 
    687 	if (argc != 4) {
    688 		printf("usage: %s x y refresh\n", argv[0]);
    689 		exit(1);
    690 	}
    691 
    692 	vesagtf_mode(atoi(argv[1]), atoi(argv[2]), atoi(argv[3]), &m);
    693 
    694         print_xf86_mode(&m);
    695 
    696 	return 0;
    697 
    698 }
    699 #endif
    700 #endif
    701