1 /* $NetBSD: lfs_accessors.h,v 1.53 2025/10/20 04:20:37 perseant Exp $ */ 2 3 /* from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp */ 4 /* from NetBSD: dinode.h,v 1.25 2016/01/22 23:06:10 dholland Exp */ 5 /* from NetBSD: dir.h,v 1.25 2015/09/01 06:16:03 dholland Exp */ 6 7 /*- 8 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc. 9 * All rights reserved. 10 * 11 * This code is derived from software contributed to The NetBSD Foundation 12 * by Konrad E. Schroder <perseant (at) hhhh.org>. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 33 * POSSIBILITY OF SUCH DAMAGE. 34 */ 35 /*- 36 * Copyright (c) 1991, 1993 37 * The Regents of the University of California. All rights reserved. 38 * 39 * Redistribution and use in source and binary forms, with or without 40 * modification, are permitted provided that the following conditions 41 * are met: 42 * 1. Redistributions of source code must retain the above copyright 43 * notice, this list of conditions and the following disclaimer. 44 * 2. Redistributions in binary form must reproduce the above copyright 45 * notice, this list of conditions and the following disclaimer in the 46 * documentation and/or other materials provided with the distribution. 47 * 3. Neither the name of the University nor the names of its contributors 48 * may be used to endorse or promote products derived from this software 49 * without specific prior written permission. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 61 * SUCH DAMAGE. 62 * 63 * @(#)lfs.h 8.9 (Berkeley) 5/8/95 64 */ 65 /* 66 * Copyright (c) 2002 Networks Associates Technology, Inc. 67 * All rights reserved. 68 * 69 * This software was developed for the FreeBSD Project by Marshall 70 * Kirk McKusick and Network Associates Laboratories, the Security 71 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 72 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 73 * research program 74 * 75 * Copyright (c) 1982, 1989, 1993 76 * The Regents of the University of California. All rights reserved. 77 * (c) UNIX System Laboratories, Inc. 78 * All or some portions of this file are derived from material licensed 79 * to the University of California by American Telephone and Telegraph 80 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 81 * the permission of UNIX System Laboratories, Inc. 82 * 83 * Redistribution and use in source and binary forms, with or without 84 * modification, are permitted provided that the following conditions 85 * are met: 86 * 1. Redistributions of source code must retain the above copyright 87 * notice, this list of conditions and the following disclaimer. 88 * 2. Redistributions in binary form must reproduce the above copyright 89 * notice, this list of conditions and the following disclaimer in the 90 * documentation and/or other materials provided with the distribution. 91 * 3. Neither the name of the University nor the names of its contributors 92 * may be used to endorse or promote products derived from this software 93 * without specific prior written permission. 94 * 95 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 96 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 97 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 98 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 99 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 100 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 101 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 102 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 103 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 104 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 105 * SUCH DAMAGE. 106 * 107 * @(#)dinode.h 8.9 (Berkeley) 3/29/95 108 */ 109 /* 110 * Copyright (c) 1982, 1986, 1989, 1993 111 * The Regents of the University of California. All rights reserved. 112 * (c) UNIX System Laboratories, Inc. 113 * All or some portions of this file are derived from material licensed 114 * to the University of California by American Telephone and Telegraph 115 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 116 * the permission of UNIX System Laboratories, Inc. 117 * 118 * Redistribution and use in source and binary forms, with or without 119 * modification, are permitted provided that the following conditions 120 * are met: 121 * 1. Redistributions of source code must retain the above copyright 122 * notice, this list of conditions and the following disclaimer. 123 * 2. Redistributions in binary form must reproduce the above copyright 124 * notice, this list of conditions and the following disclaimer in the 125 * documentation and/or other materials provided with the distribution. 126 * 3. Neither the name of the University nor the names of its contributors 127 * may be used to endorse or promote products derived from this software 128 * without specific prior written permission. 129 * 130 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 131 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 132 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 133 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 134 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 135 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 136 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 137 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 138 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 139 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 140 * SUCH DAMAGE. 141 * 142 * @(#)dir.h 8.5 (Berkeley) 4/27/95 143 */ 144 145 #ifndef _UFS_LFS_LFS_ACCESSORS_H_ 146 #define _UFS_LFS_LFS_ACCESSORS_H_ 147 148 #if defined(_KERNEL_OPT) 149 #include "opt_lfs.h" 150 #endif 151 152 #include <sys/bswap.h> 153 154 #include <ufs/lfs/lfs.h> 155 156 #if !defined(_KERNEL) && !defined(_STANDALONE) 157 #include <assert.h> 158 #include <string.h> 159 #define KASSERT assert 160 #else 161 #include <sys/systm.h> 162 #endif 163 164 /* 165 * STRUCT_LFS is used by the libsa code to get accessors that work 166 * with struct salfs instead of struct lfs, and by the cleaner to 167 * get accessors that work with struct clfs. 168 */ 169 170 #ifndef STRUCT_LFS 171 #define STRUCT_LFS struct lfs 172 #endif 173 174 /* 175 * byte order 176 */ 177 178 /* 179 * For now at least, the bootblocks shall not be endian-independent. 180 * We can see later if it fits in the size budget. Also disable the 181 * byteswapping if LFS_EI is off. 182 * 183 * Caution: these functions "know" that bswap16/32/64 are unsigned, 184 * and if that changes will likely break silently. 185 */ 186 187 #if defined(_STANDALONE) || (defined(_KERNEL) && !defined(LFS_EI)) 188 #define LFS_SWAP_int16_t(fs, val) (val) 189 #define LFS_SWAP_int32_t(fs, val) (val) 190 #define LFS_SWAP_int64_t(fs, val) (val) 191 #define LFS_SWAP_uint16_t(fs, val) (val) 192 #define LFS_SWAP_uint32_t(fs, val) (val) 193 #define LFS_SWAP_uint64_t(fs, val) (val) 194 #else 195 #define LFS_SWAP_int16_t(fs, val) \ 196 ((fs)->lfs_dobyteswap ? (int16_t)bswap16(val) : (val)) 197 #define LFS_SWAP_int32_t(fs, val) \ 198 ((fs)->lfs_dobyteswap ? (int32_t)bswap32(val) : (val)) 199 #define LFS_SWAP_int64_t(fs, val) \ 200 ((fs)->lfs_dobyteswap ? (int64_t)bswap64(val) : (val)) 201 #define LFS_SWAP_uint16_t(fs, val) \ 202 ((fs)->lfs_dobyteswap ? bswap16(val) : (val)) 203 #define LFS_SWAP_uint32_t(fs, val) \ 204 ((fs)->lfs_dobyteswap ? bswap32(val) : (val)) 205 #define LFS_SWAP_uint64_t(fs, val) \ 206 ((fs)->lfs_dobyteswap ? bswap64(val) : (val)) 207 #endif 208 209 /* 210 * For handling directories we will need to know if the volume is 211 * little-endian. 212 */ 213 #if BYTE_ORDER == LITTLE_ENDIAN 214 #define LFS_LITTLE_ENDIAN_ONDISK(fs) (!(fs)->lfs_dobyteswap) 215 #else 216 #define LFS_LITTLE_ENDIAN_ONDISK(fs) ((fs)->lfs_dobyteswap) 217 #endif 218 219 220 /* 221 * Suppress spurious warnings -- we use 222 * 223 * type *foo = &obj->member; 224 * 225 * in macros to verify that obj->member has the right type. When the 226 * object is a packed structure with misaligned members, this causes 227 * some compiles to squeal that taking the address might lead to 228 * undefined behaviour later on -- which is helpful in general, not 229 * relevant in this case, because we don't do anything with foo 230 * afterward; we only declare it to get a type check and then we 231 * discard it. 232 */ 233 #ifdef __GNUC__ 234 #if defined(__clang__) 235 #pragma clang diagnostic push 236 #pragma clang diagnostic ignored "-Waddress-of-packed-member" 237 #elif __GNUC_PREREQ__(9,0) 238 #pragma GCC diagnostic push 239 #pragma GCC diagnostic ignored "-Waddress-of-packed-member" 240 #endif 241 #endif 242 243 244 245 /* 246 * directories 247 */ 248 249 #define LFS_DIRHEADERSIZE(fs) \ 250 ((fs)->lfs_is64 ? sizeof(struct lfs_dirheader64) : sizeof(struct lfs_dirheader32)) 251 252 /* 253 * The LFS_DIRSIZ macro gives the minimum record length which will hold 254 * the directory entry. This requires the amount of space in struct lfs_direct 255 * without the d_name field, plus enough space for the name with a terminating 256 * null byte (dp->d_namlen+1), rounded up to a 4 byte boundary. 257 */ 258 #define LFS_DIRECTSIZ(fs, namlen) \ 259 (LFS_DIRHEADERSIZE(fs) + (((namlen)+1 + 3) &~ 3)) 260 261 /* 262 * The size of the largest possible directory entry. This is 263 * used by ulfs_dirhash to figure the size of an array, so we 264 * need a single constant value true for both lfs32 and lfs64. 265 */ 266 #define LFS_MAXDIRENTRYSIZE \ 267 (sizeof(struct lfs_dirheader64) + (((LFS_MAXNAMLEN+1)+1 + 3) & ~3)) 268 269 #if (BYTE_ORDER == LITTLE_ENDIAN) 270 #define LFS_OLDDIRSIZ(oldfmt, dp, needswap) \ 271 (((oldfmt) && !(needswap)) ? \ 272 LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen)) 273 #else 274 #define LFS_OLDDIRSIZ(oldfmt, dp, needswap) \ 275 (((oldfmt) && (needswap)) ? \ 276 LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen)) 277 #endif 278 279 #define LFS_DIRSIZ(fs, dp) LFS_DIRECTSIZ(fs, lfs_dir_getnamlen(fs, dp)) 280 281 /* Constants for the first argument of LFS_OLDDIRSIZ */ 282 #define LFS_OLDDIRFMT 1 283 #define LFS_NEWDIRFMT 0 284 285 #define LFS_NEXTDIR(fs, dp) \ 286 ((LFS_DIRHEADER *)((char *)(dp) + lfs_dir_getreclen(fs, dp))) 287 288 static __inline char * 289 lfs_dir_nameptr(const STRUCT_LFS *fs, LFS_DIRHEADER *dh) 290 { 291 if (fs->lfs_is64) { 292 return (char *)(&dh->u_64 + 1); 293 } else { 294 return (char *)(&dh->u_32 + 1); 295 } 296 } 297 298 static __inline uint64_t 299 lfs_dir_getino(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh) 300 { 301 if (fs->lfs_is64) { 302 return LFS_SWAP_uint64_t(fs, dh->u_64.dh_ino); 303 } else { 304 return LFS_SWAP_uint32_t(fs, dh->u_32.dh_ino); 305 } 306 } 307 308 static __inline uint16_t 309 lfs_dir_getreclen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh) 310 { 311 if (fs->lfs_is64) { 312 return LFS_SWAP_uint16_t(fs, dh->u_64.dh_reclen); 313 } else { 314 return LFS_SWAP_uint16_t(fs, dh->u_32.dh_reclen); 315 } 316 } 317 318 static __inline uint8_t 319 lfs_dir_gettype(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh) 320 { 321 if (fs->lfs_is64) { 322 KASSERT(fs->lfs_hasolddirfmt == 0); 323 return dh->u_64.dh_type; 324 } else if (fs->lfs_hasolddirfmt) { 325 return LFS_DT_UNKNOWN; 326 } else { 327 return dh->u_32.dh_type; 328 } 329 } 330 331 static __inline uint8_t 332 lfs_dir_getnamlen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh) 333 { 334 if (fs->lfs_is64) { 335 KASSERT(fs->lfs_hasolddirfmt == 0); 336 return dh->u_64.dh_namlen; 337 } else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) { 338 /* low-order byte of old 16-bit namlen field */ 339 return dh->u_32.dh_type; 340 } else { 341 return dh->u_32.dh_namlen; 342 } 343 } 344 345 static __inline void 346 lfs_dir_setino(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint64_t ino) 347 { 348 if (fs->lfs_is64) { 349 dh->u_64.dh_ino = LFS_SWAP_uint64_t(fs, ino); 350 } else { 351 dh->u_32.dh_ino = LFS_SWAP_uint32_t(fs, ino); 352 } 353 } 354 355 static __inline void 356 lfs_dir_setreclen(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint16_t reclen) 357 { 358 if (fs->lfs_is64) { 359 dh->u_64.dh_reclen = LFS_SWAP_uint16_t(fs, reclen); 360 } else { 361 dh->u_32.dh_reclen = LFS_SWAP_uint16_t(fs, reclen); 362 } 363 } 364 365 static __inline void 366 lfs_dir_settype(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t type) 367 { 368 if (fs->lfs_is64) { 369 KASSERT(fs->lfs_hasolddirfmt == 0); 370 dh->u_64.dh_type = type; 371 } else if (fs->lfs_hasolddirfmt) { 372 /* do nothing */ 373 return; 374 } else { 375 dh->u_32.dh_type = type; 376 } 377 } 378 379 static __inline void 380 lfs_dir_setnamlen(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t namlen) 381 { 382 if (fs->lfs_is64) { 383 KASSERT(fs->lfs_hasolddirfmt == 0); 384 dh->u_64.dh_namlen = namlen; 385 } else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) { 386 /* low-order byte of old 16-bit namlen field */ 387 dh->u_32.dh_type = namlen; 388 } else { 389 dh->u_32.dh_namlen = namlen; 390 } 391 } 392 393 static __inline void 394 lfs_copydirname(STRUCT_LFS *fs, char *dest, const char *src, 395 unsigned namlen, unsigned reclen) 396 { 397 unsigned spacelen; 398 399 KASSERT(reclen > LFS_DIRHEADERSIZE(fs)); 400 spacelen = reclen - LFS_DIRHEADERSIZE(fs); 401 402 /* must always be at least 1 byte as a null terminator */ 403 KASSERT(spacelen > namlen); 404 405 memcpy(dest, src, namlen); 406 memset(dest + namlen, '\0', spacelen - namlen); 407 } 408 409 static __inline LFS_DIRHEADER * 410 lfs_dirtemplate_dotdot(STRUCT_LFS *fs, union lfs_dirtemplate *dt) 411 { 412 /* XXX blah, be nice to have a way to do this w/o casts */ 413 if (fs->lfs_is64) { 414 return (LFS_DIRHEADER *)&dt->u_64.dotdot_header; 415 } else { 416 return (LFS_DIRHEADER *)&dt->u_32.dotdot_header; 417 } 418 } 419 420 static __inline char * 421 lfs_dirtemplate_dotdotname(STRUCT_LFS *fs, union lfs_dirtemplate *dt) 422 { 423 if (fs->lfs_is64) { 424 return dt->u_64.dotdot_name; 425 } else { 426 return dt->u_32.dotdot_name; 427 } 428 } 429 430 /* 431 * dinodes 432 */ 433 434 /* 435 * Maximum length of a symlink that can be stored within the inode. 436 */ 437 #define LFS32_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t)) 438 #define LFS64_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t)) 439 440 #define LFS_MAXSYMLINKLEN(fs) \ 441 ((fs)->lfs_is64 ? LFS64_MAXSYMLINKLEN : LFS32_MAXSYMLINKLEN) 442 443 #define DINOSIZE(fs) ((fs)->lfs_is64 ? sizeof(struct lfs64_dinode) : sizeof(struct lfs32_dinode)) 444 445 #define DINO_IN_BLOCK(fs, base, ix) \ 446 ((union lfs_dinode *)((char *)(base) + DINOSIZE(fs) * (ix))) 447 448 static __inline void 449 lfs_copy_dinode(STRUCT_LFS *fs, 450 union lfs_dinode *dst, const union lfs_dinode *src) 451 { 452 /* 453 * We can do structure assignment of the structs, but not of 454 * the whole union, as the union is the size of the (larger) 455 * 64-bit struct and on a 32-bit fs the upper half of it might 456 * be off the end of a buffer or otherwise invalid. 457 */ 458 if (fs->lfs_is64) { 459 dst->u_64 = src->u_64; 460 } else { 461 dst->u_32 = src->u_32; 462 } 463 } 464 465 #define LFS_DEF_DINO_ACCESSOR(type, type32, field) \ 466 static __inline type \ 467 lfs_dino_get##field(STRUCT_LFS *fs, union lfs_dinode *dip) \ 468 { \ 469 if (fs->lfs_is64) { \ 470 return LFS_SWAP_##type(fs, dip->u_64.di_##field); \ 471 } else { \ 472 return LFS_SWAP_##type32(fs, dip->u_32.di_##field); \ 473 } \ 474 } \ 475 static __inline void \ 476 lfs_dino_set##field(STRUCT_LFS *fs, union lfs_dinode *dip, type val) \ 477 { \ 478 if (fs->lfs_is64) { \ 479 type *p = &dip->u_64.di_##field; \ 480 (void)p; \ 481 dip->u_64.di_##field = LFS_SWAP_##type(fs, val); \ 482 } else { \ 483 type32 *p = &dip->u_32.di_##field; \ 484 (void)p; \ 485 dip->u_32.di_##field = LFS_SWAP_##type32(fs, val); \ 486 } \ 487 } \ 488 489 LFS_DEF_DINO_ACCESSOR(uint16_t, uint16_t, mode) 490 LFS_DEF_DINO_ACCESSOR(int16_t, int16_t, nlink) 491 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, inumber) 492 LFS_DEF_DINO_ACCESSOR(uint64_t, uint64_t, size) 493 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, atime) 494 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, atimensec) 495 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, mtime) 496 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, mtimensec) 497 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, ctime) 498 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, ctimensec) 499 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, flags) 500 LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, blocks) 501 LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, gen) 502 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, uid) 503 LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, gid) 504 505 /* XXX this should be done differently (it's a fake field) */ 506 LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, rdev) 507 508 static __inline daddr_t 509 lfs_dino_getdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix) 510 { 511 KASSERT(ix < ULFS_NDADDR); 512 if (fs->lfs_is64) { 513 return LFS_SWAP_int64_t(fs, dip->u_64.di_db[ix]); 514 } else { 515 /* note: this must sign-extend or UNWRITTEN gets trashed */ 516 return (int32_t)LFS_SWAP_int32_t(fs, dip->u_32.di_db[ix]); 517 } 518 } 519 520 static __inline daddr_t 521 lfs_dino_getib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix) 522 { 523 KASSERT(ix < ULFS_NIADDR); 524 if (fs->lfs_is64) { 525 return LFS_SWAP_int64_t(fs, dip->u_64.di_ib[ix]); 526 } else { 527 /* note: this must sign-extend or UNWRITTEN gets trashed */ 528 return (int32_t)LFS_SWAP_int32_t(fs, dip->u_32.di_ib[ix]); 529 } 530 } 531 532 static __inline void 533 lfs_dino_setdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val) 534 { 535 KASSERT(ix < ULFS_NDADDR); 536 if (fs->lfs_is64) { 537 dip->u_64.di_db[ix] = LFS_SWAP_int64_t(fs, val); 538 } else { 539 dip->u_32.di_db[ix] = LFS_SWAP_uint32_t(fs, val); 540 } 541 } 542 543 static __inline void 544 lfs_dino_setib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val) 545 { 546 KASSERT(ix < ULFS_NIADDR); 547 if (fs->lfs_is64) { 548 dip->u_64.di_ib[ix] = LFS_SWAP_int64_t(fs, val); 549 } else { 550 dip->u_32.di_ib[ix] = LFS_SWAP_uint32_t(fs, val); 551 } 552 } 553 554 /* birthtime is present only in the 64-bit inode */ 555 static __inline void 556 lfs_dino_setbirthtime(STRUCT_LFS *fs, union lfs_dinode *dip, 557 const struct timespec *ts) 558 { 559 if (fs->lfs_is64) { 560 dip->u_64.di_birthtime = ts->tv_sec; 561 dip->u_64.di_birthnsec = ts->tv_nsec; 562 } else { 563 /* drop it on the floor */ 564 } 565 } 566 567 /* 568 * indirect blocks 569 */ 570 571 static __inline daddr_t 572 lfs_iblock_get(STRUCT_LFS *fs, void *block, unsigned ix) 573 { 574 if (fs->lfs_is64) { 575 // XXX re-enable these asserts after reorging this file 576 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t)); 577 return (daddr_t)(((int64_t *)block)[ix]); 578 } else { 579 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t)); 580 /* must sign-extend or UNWRITTEN gets trashed */ 581 return (daddr_t)(int64_t)(((int32_t *)block)[ix]); 582 } 583 } 584 585 static __inline void 586 lfs_iblock_set(STRUCT_LFS *fs, void *block, unsigned ix, daddr_t val) 587 { 588 if (fs->lfs_is64) { 589 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t)); 590 ((int64_t *)block)[ix] = val; 591 } else { 592 //KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t)); 593 ((int32_t *)block)[ix] = val; 594 } 595 } 596 597 /* 598 * "struct buf" associated definitions 599 */ 600 601 # define LFS_LOCK_BUF(bp) do { \ 602 if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) { \ 603 mutex_enter(&lfs_lock); \ 604 ++locked_queue_count; \ 605 locked_queue_bytes += bp->b_bufsize; \ 606 mutex_exit(&lfs_lock); \ 607 } \ 608 (bp)->b_flags |= B_LOCKED; \ 609 } while (0) 610 611 # define LFS_UNLOCK_BUF(bp) do { \ 612 if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) { \ 613 mutex_enter(&lfs_lock); \ 614 --locked_queue_count; \ 615 locked_queue_bytes -= bp->b_bufsize; \ 616 if (locked_queue_count < LFS_WAIT_BUFS && \ 617 locked_queue_bytes < LFS_WAIT_BYTES) \ 618 cv_broadcast(&locked_queue_cv); \ 619 mutex_exit(&lfs_lock); \ 620 } \ 621 (bp)->b_flags &= ~B_LOCKED; \ 622 } while (0) 623 624 /* 625 * "struct inode" associated definitions 626 */ 627 628 #define LFS_SET_UINO(ip, states) do { \ 629 if (((states) & IN_ACCESSED) && !((ip)->i_state & IN_ACCESSED)) \ 630 lfs_sb_adduinodes((ip)->i_lfs, 1); \ 631 if (((states) & IN_CLEANING) && !((ip)->i_state & IN_CLEANING)) \ 632 lfs_sb_adduinodes((ip)->i_lfs, 1); \ 633 if (((states) & IN_MODIFIED) && !((ip)->i_state & IN_MODIFIED)) \ 634 lfs_sb_adduinodes((ip)->i_lfs, 1); \ 635 (ip)->i_state |= (states); \ 636 } while (0) 637 638 #define LFS_CLR_UINO(ip, states) do { \ 639 if (((states) & IN_ACCESSED) && ((ip)->i_state & IN_ACCESSED)) \ 640 lfs_sb_subuinodes((ip)->i_lfs, 1); \ 641 if (((states) & IN_CLEANING) && ((ip)->i_state & IN_CLEANING)) \ 642 lfs_sb_subuinodes((ip)->i_lfs, 1); \ 643 if (((states) & IN_MODIFIED) && ((ip)->i_state & IN_MODIFIED)) \ 644 lfs_sb_subuinodes((ip)->i_lfs, 1); \ 645 (ip)->i_state &= ~(states); \ 646 if (lfs_sb_getuinodes((ip)->i_lfs) < 0) { \ 647 panic("lfs_uinodes < 0"); \ 648 } \ 649 } while (0) 650 651 #define LFS_ITIMES(ip, acc, mod, cre) \ 652 while ((ip)->i_state & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \ 653 lfs_itimes(ip, acc, mod, cre) 654 655 /* 656 * On-disk and in-memory checkpoint segment usage structure. 657 */ 658 659 #define SEGUPB(fs) (lfs_sb_getsepb(fs)) 660 #define SEGTABSIZE_SU(fs) \ 661 ((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs)) 662 663 #ifdef _KERNEL 664 # define SHARE_IFLOCK(F) \ 665 do { \ 666 rw_enter(&(F)->lfs_iflock, RW_READER); \ 667 } while(0) 668 # define UNSHARE_IFLOCK(F) \ 669 do { \ 670 rw_exit(&(F)->lfs_iflock); \ 671 } while(0) 672 #else /* ! _KERNEL */ 673 # define SHARE_IFLOCK(F) 674 # define UNSHARE_IFLOCK(F) 675 #endif /* ! _KERNEL */ 676 677 /* Read in the block with a specific segment usage entry from the ifile. */ 678 #define LFS_SEGENTRY(SP, F, IN, BP) do { \ 679 int _e; \ 680 SHARE_IFLOCK(F); \ 681 VTOI((F)->lfs_ivnode)->i_state |= IN_ACCESS; \ 682 if ((_e = bread((F)->lfs_ivnode, \ 683 ((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F), \ 684 lfs_sb_getbsize(F), 0, &(BP))) != 0) \ 685 panic("lfs: ifile read: segentry %llu: error %d\n", \ 686 (unsigned long long)(IN), _e); \ 687 if (lfs_sb_getversion(F) == 1) \ 688 (SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data + \ 689 ((IN) & (lfs_sb_getsepb(F) - 1))); \ 690 else \ 691 (SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \ 692 UNSHARE_IFLOCK(F); \ 693 } while (0) 694 695 #define LFS_WRITESEGENTRY(SP, F, IN, BP) do { \ 696 if ((SP)->su_nbytes == 0) \ 697 (SP)->su_flags |= SEGUSE_EMPTY; \ 698 else \ 699 (SP)->su_flags &= ~SEGUSE_EMPTY; \ 700 (F)->lfs_suflags[(F)->lfs_activesb][(IN)] = (SP)->su_flags; \ 701 LFS_BWRITE_LOG(BP); \ 702 } while (0) 703 704 /* 705 * FINFO (file info) entries. 706 */ 707 708 /* Size of an on-disk block pointer, e.g. in an indirect block. */ 709 /* XXX: move to a more suitable location in this file */ 710 #define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t)) 711 712 /* Size of an on-disk inode number. */ 713 /* XXX: move to a more suitable location in this file */ 714 #define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t)) 715 716 /* size of a FINFO, without the block pointers */ 717 #define FINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32)) 718 719 /* Full size of the provided FINFO record, including its block pointers. */ 720 #define FINFO_FULLSIZE(fs, fip) \ 721 (FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs)) 722 723 #define NEXT_FINFO(fs, fip) \ 724 ((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip))) 725 726 #define LFS_DEF_FI_ACCESSOR(type, type32, field) \ 727 static __inline type \ 728 lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip) \ 729 { \ 730 if (fs->lfs_is64) { \ 731 return fip->u_64.fi_##field; \ 732 } else { \ 733 return fip->u_32.fi_##field; \ 734 } \ 735 } \ 736 static __inline void \ 737 lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \ 738 { \ 739 if (fs->lfs_is64) { \ 740 type *p = &fip->u_64.fi_##field; \ 741 (void)p; \ 742 fip->u_64.fi_##field = val; \ 743 } else { \ 744 type32 *p = &fip->u_32.fi_##field; \ 745 (void)p; \ 746 fip->u_32.fi_##field = val; \ 747 } \ 748 } \ 749 750 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks) 751 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version) 752 LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino) 753 LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength) 754 755 static __inline daddr_t 756 lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned idx) 757 { 758 void *firstblock; 759 760 firstblock = (char *)fip + FINFOSIZE(fs); 761 KASSERT(idx < lfs_fi_getnblocks(fs, fip)); 762 if (fs->lfs_is64) { 763 return ((int64_t *)firstblock)[idx]; 764 } else { 765 return ((int32_t *)firstblock)[idx]; 766 } 767 } 768 769 static __inline void 770 lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned idx, daddr_t blk) 771 { 772 void *firstblock; 773 774 firstblock = (char *)fip + FINFOSIZE(fs); 775 KASSERT(idx < lfs_fi_getnblocks(fs, fip)); 776 if (fs->lfs_is64) { 777 ((int64_t *)firstblock)[idx] = blk; 778 } else { 779 ((int32_t *)firstblock)[idx] = blk; 780 } 781 } 782 783 /* 784 * inode info entries (in the segment summary) 785 */ 786 787 #define IINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(IINFO64) : sizeof(IINFO32)) 788 789 /* iinfos scroll backward from the end of the segment summary block */ 790 #define SEGSUM_IINFOSTART(fs, buf) \ 791 ((IINFO *)((char *)buf + lfs_sb_getsumsize(fs) - IINFOSIZE(fs))) 792 793 #define NEXTLOWER_IINFO(fs, iip) \ 794 ((IINFO *)((char *)(iip) - IINFOSIZE(fs))) 795 796 #define NTH_IINFO(fs, buf, n) \ 797 ((IINFO *)((char *)SEGSUM_IINFOSTART(fs, buf) - (n)*IINFOSIZE(fs))) 798 799 static __inline uint64_t 800 lfs_ii_getblock(STRUCT_LFS *fs, IINFO *iip) 801 { 802 if (fs->lfs_is64) { 803 return iip->u_64.ii_block; 804 } else { 805 return iip->u_32.ii_block; 806 } 807 } 808 809 static __inline void 810 lfs_ii_setblock(STRUCT_LFS *fs, IINFO *iip, uint64_t block) 811 { 812 if (fs->lfs_is64) { 813 iip->u_64.ii_block = block; 814 } else { 815 iip->u_32.ii_block = block; 816 } 817 } 818 819 /* 820 * Index file inode entries. 821 */ 822 823 #define IFILE_ENTRYSIZE(fs) \ 824 ((fs)->lfs_is64 ? sizeof(IFILE64) : sizeof(IFILE32)) 825 826 /* 827 * LFSv1 compatibility code is not allowed to touch if_atime, since it 828 * may not be mapped! 829 */ 830 /* Read in the block with a specific inode from the ifile. */ 831 #define LFS_IENTRY_INBLOCK(IP, F, IN, BP) do { \ 832 if ((F)->lfs_is64) { \ 833 (IP) = (IFILE *)((IFILE64 *)(BP)->b_data + \ 834 (IN) % lfs_sb_getifpb(F)); \ 835 } else if (lfs_sb_getversion(F) > 1) { \ 836 (IP) = (IFILE *)((IFILE32 *)(BP)->b_data + \ 837 (IN) % lfs_sb_getifpb(F)); \ 838 } else { \ 839 (IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data + \ 840 (IN) % lfs_sb_getifpb(F)); \ 841 } \ 842 } while (0) 843 #define LFS_IENTRY(IP, F, IN, BP) do { \ 844 int _e; \ 845 SHARE_IFLOCK(F); \ 846 VTOI((F)->lfs_ivnode)->i_state |= IN_ACCESS; \ 847 if ((_e = bread((F)->lfs_ivnode, \ 848 (IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \ 849 lfs_sb_getbsize(F), 0, &(BP))) != 0) \ 850 panic("lfs: ifile ino %d read %d", (int)(IN), _e); \ 851 LFS_IENTRY_INBLOCK(IP, F, IN, BP); \ 852 UNSHARE_IFLOCK(F); \ 853 } while (0) 854 #define LFS_IENTRY_NEXT(IP, F) do { \ 855 if ((F)->lfs_is64) { \ 856 (IP) = (IFILE *)((IFILE64 *)(IP) + 1); \ 857 } else if (lfs_sb_getversion(F) > 1) { \ 858 (IP) = (IFILE *)((IFILE32 *)(IP) + 1); \ 859 } else { \ 860 (IP) = (IFILE *)((IFILE_V1 *)(IP) + 1); \ 861 } \ 862 } while (0) 863 864 #define LFS_DEF_IF_ACCESSOR(type, type32, field) \ 865 static __inline type \ 866 lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp) \ 867 { \ 868 if (fs->lfs_is64) { \ 869 return ifp->u_64.if_##field; \ 870 } else { \ 871 return ifp->u_32.if_##field; \ 872 } \ 873 } \ 874 static __inline void \ 875 lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \ 876 { \ 877 if (fs->lfs_is64) { \ 878 type *p = &ifp->u_64.if_##field; \ 879 (void)p; \ 880 ifp->u_64.if_##field = val; \ 881 } else { \ 882 type32 *p = &ifp->u_32.if_##field; \ 883 (void)p; \ 884 ifp->u_32.if_##field = val; \ 885 } \ 886 } \ 887 888 LFS_DEF_IF_ACCESSOR(uint32_t, uint32_t, version) 889 LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr) 890 LFS_DEF_IF_ACCESSOR(uint64_t, uint32_t, nextfree) 891 LFS_DEF_IF_ACCESSOR(uint64_t, uint32_t, atime_sec) 892 LFS_DEF_IF_ACCESSOR(uint32_t, uint32_t, atime_nsec) 893 894 /* 895 * Cleaner information structure. This resides in the ifile and is used 896 * to pass information from the kernel to the cleaner. 897 */ 898 899 #define CLEANSIZE_SU(fs) \ 900 ((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \ 901 lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs)) 902 903 #define LFS_DEF_CI_ACCESSOR(type, type32, field) \ 904 static __inline type \ 905 lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip) \ 906 { \ 907 if (fs->lfs_is64) { \ 908 return cip->u_64.field; \ 909 } else { \ 910 return cip->u_32.field; \ 911 } \ 912 } \ 913 static __inline void \ 914 lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \ 915 { \ 916 if (fs->lfs_is64) { \ 917 type *p = &cip->u_64.field; \ 918 (void)p; \ 919 cip->u_64.field = val; \ 920 } else { \ 921 type32 *p = &cip->u_32.field; \ 922 (void)p; \ 923 cip->u_32.field = val; \ 924 } \ 925 } \ 926 927 LFS_DEF_CI_ACCESSOR(uint32_t, uint32_t, clean) 928 LFS_DEF_CI_ACCESSOR(uint32_t, uint32_t, dirty) 929 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree) 930 LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail) 931 LFS_DEF_CI_ACCESSOR(uint64_t, uint32_t, free_head) 932 LFS_DEF_CI_ACCESSOR(uint64_t, uint32_t, free_tail) 933 LFS_DEF_CI_ACCESSOR(uint32_t, uint32_t, flags) 934 935 static __inline void 936 lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num) 937 { 938 lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num); 939 lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num); 940 } 941 942 static __inline void 943 lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num) 944 { 945 lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num); 946 lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num); 947 } 948 949 /* Read in the block with the cleaner info from the ifile. */ 950 #define LFS_CLEANERINFO(CP, F, BP) do { \ 951 int _e; \ 952 SHARE_IFLOCK(F); \ 953 VTOI((F)->lfs_ivnode)->i_state |= IN_ACCESS; \ 954 _e = bread((F)->lfs_ivnode, \ 955 (daddr_t)0, lfs_sb_getbsize(F), 0, &(BP)); \ 956 if (_e) \ 957 panic("lfs: ifile read: cleanerinfo: error %d\n", _e); \ 958 (CP) = (CLEANERINFO *)(BP)->b_data; \ 959 UNSHARE_IFLOCK(F); \ 960 } while (0) 961 962 /* 963 * Synchronize the Ifile cleaner info with current avail and bfree. 964 */ 965 #define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do { \ 966 mutex_enter(&lfs_lock); \ 967 if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) || \ 968 lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \ 969 fs->lfs_favail) { \ 970 lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs)); \ 971 lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail - \ 972 fs->lfs_favail); \ 973 if (((bp)->b_flags & B_GATHERED) == 0) { \ 974 fs->lfs_flags |= LFS_IFDIRTY; \ 975 } \ 976 mutex_exit(&lfs_lock); \ 977 (void) LFS_BWRITE_LOG(bp); /* Ifile */ \ 978 } else { \ 979 mutex_exit(&lfs_lock); \ 980 brelse(bp, 0); \ 981 } \ 982 } while (0) 983 984 /* 985 * Get the head of the inode free list. 986 * Always called with the segment lock held. 987 */ 988 #define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do { \ 989 if (lfs_sb_getversion(FS) > 1) { \ 990 LFS_CLEANERINFO((CIP), (FS), (BP)); \ 991 lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP)); \ 992 brelse(BP, 0); \ 993 } \ 994 *(FREEP) = lfs_sb_getfreehd(FS); \ 995 } while (0) 996 997 #define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do { \ 998 lfs_sb_setfreehd(FS, VAL); \ 999 if (lfs_sb_getversion(FS) > 1) { \ 1000 LFS_CLEANERINFO((CIP), (FS), (BP)); \ 1001 lfs_ci_setfree_head(FS, CIP, VAL); \ 1002 if ((VAL) == LFS_UNUSED_INUM) \ 1003 lfs_ci_setfree_tail(FS, CIP, VAL); \ 1004 LFS_BWRITE_LOG(BP); \ 1005 mutex_enter(&lfs_lock); \ 1006 (FS)->lfs_flags |= LFS_IFDIRTY; \ 1007 mutex_exit(&lfs_lock); \ 1008 } \ 1009 } while (0) 1010 1011 #define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do { \ 1012 LFS_CLEANERINFO((CIP), (FS), (BP)); \ 1013 *(FREEP) = lfs_ci_getfree_tail(FS, CIP); \ 1014 brelse(BP, 0); \ 1015 } while (0) 1016 1017 #define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do { \ 1018 LFS_CLEANERINFO((CIP), (FS), (BP)); \ 1019 lfs_ci_setfree_tail(FS, CIP, VAL); \ 1020 if ((VAL) == LFS_UNUSED_INUM) \ 1021 lfs_ci_setfree_head(FS, CIP, VAL); \ 1022 LFS_BWRITE_LOG(BP); \ 1023 mutex_enter(&lfs_lock); \ 1024 (FS)->lfs_flags |= LFS_IFDIRTY; \ 1025 mutex_exit(&lfs_lock); \ 1026 } while (0) 1027 1028 /* 1029 * On-disk segment summary information 1030 */ 1031 1032 #define SEGSUM_SIZE(fs) \ 1033 (fs->lfs_is64 ? sizeof(SEGSUM64) : \ 1034 lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1)) 1035 1036 /* 1037 * The SEGSUM structure is followed by FINFO structures. Get the pointer 1038 * to the first FINFO. 1039 * 1040 * XXX this can't be a macro yet; this file needs to be resorted. 1041 */ 1042 #if 0 1043 static __inline FINFO * 1044 segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp) 1045 { 1046 return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs)); 1047 } 1048 #else 1049 #define SEGSUM_FINFOBASE(fs, ssp) \ 1050 ((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs))); 1051 #endif 1052 1053 #define LFS_DEF_SS_ACCESSOR(type, type32, field) \ 1054 static __inline type \ 1055 lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp) \ 1056 { \ 1057 if (fs->lfs_is64) { \ 1058 return ssp->u_64.ss_##field; \ 1059 } else { \ 1060 return ssp->u_32.ss_##field; \ 1061 } \ 1062 } \ 1063 static __inline void \ 1064 lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \ 1065 { \ 1066 if (fs->lfs_is64) { \ 1067 type *p = &ssp->u_64.ss_##field; \ 1068 (void)p; \ 1069 ssp->u_64.ss_##field = val; \ 1070 } else { \ 1071 type32 *p = &ssp->u_32.ss_##field; \ 1072 (void)p; \ 1073 ssp->u_32.ss_##field = val; \ 1074 } \ 1075 } \ 1076 1077 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum) 1078 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum) 1079 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic) 1080 LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident) 1081 LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next) 1082 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo) 1083 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos) 1084 LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags) 1085 LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino) 1086 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial) 1087 LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create) 1088 1089 static __inline size_t 1090 lfs_ss_getsumstart(STRUCT_LFS *fs) 1091 { 1092 /* These are actually all the same. */ 1093 if (fs->lfs_is64) { 1094 return offsetof(SEGSUM64, ss_datasum); 1095 } else /* if (lfs_sb_getversion(fs) > 1) */ { 1096 return offsetof(SEGSUM32, ss_datasum); 1097 } /* else { 1098 return offsetof(SEGSUM_V1, ss_datasum); 1099 } */ 1100 /* 1101 * XXX ^^^ until this file is resorted lfs_sb_getversion isn't 1102 * defined yet. 1103 */ 1104 } 1105 1106 static __inline uint32_t 1107 lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp) 1108 { 1109 KASSERT(fs->lfs_is64 == 0); 1110 /* XXX need to resort this file before we can do this */ 1111 //KASSERT(lfs_sb_getversion(fs) == 1); 1112 1113 return ssp->u_v1.ss_create; 1114 } 1115 1116 static __inline void 1117 lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val) 1118 { 1119 KASSERT(fs->lfs_is64 == 0); 1120 /* XXX need to resort this file before we can do this */ 1121 //KASSERT(lfs_sb_getversion(fs) == 1); 1122 1123 ssp->u_v1.ss_create = val; 1124 } 1125 1126 1127 /* 1128 * Super block. 1129 */ 1130 1131 /* 1132 * Generate accessors for the on-disk superblock fields with cpp. 1133 */ 1134 1135 #define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \ 1136 static __inline type \ 1137 lfs_sb_get##field(STRUCT_LFS *fs) \ 1138 { \ 1139 if (fs->lfs_is64) { \ 1140 return fs->lfs_dlfs_u.u_64.dlfs_##field; \ 1141 } else { \ 1142 return fs->lfs_dlfs_u.u_32.dlfs_##field; \ 1143 } \ 1144 } \ 1145 static __inline void \ 1146 lfs_sb_set##field(STRUCT_LFS *fs, type val) \ 1147 { \ 1148 if (fs->lfs_is64) { \ 1149 fs->lfs_dlfs_u.u_64.dlfs_##field = val; \ 1150 } else { \ 1151 fs->lfs_dlfs_u.u_32.dlfs_##field = val; \ 1152 } \ 1153 } \ 1154 static __inline void \ 1155 lfs_sb_add##field(STRUCT_LFS *fs, type val) \ 1156 { \ 1157 if (fs->lfs_is64) { \ 1158 type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \ 1159 *p64 += val; \ 1160 } else { \ 1161 type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \ 1162 *p32 += val; \ 1163 } \ 1164 } \ 1165 static __inline void \ 1166 lfs_sb_sub##field(STRUCT_LFS *fs, type val) \ 1167 { \ 1168 if (fs->lfs_is64) { \ 1169 type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \ 1170 *p64 -= val; \ 1171 } else { \ 1172 type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \ 1173 *p32 -= val; \ 1174 } \ 1175 } 1176 1177 #define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f) 1178 1179 #define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \ 1180 static __inline type \ 1181 lfs_sb_get##field(STRUCT_LFS *fs) \ 1182 { \ 1183 if (fs->lfs_is64) { \ 1184 return val64; \ 1185 } else { \ 1186 return fs->lfs_dlfs_u.u_32.dlfs_##field; \ 1187 } \ 1188 } 1189 1190 LFS_DEF_SB_ACCESSOR(uint32_t, version) 1191 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, size) 1192 LFS_DEF_SB_ACCESSOR(uint32_t, ssize) 1193 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, dsize) 1194 LFS_DEF_SB_ACCESSOR(uint32_t, bsize) 1195 LFS_DEF_SB_ACCESSOR(uint32_t, fsize) 1196 LFS_DEF_SB_ACCESSOR(uint32_t, frag) 1197 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, freehd) 1198 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree) 1199 LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, nfiles) 1200 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail) 1201 LFS_DEF_SB_ACCESSOR(int32_t, uinodes) 1202 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr) 1203 LFS_DEF_SB_ACCESSOR_32ONLY(uint32_t, ifile, LFS_IFILE_INUM) 1204 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg) 1205 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg) 1206 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg) 1207 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset) 1208 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg) 1209 LFS_DEF_SB_ACCESSOR(uint32_t, inopf) 1210 LFS_DEF_SB_ACCESSOR(uint32_t, minfree) 1211 LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize) 1212 LFS_DEF_SB_ACCESSOR(uint32_t, fsbpseg) 1213 LFS_DEF_SB_ACCESSOR(uint32_t, inopb) 1214 LFS_DEF_SB_ACCESSOR(uint32_t, ifpb) 1215 LFS_DEF_SB_ACCESSOR(uint32_t, sepb) 1216 LFS_DEF_SB_ACCESSOR(uint32_t, nindir) 1217 LFS_DEF_SB_ACCESSOR(uint32_t, nseg) 1218 LFS_DEF_SB_ACCESSOR(uint32_t, nspf) 1219 LFS_DEF_SB_ACCESSOR(uint32_t, cleansz) 1220 LFS_DEF_SB_ACCESSOR(uint32_t, segtabsz) 1221 LFS_DEF_SB_ACCESSOR_32ONLY(uint32_t, segmask, 0) 1222 LFS_DEF_SB_ACCESSOR_32ONLY(uint32_t, segshift, 0) 1223 LFS_DEF_SB_ACCESSOR(uint64_t, bmask) 1224 LFS_DEF_SB_ACCESSOR(uint32_t, bshift) 1225 LFS_DEF_SB_ACCESSOR(uint64_t, ffmask) 1226 LFS_DEF_SB_ACCESSOR(uint32_t, ffshift) 1227 LFS_DEF_SB_ACCESSOR(uint64_t, fbmask) 1228 LFS_DEF_SB_ACCESSOR(uint32_t, fbshift) 1229 LFS_DEF_SB_ACCESSOR(uint32_t, blktodb) 1230 LFS_DEF_SB_ACCESSOR(uint32_t, fsbtodb) 1231 LFS_DEF_SB_ACCESSOR(uint32_t, sushift) 1232 LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen) 1233 LFS_DEF_SB_ACCESSOR(uint32_t, cksum) 1234 LFS_DEF_SB_ACCESSOR(uint16_t, pflags) 1235 LFS_DEF_SB_ACCESSOR(uint32_t, nclean) 1236 LFS_DEF_SB_ACCESSOR(int32_t, dmeta) 1237 LFS_DEF_SB_ACCESSOR(uint32_t, minfreeseg) 1238 LFS_DEF_SB_ACCESSOR(uint32_t, sumsize) 1239 LFS_DEF_SB_ACCESSOR(uint64_t, serial) 1240 LFS_DEF_SB_ACCESSOR(uint32_t, ibsize) 1241 LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr) 1242 LFS_DEF_SB_ACCESSOR(uint64_t, tstamp) 1243 LFS_DEF_SB_ACCESSOR(uint32_t, inodefmt) 1244 LFS_DEF_SB_ACCESSOR(uint32_t, interleave) 1245 LFS_DEF_SB_ACCESSOR(uint32_t, ident) 1246 LFS_DEF_SB_ACCESSOR(uint32_t, resvseg) 1247 1248 /* special-case accessors */ 1249 1250 /* 1251 * the v1 otstamp field lives in what's now dlfs_inopf 1252 */ 1253 #define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs) 1254 #define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val) 1255 1256 /* 1257 * lfs_sboffs is an array 1258 */ 1259 static __inline int32_t 1260 lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n) 1261 { 1262 #ifdef KASSERT /* ugh */ 1263 KASSERT(n < LFS_MAXNUMSB); 1264 #endif 1265 if (fs->lfs_is64) { 1266 return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n]; 1267 } else { 1268 return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n]; 1269 } 1270 } 1271 static __inline void 1272 lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val) 1273 { 1274 #ifdef KASSERT /* ugh */ 1275 KASSERT(n < LFS_MAXNUMSB); 1276 #endif 1277 if (fs->lfs_is64) { 1278 fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val; 1279 } else { 1280 fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val; 1281 } 1282 } 1283 1284 /* 1285 * lfs_fsmnt is a string 1286 */ 1287 static __inline const char * 1288 lfs_sb_getfsmnt(STRUCT_LFS *fs) 1289 { 1290 if (fs->lfs_is64) { 1291 return (const char *)fs->lfs_dlfs_u.u_64.dlfs_fsmnt; 1292 } else { 1293 return (const char *)fs->lfs_dlfs_u.u_32.dlfs_fsmnt; 1294 } 1295 } 1296 1297 static __inline void 1298 lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str) 1299 { 1300 if (fs->lfs_is64) { 1301 (void)strncpy((char *)fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str, 1302 sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt)); 1303 } else { 1304 (void)strncpy((char *)fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str, 1305 sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt)); 1306 } 1307 } 1308 1309 /* Highest addressable fsb */ 1310 #define LFS_MAX_DADDR(fs) \ 1311 ((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff) 1312 1313 /* LFS_NINDIR is the number of indirects in a file system block. */ 1314 #define LFS_NINDIR(fs) (lfs_sb_getnindir(fs)) 1315 1316 /* LFS_INOPB is the number of inodes in a secondary storage block. */ 1317 #define LFS_INOPB(fs) (lfs_sb_getinopb(fs)) 1318 /* LFS_INOPF is the number of inodes in a fragment. */ 1319 #define LFS_INOPF(fs) (lfs_sb_getinopf(fs)) 1320 1321 #define lfs_blkoff(fs, loc) ((int)((loc) & lfs_sb_getbmask(fs))) 1322 #define lfs_fragoff(fs, loc) /* calculates (loc % fs->lfs_fsize) */ \ 1323 ((int)((loc) & lfs_sb_getffmask(fs))) 1324 1325 /* XXX: lowercase these as they're no longer macros */ 1326 /* Frags to diskblocks */ 1327 static __inline uint64_t 1328 LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b) 1329 { 1330 #if defined(_KERNEL) 1331 return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT); 1332 #else 1333 return b << lfs_sb_getfsbtodb(fs); 1334 #endif 1335 } 1336 /* Diskblocks to frags */ 1337 static __inline uint64_t 1338 LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b) 1339 { 1340 #if defined(_KERNEL) 1341 return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT); 1342 #else 1343 return b >> lfs_sb_getfsbtodb(fs); 1344 #endif 1345 } 1346 1347 #define lfs_lblkno(fs, loc) ((loc) >> lfs_sb_getbshift(fs)) 1348 #define lfs_lblktosize(fs, blk) ((blk) << lfs_sb_getbshift(fs)) 1349 1350 /* Frags to bytes */ 1351 static __inline uint64_t 1352 lfs_fsbtob(STRUCT_LFS *fs, uint64_t b) 1353 { 1354 return b << lfs_sb_getffshift(fs); 1355 } 1356 /* Bytes to frags */ 1357 static __inline uint64_t 1358 lfs_btofsb(STRUCT_LFS *fs, uint64_t b) 1359 { 1360 return b >> lfs_sb_getffshift(fs); 1361 } 1362 1363 #define lfs_numfrags(fs, loc) /* calculates (loc / fs->lfs_fsize) */ \ 1364 ((loc) >> lfs_sb_getffshift(fs)) 1365 #define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \ 1366 ((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs)))) 1367 #define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \ 1368 ((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs)))) 1369 #define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \ 1370 ((frags) >> lfs_sb_getfbshift(fs)) 1371 #define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \ 1372 ((blks) << lfs_sb_getfbshift(fs)) 1373 #define lfs_fragnum(fs, fsb) /* calculates (fsb % fs->lfs_frag) */ \ 1374 ((fsb) & ((fs)->lfs_frag - 1)) 1375 #define lfs_blknum(fs, fsb) /* calculates rounddown(fsb, fs->lfs_frag) */ \ 1376 ((fsb) &~ ((fs)->lfs_frag - 1)) 1377 #define lfs_dblksize(fs, dp, lbn) \ 1378 (((lbn) >= ULFS_NDADDR || lfs_dino_getsize(fs, dp) >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \ 1379 ? lfs_sb_getbsize(fs) \ 1380 : (lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, dp))))) 1381 1382 #define lfs_segsize(fs) (lfs_sb_getversion(fs) == 1 ? \ 1383 lfs_lblktosize((fs), lfs_sb_getssize(fs)) : \ 1384 lfs_sb_getssize(fs)) 1385 /* XXX segtod produces a result in frags despite the 'd' */ 1386 #define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg)) 1387 #define lfs_dtosn(fs, daddr) /* block address to segment number */ \ 1388 ((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1))) 1389 #define lfs_sntod(fs, sn) /* segment number to disk address */ \ 1390 ((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs))) 1391 1392 /* XXX, blah. make this appear only if struct inode is defined */ 1393 #ifdef _UFS_LFS_LFS_INODE_H_ 1394 static __inline uint32_t 1395 lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn) 1396 { 1397 if (lbn >= ULFS_NDADDR || lfs_dino_getsize(fs, ip->i_din) >= (lbn + 1) << lfs_sb_getbshift(fs)) { 1398 return lfs_sb_getbsize(fs); 1399 } else { 1400 return lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, ip->i_din))); 1401 } 1402 } 1403 #endif 1404 1405 /* 1406 * union lfs_blocks 1407 */ 1408 1409 static __inline void 1410 lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p) 1411 { 1412 if (fs->lfs_is64) { 1413 bp->b64 = p; 1414 } else { 1415 bp->b32 = p; 1416 } 1417 } 1418 1419 static __inline void 1420 lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip) 1421 { 1422 void *firstblock; 1423 1424 firstblock = (char *)fip + FINFOSIZE(fs); 1425 if (fs->lfs_is64) { 1426 bp->b64 = (int64_t *)firstblock; 1427 } else { 1428 bp->b32 = (int32_t *)firstblock; 1429 } 1430 } 1431 1432 static __inline daddr_t 1433 lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned idx) 1434 { 1435 if (fs->lfs_is64) { 1436 return bp->b64[idx]; 1437 } else { 1438 return bp->b32[idx]; 1439 } 1440 } 1441 1442 static __inline void 1443 lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned idx, daddr_t val) 1444 { 1445 if (fs->lfs_is64) { 1446 bp->b64[idx] = val; 1447 } else { 1448 bp->b32[idx] = val; 1449 } 1450 } 1451 1452 static __inline void 1453 lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp) 1454 { 1455 if (fs->lfs_is64) { 1456 bp->b64++; 1457 } else { 1458 bp->b32++; 1459 } 1460 } 1461 1462 static __inline int 1463 lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2) 1464 { 1465 if (fs->lfs_is64) { 1466 return bp1->b64 == bp2->b64; 1467 } else { 1468 return bp1->b32 == bp2->b32; 1469 } 1470 } 1471 1472 static __inline int 1473 lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2) 1474 { 1475 /* (remember that the pointers are typed) */ 1476 if (fs->lfs_is64) { 1477 return bp1->b64 - bp2->b64; 1478 } else { 1479 return bp1->b32 - bp2->b32; 1480 } 1481 } 1482 1483 /* 1484 * struct segment 1485 */ 1486 1487 1488 /* 1489 * Macros for determining free space on the disk, with the variable metadata 1490 * of segment summaries and inode blocks taken into account. 1491 */ 1492 /* 1493 * Estimate number of clean blocks not available for writing because 1494 * they will contain metadata or overhead. This is calculated as 1495 * 1496 * E = ((C * M / D) * D + (0) * (T - D)) / T 1497 * or more simply 1498 * E = (C * M) / T 1499 * 1500 * where 1501 * C is the clean space, 1502 * D is the dirty space, 1503 * M is the dirty metadata, and 1504 * T = C + D is the total space on disk. 1505 * 1506 * This approximates the old formula of E = C * M / D when D is close to T, 1507 * but avoids falsely reporting "disk full" when the sample size (D) is small. 1508 */ 1509 #define LFS_EST_CMETA(F) (( \ 1510 (lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) / \ 1511 (lfs_sb_getnseg(F)))) 1512 1513 /* Estimate total size of the disk not including metadata */ 1514 #define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F)) 1515 1516 /* Estimate number of blocks actually available for writing */ 1517 #define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ? \ 1518 lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0) 1519 1520 /* Amount of non-meta space not available to mortal man */ 1521 #define LFS_EST_RSVD(F) ((LFS_EST_NONMETA(F) * \ 1522 (uint64_t)lfs_sb_getminfree(F)) / \ 1523 100) 1524 1525 /* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */ 1526 #define ISSPACE(F, BB, C) \ 1527 ((((C) == NOCRED || kauth_cred_geteuid(C) == 0) && \ 1528 LFS_EST_BFREE(F) >= (BB)) || \ 1529 (kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB))) 1530 1531 /* Can an ordinary user write BB blocks */ 1532 #define IS_FREESPACE(F, BB) \ 1533 (LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F)) 1534 1535 /* 1536 * The minimum number of blocks to create a new inode. This is: 1537 * directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) + 1538 * ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks. 1539 */ 1540 #define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F))) 1541 1542 1543 /* 1544 * Suppress spurious clang warnings 1545 */ 1546 #ifdef __GNUC__ 1547 #if defined(__clang__) 1548 #pragma clang diagnostic pop 1549 #elif __GNUC_PREREQ__(9,0) 1550 #pragma GCC diagnostic pop 1551 #endif 1552 #endif 1553 1554 1555 #endif /* _UFS_LFS_LFS_ACCESSORS_H_ */ 1556