Home | History | Annotate | Line # | Download | only in dev
      1 /* $NetBSD: arspi.c,v 1.16 2025/09/10 01:55:07 thorpej Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
      5  * Copyright (c) 2006 Garrett D'Amore.
      6  * All rights reserved.
      7  *
      8  * Portions of this code were written by Garrett D'Amore for the
      9  * Champaign-Urbana Community Wireless Network Project.
     10  *
     11  * Redistribution and use in source and binary forms, with or
     12  * without modification, are permitted provided that the following
     13  * conditions are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above
     17  *    copyright notice, this list of conditions and the following
     18  *    disclaimer in the documentation and/or other materials provided
     19  *    with the distribution.
     20  * 3. All advertising materials mentioning features or use of this
     21  *    software must display the following acknowledgements:
     22  *      This product includes software developed by the Urbana-Champaign
     23  *      Independent Media Center.
     24  *	This product includes software developed by Garrett D'Amore.
     25  * 4. Urbana-Champaign Independent Media Center's name and Garrett
     26  *    D'Amore's name may not be used to endorse or promote products
     27  *    derived from this software without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
     30  * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
     31  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     32  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
     34  * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
     35  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     36  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     37  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
     38  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     39  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     40  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     41  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     42  */
     43 
     44 #include <sys/cdefs.h>
     45 __KERNEL_RCSID(0, "$NetBSD: arspi.c,v 1.16 2025/09/10 01:55:07 thorpej Exp $");
     46 
     47 #include "locators.h"
     48 
     49 #include <sys/param.h>
     50 #include <sys/bus.h>
     51 #include <sys/cpu.h>
     52 #include <sys/device.h>
     53 #include <sys/errno.h>
     54 #include <sys/kernel.h>
     55 #include <sys/kmem.h>
     56 #include <sys/proc.h>
     57 #include <sys/systm.h>
     58 
     59 #include <mips/atheros/include/ar5315reg.h>
     60 #include <mips/atheros/include/arbusvar.h>
     61 
     62 #include <mips/atheros/dev/arspireg.h>
     63 
     64 #include <dev/spi/spiflash.h>
     65 #include <dev/spi/spivar.h>
     66 
     67 /*
     68  * This device is intended only to operate with specific SPI flash
     69  * parts, and is not a general purpose SPI host.  (Or at least if it
     70  * is, the Linux and eCos sources do not show how to use it as such.)
     71  * And lack of documentation on the Atheros SoCs is less than helpful.
     72  *
     73  * So for now we just "emulate" enough of the host bus framework to
     74  * make the SPI flash drivers happy.
     75  */
     76 
     77 struct arspi_job {
     78 	uint8_t			job_opcode;
     79 	struct spi_chunk	*job_chunk;
     80 	uint32_t		job_flags;
     81 	uint32_t		job_addr;
     82 	uint32_t		job_data;
     83 	int			job_rxcnt;
     84 	int			job_txcnt;
     85 	int			job_addrcnt;
     86 	int			job_rresid;
     87 	int			job_wresid;
     88 };
     89 
     90 #define	JOB_READ		0x1
     91 #define	JOB_WRITE		0x2
     92 #define	JOB_LAST		0x4
     93 #define	JOB_WAIT		0x8	/* job must wait for WIP bits */
     94 #define	JOB_WREN		0x10	/* WREN needed */
     95 
     96 struct arspi_softc {
     97 	struct spi_controller	sc_spi;
     98 	void			*sc_ih;
     99 	bool			sc_interrupts;
    100 
    101 	struct spi_transfer	*sc_transfer;
    102 	struct spi_chunk	*sc_wchunk;	/* for partial writes */
    103 	struct spi_transq	sc_transq;
    104 	bus_space_tag_t		sc_st;
    105 	bus_space_handle_t	sc_sh;
    106 	bus_size_t		sc_size;
    107 };
    108 
    109 #define	STATIC
    110 
    111 STATIC int arspi_match(device_t, cfdata_t, void *);
    112 STATIC void arspi_attach(device_t, device_t, void *);
    113 STATIC void arspi_interrupts(device_t);
    114 STATIC int arspi_intr(void *);
    115 /* SPI service routines */
    116 STATIC int arspi_configure(void *, int, int, int);
    117 STATIC int arspi_transfer(void *, struct spi_transfer *);
    118 /* internal support */
    119 STATIC void arspi_poll(struct arspi_softc *);
    120 STATIC void arspi_done(struct arspi_softc *, int);
    121 STATIC void arspi_sched(struct arspi_softc *);
    122 STATIC int arspi_get_byte(struct spi_chunk **, uint8_t *);
    123 STATIC int arspi_put_byte(struct spi_chunk **, uint8_t);
    124 STATIC int arspi_make_job(struct spi_transfer *);
    125 STATIC void arspi_update_job(struct spi_transfer *);
    126 STATIC void arspi_finish_job(struct spi_transfer *);
    127 
    128 
    129 CFATTACH_DECL_NEW(arspi, sizeof(struct arspi_softc),
    130     arspi_match, arspi_attach, NULL, NULL);
    131 
    132 #define	GETREG(sc, o)		bus_space_read_4(sc->sc_st, sc->sc_sh, o)
    133 #define	PUTREG(sc, o, v)	bus_space_write_4(sc->sc_st, sc->sc_sh, o, v)
    134 
    135 int
    136 arspi_match(device_t parent, cfdata_t cf, void *aux)
    137 {
    138 	struct arbus_attach_args *aa = aux;
    139 
    140 	if (strcmp(aa->aa_name, cf->cf_name) != 0)
    141 		return 0;
    142 	return 1;
    143 }
    144 
    145 void
    146 arspi_attach(device_t parent, device_t self, void *aux)
    147 {
    148 	struct arspi_softc *sc = device_private(self);
    149 	struct arbus_attach_args *aa = aux;
    150 
    151 	/*
    152 	 * Map registers.
    153 	 */
    154 	sc->sc_st = aa->aa_bst;
    155 	sc->sc_size = aa->aa_size;
    156 	if (bus_space_map(sc->sc_st, aa->aa_addr, sc->sc_size, 0,
    157 		&sc->sc_sh) != 0) {
    158 		printf(": unable to map registers!\n");
    159 		return;
    160 	}
    161 
    162 	aprint_normal(": Atheros SPI controller\n");
    163 
    164 	/*
    165 	 * Initialize SPI controller.
    166 	 */
    167 	sc->sc_spi.sct_cookie = sc;
    168 	sc->sc_spi.sct_configure = arspi_configure;
    169 	sc->sc_spi.sct_transfer = arspi_transfer;
    170 	sc->sc_spi.sct_nslaves = 1;
    171 
    172 
    173 	/*
    174 	 * Initialize the queue.
    175 	 */
    176 	spi_transq_init(&sc->sc_transq);
    177 
    178 	/*
    179 	 * Enable device interrupts.
    180 	 */
    181 	sc->sc_ih = arbus_intr_establish(aa->aa_cirq, aa->aa_mirq,
    182 	    arspi_intr, sc);
    183 	if (sc->sc_ih == NULL) {
    184 		aprint_error("%s: couldn't establish interrupt\n",
    185 		    device_xname(self));
    186 		/* just leave it in polled mode */
    187 	} else
    188 		config_interrupts(self, arspi_interrupts);
    189 
    190 	/*
    191 	 * Initialize and attach bus attach.
    192 	 */
    193 	spibus_attach(self, &sc->sc_spi);
    194 }
    195 
    196 void
    197 arspi_interrupts(device_t self)
    198 {
    199 	/*
    200 	 * we never leave polling mode, because, apparently, we
    201 	 * are missing some data about how to drive the SPI in interrupt
    202 	 * mode.
    203 	 */
    204 #if 0
    205 	struct arspi_softc *sc = device_private(self);
    206 	int	s;
    207 
    208 	s = splbio();
    209 	sc->sc_interrupts = true;
    210 	splx(s);
    211 #endif
    212 }
    213 
    214 int
    215 arspi_intr(void *arg)
    216 {
    217 	struct arspi_softc *sc = arg;
    218 
    219 	while (GETREG(sc, ARSPI_REG_CTL) & ARSPI_CTL_BUSY);
    220 
    221 	arspi_done(sc, 0);
    222 
    223 	return 1;
    224 }
    225 
    226 void
    227 arspi_poll(struct arspi_softc *sc)
    228 {
    229 
    230 	while (sc->sc_transfer) {
    231 		arspi_intr(sc);
    232 	}
    233 }
    234 
    235 int
    236 arspi_configure(void *cookie, int slave, int mode, int speed)
    237 {
    238 
    239 	/*
    240 	 * We don't support the full SPI protocol, and hopefully the
    241 	 * firmware has programmed a reasonable mode already.  So
    242 	 * just a couple of quick sanity checks, then bail.
    243 	 */
    244 	if ((mode != 0) || (slave != 0))
    245 		return EINVAL;
    246 
    247 	return 0;
    248 }
    249 
    250 int
    251 arspi_transfer(void *cookie, struct spi_transfer *st)
    252 {
    253 	struct arspi_softc *sc = cookie;
    254 	int rv;
    255 	int s;
    256 
    257 	st->st_busprivate = NULL;
    258 	if ((rv = arspi_make_job(st)) != 0) {
    259 		if (st->st_busprivate) {
    260 			struct arspi_job *job = st->st_busprivate;
    261 			st->st_busprivate = NULL;
    262 			kmem_free(job, sizeof(*job));
    263 		}
    264 		spi_done(st, rv);
    265 		return rv;
    266 	}
    267 
    268 	s = splbio();
    269 	spi_transq_enqueue(&sc->sc_transq, st);
    270 	if (sc->sc_transfer == NULL) {
    271 		arspi_sched(sc);
    272 		if (!sc->sc_interrupts)
    273 			arspi_poll(sc);
    274 	}
    275 	splx(s);
    276 	return 0;
    277 }
    278 
    279 void
    280 arspi_sched(struct arspi_softc *sc)
    281 {
    282 	struct spi_transfer *st;
    283 	struct arspi_job *job;
    284 	uint32_t ctl, cnt;
    285 
    286 	for (;;) {
    287 		if ((st = sc->sc_transfer) == NULL) {
    288 			if ((st = spi_transq_first(&sc->sc_transq)) == NULL) {
    289 				/* no work left to do */
    290 				break;
    291 			}
    292 			spi_transq_dequeue(&sc->sc_transq);
    293 			sc->sc_transfer = st;
    294 		}
    295 
    296 		arspi_update_job(st);
    297 		job = st->st_busprivate;
    298 
    299 		/* there shouldn't be anything running, but ensure it */
    300 		do {
    301 			ctl = GETREG(sc, ARSPI_REG_CTL);
    302 		}  while (ctl & ARSPI_CTL_BUSY);
    303 		/* clear all of the tx and rx bits */
    304 		ctl &= ~(ARSPI_CTL_TXCNT_MASK | ARSPI_CTL_RXCNT_MASK);
    305 
    306 		if (job->job_flags & JOB_WAIT) {
    307 			PUTREG(sc, ARSPI_REG_OPCODE, SPIFLASH_CMD_RDSR);
    308 			/* only the opcode for tx */
    309 			ctl |= (1 << ARSPI_CTL_TXCNT_SHIFT);
    310 			/* and one rx byte */
    311 			ctl |= (1 << ARSPI_CTL_RXCNT_SHIFT);
    312 		} else if (job->job_flags & JOB_WREN) {
    313 			PUTREG(sc, ARSPI_REG_OPCODE, SPIFLASH_CMD_WREN);
    314 			/* just the opcode */
    315 			ctl |= (1 << ARSPI_CTL_TXCNT_SHIFT);
    316 			/* no rx bytes */
    317 		} else {
    318 			/* set the data */
    319 			PUTREG(sc, ARSPI_REG_DATA, job->job_data);
    320 
    321 			/* set the opcode and the address */
    322 			PUTREG(sc, ARSPI_REG_OPCODE, job->job_opcode |
    323 			    (job->job_addr << 8));
    324 
    325 			/* now set txcnt */
    326 			cnt = 1;	/* opcode */
    327 			cnt += job->job_addrcnt + job->job_txcnt;
    328 			ctl |= (cnt << ARSPI_CTL_TXCNT_SHIFT);
    329 
    330 			/* now set rxcnt */
    331 			cnt = job->job_rxcnt;
    332 			ctl |= (cnt << ARSPI_CTL_RXCNT_SHIFT);
    333 		}
    334 
    335 		/* set the start bit */
    336 		ctl |= ARSPI_CTL_START;
    337 
    338 		PUTREG(sc, ARSPI_REG_CTL, ctl);
    339 		break;
    340 	}
    341 }
    342 
    343 void
    344 arspi_done(struct arspi_softc *sc, int err)
    345 {
    346 	struct spi_transfer *st;
    347 	struct arspi_job *job;
    348 
    349 	if ((st = sc->sc_transfer) != NULL) {
    350 		job = st->st_busprivate;
    351 
    352 		if (job->job_flags & JOB_WAIT) {
    353 			if (err == 0) {
    354 				if ((GETREG(sc, ARSPI_REG_DATA) &
    355 				    SPIFLASH_SR_BUSY) == 0) {
    356 					/* intermediate wait done */
    357 					job->job_flags &= ~JOB_WAIT;
    358 					goto done;
    359 				}
    360 			}
    361 		} else if (job->job_flags & JOB_WREN) {
    362 			if (err == 0) {
    363 				job->job_flags &= ~JOB_WREN;
    364 				goto done;
    365 			}
    366 		} else if (err == 0) {
    367 			/*
    368 			 * When breaking up write jobs, we have to wait until
    369 			 * the WIP bit is clear, and we have to separately
    370 			 * send WREN for each chunk.  These flags facilitate
    371 			 * that.
    372 			 */
    373 			if (job->job_flags & JOB_WRITE)
    374 				job->job_flags |= (JOB_WAIT | JOB_WREN);
    375 			job->job_data = GETREG(sc, ARSPI_REG_DATA);
    376 			arspi_finish_job(st);
    377 		}
    378 
    379 		if (err || (job->job_flags & JOB_LAST)) {
    380 			sc->sc_transfer = NULL;
    381 			st->st_busprivate = NULL;
    382 			spi_done(st, err);
    383 			kmem_free(job, sizeof(*job));
    384 		}
    385 	}
    386 done:
    387 	arspi_sched(sc);
    388 }
    389 
    390 int
    391 arspi_get_byte(struct spi_chunk **chunkp, uint8_t *bytep)
    392 {
    393 	struct spi_chunk *chunk;
    394 
    395 	chunk = *chunkp;
    396 
    397 	/* skip leading empty (or already consumed) chunks */
    398 	while (chunk && chunk->chunk_wresid == 0)
    399 		chunk = chunk->chunk_next;
    400 
    401 	if (chunk == NULL) {
    402 		return ENODATA;
    403 	}
    404 
    405 	/*
    406 	 * chunk must be write only.  SPI flash doesn't support
    407 	 * any full duplex operations.
    408 	 */
    409 	if ((chunk->chunk_rptr) || !(chunk->chunk_wptr)) {
    410 		return EINVAL;
    411 	}
    412 
    413 	*bytep = *chunk->chunk_wptr;
    414 	chunk->chunk_wptr++;
    415 	chunk->chunk_wresid--;
    416 	chunk->chunk_rresid--;
    417 	/* clearing wptr and rptr makes sanity checks later easier */
    418 	if (chunk->chunk_wresid == 0)
    419 		chunk->chunk_wptr = NULL;
    420 	if (chunk->chunk_rresid == 0)
    421 		chunk->chunk_rptr = NULL;
    422 	while (chunk && chunk->chunk_wresid == 0)
    423 		chunk = chunk->chunk_next;
    424 
    425 	*chunkp = chunk;
    426 	return 0;
    427 }
    428 
    429 int
    430 arspi_put_byte(struct spi_chunk **chunkp, uint8_t byte)
    431 {
    432 	struct spi_chunk *chunk;
    433 
    434 	chunk = *chunkp;
    435 
    436 	/* skip leading empty (or already consumed) chunks */
    437 	while (chunk && chunk->chunk_rresid == 0)
    438 		chunk = chunk->chunk_next;
    439 
    440 	if (chunk == NULL) {
    441 		return EOVERFLOW;
    442 	}
    443 
    444 	/*
    445 	 * chunk must be read only.  SPI flash doesn't support
    446 	 * any full duplex operations.
    447 	 */
    448 	if ((chunk->chunk_wptr) || !(chunk->chunk_rptr)) {
    449 		return EINVAL;
    450 	}
    451 
    452 	*chunk->chunk_rptr = byte;
    453 	chunk->chunk_rptr++;
    454 	chunk->chunk_wresid--;	/* technically this was done at send time */
    455 	chunk->chunk_rresid--;
    456 	while (chunk && chunk->chunk_rresid == 0)
    457 		chunk = chunk->chunk_next;
    458 
    459 	*chunkp = chunk;
    460 	return 0;
    461 }
    462 
    463 int
    464 arspi_make_job(struct spi_transfer *st)
    465 {
    466 	struct arspi_job *job;
    467 	struct spi_chunk *chunk;
    468 	uint8_t byte;
    469 	int i, rv;
    470 
    471 	job = kmem_zalloc(sizeof (struct arspi_job), KM_SLEEP);
    472 
    473 	st->st_busprivate = job;
    474 
    475 	/* skip any leading empty chunks (should not be any!) */
    476 	chunk = st->st_chunks;
    477 
    478 	/* get transfer opcode */
    479 	if ((rv = arspi_get_byte(&chunk, &byte)) != 0)
    480 		return rv;
    481 
    482 	job->job_opcode = byte;
    483 	switch (job->job_opcode) {
    484 	case SPIFLASH_CMD_WREN:
    485 	case SPIFLASH_CMD_WRDI:
    486 	case SPIFLASH_CMD_CHIPERASE:
    487 		break;
    488 	case SPIFLASH_CMD_RDJI:
    489 		job->job_rxcnt = 3;
    490 		break;
    491 	case SPIFLASH_CMD_RDSR:
    492 		job->job_rxcnt = 1;
    493 		break;
    494 	case SPIFLASH_CMD_WRSR:
    495 		/*
    496 		 * is this in data, or in address?  stick it in data
    497 		 * for now.
    498 		 */
    499 		job->job_txcnt = 1;
    500 		break;
    501 	case SPIFLASH_CMD_RDID:
    502 		job->job_addrcnt = 3;	/* 3 dummy bytes */
    503 		job->job_rxcnt = 1;
    504 		break;
    505 	case SPIFLASH_CMD_ERASE:
    506 		job->job_addrcnt = 3;
    507 		break;
    508 	case SPIFLASH_CMD_READ:
    509 		job->job_addrcnt = 3;
    510 		job->job_flags |= JOB_READ;
    511 		break;
    512 	case SPIFLASH_CMD_PROGRAM:
    513 		job->job_addrcnt = 3;
    514 		job->job_flags |= JOB_WRITE;
    515 		break;
    516 	case SPIFLASH_CMD_READFAST:
    517 		/*
    518 		 * This is a pain in the arse to support, so we will
    519 		 * rewrite as an ordinary read.  But later, after we
    520 		 * obtain the address.
    521 		 */
    522 		job->job_addrcnt = 3;	/* 3 address */
    523 		job->job_flags |= JOB_READ;
    524 		break;
    525 	default:
    526 		return EINVAL;
    527 	}
    528 
    529 	for (i = 0; i < job->job_addrcnt; i++) {
    530 		if ((rv = arspi_get_byte(&chunk, &byte)) != 0)
    531 			return rv;
    532 		job->job_addr <<= 8;
    533 		job->job_addr |= byte;
    534 	}
    535 
    536 
    537 	if (job->job_opcode == SPIFLASH_CMD_READFAST) {
    538 		/* eat the dummy timing byte */
    539 		if ((rv = arspi_get_byte(&chunk, &byte)) != 0)
    540 			return rv;
    541 		/* rewrite this as a read */
    542 		job->job_opcode = SPIFLASH_CMD_READ;
    543 	}
    544 
    545 	job->job_chunk = chunk;
    546 
    547 	/*
    548 	 * Now quickly check a few other things.   Namely, we are not
    549 	 * allowed to have both READ and WRITE.
    550 	 */
    551 	for (chunk = job->job_chunk; chunk; chunk = chunk->chunk_next) {
    552 		if (chunk->chunk_wptr) {
    553 			job->job_wresid += chunk->chunk_wresid;
    554 		}
    555 		if (chunk->chunk_rptr) {
    556 			job->job_rresid += chunk->chunk_rresid;
    557 		}
    558 	}
    559 
    560 	if (job->job_rresid && job->job_wresid) {
    561 		return EINVAL;
    562 	}
    563 
    564 	return 0;
    565 }
    566 
    567 /*
    568  * NB: The Atheros SPI controller runs in little endian mode. So all
    569  * data accesses must be swapped appropriately.
    570  *
    571  * The controller auto-swaps read accesses done through the mapped memory
    572  * region, but when using SPI directly, we have to do the right thing to
    573  * swap to or from little endian.
    574  */
    575 
    576 void
    577 arspi_update_job(struct spi_transfer *st)
    578 {
    579 	struct arspi_job *job = st->st_busprivate;
    580 	uint8_t byte;
    581 	int i;
    582 
    583 	if (job->job_flags & (JOB_WAIT|JOB_WREN))
    584 		return;
    585 
    586 	job->job_rxcnt = 0;
    587 	job->job_txcnt = 0;
    588 	job->job_data = 0;
    589 
    590 	job->job_txcnt = uimin(job->job_wresid, 4);
    591 	job->job_rxcnt = uimin(job->job_rresid, 4);
    592 
    593 	job->job_wresid -= job->job_txcnt;
    594 	job->job_rresid -= job->job_rxcnt;
    595 
    596 	for (i = 0; i < job->job_txcnt; i++) {
    597 		arspi_get_byte(&job->job_chunk, &byte);
    598 		job->job_data |= (byte << (i * 8));
    599 	}
    600 
    601 	if ((!job->job_wresid) && (!job->job_rresid)) {
    602 		job->job_flags |= JOB_LAST;
    603 	}
    604 }
    605 
    606 void
    607 arspi_finish_job(struct spi_transfer *st)
    608 {
    609 	struct arspi_job *job = st->st_busprivate;
    610 	uint8_t	byte;
    611 	int i;
    612 
    613 	job->job_addr += job->job_rxcnt;
    614 	job->job_addr += job->job_txcnt;
    615 	for (i = 0; i < job->job_rxcnt; i++) {
    616 		byte = job->job_data & 0xff;
    617 		job->job_data >>= 8;
    618 		arspi_put_byte(&job->job_chunk, byte);
    619 	}
    620 }
    621 
    622