Home | History | Annotate | Line # | Download | only in dev
      1 /*	$NetBSD: if_emac.c,v 1.60 2025/10/04 04:44:20 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright 2001, 2002 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Simon Burge and Jason Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * emac(4) supports following ibm4xx's EMACs.
     40  *   XXXX: ZMII and 'TCP Accelaration Hardware' not support yet...
     41  *
     42  *            tested
     43  *            ------
     44  * 405EP	-  10/100 x2
     45  * 405EX/EXr	o  10/100/1000 x2 (EXr x1), STA v2, 256bit hash-Table, RGMII
     46  * 405GP/GPr	o  10/100
     47  * 440EP	-  10/100 x2, ZMII
     48  * 440GP	-  10/100 x2, ZMII
     49  * 440GX	-  10/100/1000 x4, ZMII/RGMII(ch 2, 3), TAH(ch 2, 3)
     50  * 440SP	-  10/100/1000
     51  * 440SPe	-  10/100/1000, STA v2
     52  */
     53 
     54 #include <sys/cdefs.h>
     55 __KERNEL_RCSID(0, "$NetBSD: if_emac.c,v 1.60 2025/10/04 04:44:20 thorpej Exp $");
     56 
     57 #ifdef _KERNEL_OPT
     58 #include "opt_emac.h"
     59 #endif
     60 
     61 #include <sys/param.h>
     62 #include <sys/systm.h>
     63 #include <sys/mbuf.h>
     64 #include <sys/kernel.h>
     65 #include <sys/socket.h>
     66 #include <sys/ioctl.h>
     67 #include <sys/cpu.h>
     68 #include <sys/device.h>
     69 
     70 #include <sys/rndsource.h>
     71 
     72 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     73 
     74 #include <net/if.h>
     75 #include <net/if_dl.h>
     76 #include <net/if_media.h>
     77 #include <net/if_ether.h>
     78 
     79 #include <net/bpf.h>
     80 
     81 #include <powerpc/ibm4xx/cpu.h>
     82 #include <powerpc/ibm4xx/dcr4xx.h>
     83 #include <powerpc/ibm4xx/mal405gp.h>
     84 #include <powerpc/ibm4xx/dev/emacreg.h>
     85 #include <powerpc/ibm4xx/dev/if_emacreg.h>
     86 #include <powerpc/ibm4xx/dev/if_emacvar.h>
     87 #include <powerpc/ibm4xx/dev/malvar.h>
     88 #include <powerpc/ibm4xx/dev/opbreg.h>
     89 #include <powerpc/ibm4xx/dev/opbvar.h>
     90 #include <powerpc/ibm4xx/dev/plbvar.h>
     91 #if defined(EMAC_ZMII_PHY) || defined(EMAC_RGMII_PHY)
     92 #include <powerpc/ibm4xx/dev/rmiivar.h>
     93 #endif
     94 
     95 #include <dev/mii/miivar.h>
     96 
     97 #include "locators.h"
     98 
     99 
    100 /*
    101  * Transmit descriptor list size.  There are two Tx channels, each with
    102  * up to 256 hardware descriptors available.  We currently use one Tx
    103  * channel.  We tell the upper layers that they can queue a lot of
    104  * packets, and we go ahead and manage up to 64 of them at a time.  We
    105  * allow up to 16 DMA segments per packet.
    106  */
    107 #define	EMAC_NTXSEGS		16
    108 #define	EMAC_TXQUEUELEN		64
    109 #define	EMAC_TXQUEUELEN_MASK	(EMAC_TXQUEUELEN - 1)
    110 #define	EMAC_TXQUEUE_GC		(EMAC_TXQUEUELEN / 4)
    111 #define	EMAC_NTXDESC		256
    112 #define	EMAC_NTXDESC_MASK	(EMAC_NTXDESC - 1)
    113 #define	EMAC_NEXTTX(x)		(((x) + 1) & EMAC_NTXDESC_MASK)
    114 #define	EMAC_NEXTTXS(x)		(((x) + 1) & EMAC_TXQUEUELEN_MASK)
    115 
    116 /*
    117  * Receive descriptor list size.  There is one Rx channel with up to 256
    118  * hardware descriptors available.  We allocate 64 receive descriptors,
    119  * each with a 2k buffer (MCLBYTES).
    120  */
    121 #define	EMAC_NRXDESC		64
    122 #define	EMAC_NRXDESC_MASK	(EMAC_NRXDESC - 1)
    123 #define	EMAC_NEXTRX(x)		(((x) + 1) & EMAC_NRXDESC_MASK)
    124 #define	EMAC_PREVRX(x)		(((x) - 1) & EMAC_NRXDESC_MASK)
    125 
    126 /*
    127  * Transmit/receive descriptors that are DMA'd to the EMAC.
    128  */
    129 struct emac_control_data {
    130 	struct mal_descriptor ecd_txdesc[EMAC_NTXDESC];
    131 	struct mal_descriptor ecd_rxdesc[EMAC_NRXDESC];
    132 };
    133 
    134 #define	EMAC_CDOFF(x)		offsetof(struct emac_control_data, x)
    135 #define	EMAC_CDTXOFF(x)		EMAC_CDOFF(ecd_txdesc[(x)])
    136 #define	EMAC_CDRXOFF(x)		EMAC_CDOFF(ecd_rxdesc[(x)])
    137 
    138 /*
    139  * Software state for transmit jobs.
    140  */
    141 struct emac_txsoft {
    142 	struct mbuf *txs_mbuf;		/* head of mbuf chain */
    143 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    144 	int txs_firstdesc;		/* first descriptor in packet */
    145 	int txs_lastdesc;		/* last descriptor in packet */
    146 	int txs_ndesc;			/* # of descriptors used */
    147 };
    148 
    149 /*
    150  * Software state for receive descriptors.
    151  */
    152 struct emac_rxsoft {
    153 	struct mbuf *rxs_mbuf;		/* head of mbuf chain */
    154 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    155 };
    156 
    157 /*
    158  * Software state per device.
    159  */
    160 struct emac_softc {
    161 	device_t sc_dev;		/* generic device information */
    162 	int sc_instance;		/* instance no. */
    163 	bus_space_tag_t sc_st;		/* bus space tag */
    164 	bus_space_handle_t sc_sh;	/* bus space handle */
    165 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    166 	struct ethercom sc_ethercom;	/* ethernet common data */
    167 	void *sc_sdhook;		/* shutdown hook */
    168 	void *sc_powerhook;		/* power management hook */
    169 
    170 	struct mii_data sc_mii;		/* MII/media information */
    171 	struct callout sc_callout;	/* tick callout */
    172 
    173 	uint32_t sc_mr1;		/* copy of Mode Register 1 */
    174 	uint32_t sc_stacr_read;		/* Read opcode of STAOPC of STACR */
    175 	uint32_t sc_stacr_write;	/* Write opcode of STAOPC of STACR */
    176 	uint32_t sc_stacr_bits;		/* misc bits of STACR */
    177 	bool sc_stacr_completed;	/* Operation completed of STACR */
    178 	int sc_htsize;			/* Hash Table size */
    179 
    180 	bus_dmamap_t sc_cddmamap;	/* control data dma map */
    181 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    182 
    183 	/* Software state for transmit/receive descriptors. */
    184 	struct emac_txsoft sc_txsoft[EMAC_TXQUEUELEN];
    185 	struct emac_rxsoft sc_rxsoft[EMAC_NRXDESC];
    186 
    187 	/* Control data structures. */
    188 	struct emac_control_data *sc_control_data;
    189 #define	sc_txdescs	sc_control_data->ecd_txdesc
    190 #define	sc_rxdescs	sc_control_data->ecd_rxdesc
    191 
    192 #ifdef EMAC_EVENT_COUNTERS
    193 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    194 	struct evcnt sc_ev_txintr;	/* Tx interrupts */
    195 	struct evcnt sc_ev_rxde;	/* Rx descriptor interrupts */
    196 	struct evcnt sc_ev_txde;	/* Tx descriptor interrupts */
    197 	struct evcnt sc_ev_intr;	/* General EMAC interrupts */
    198 
    199 	struct evcnt sc_ev_txreap;	/* Calls to Tx descriptor reaper */
    200 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    201 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    202 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    203 	struct evcnt sc_ev_tu;		/* Tx underrun */
    204 #endif /* EMAC_EVENT_COUNTERS */
    205 
    206 	int sc_txfree;			/* number of free Tx descriptors */
    207 	int sc_txnext;			/* next ready Tx descriptor */
    208 
    209 	int sc_txsfree;			/* number of free Tx jobs */
    210 	int sc_txsnext;			/* next ready Tx job */
    211 	int sc_txsdirty;		/* dirty Tx jobs */
    212 
    213 	int sc_rxptr;			/* next ready RX descriptor/descsoft */
    214 
    215 	krndsource_t rnd_source;	/* random source */
    216 
    217 	void (*sc_rmii_enable)(device_t, int);		/* reduced MII enable */
    218 	void (*sc_rmii_disable)(device_t, int);		/* reduced MII disable*/
    219 	void (*sc_rmii_speed)(device_t, int, int);	/* reduced MII speed */
    220 };
    221 
    222 #ifdef EMAC_EVENT_COUNTERS
    223 #define	EMAC_EVCNT_INCR(ev)	(ev)->ev_count++
    224 #else
    225 #define	EMAC_EVCNT_INCR(ev)	/* nothing */
    226 #endif
    227 
    228 #define	EMAC_CDTXADDR(sc, x)	((sc)->sc_cddma + EMAC_CDTXOFF((x)))
    229 #define	EMAC_CDRXADDR(sc, x)	((sc)->sc_cddma + EMAC_CDRXOFF((x)))
    230 
    231 #define	EMAC_CDTXSYNC(sc, x, n, ops)					\
    232 do {									\
    233 	int __x, __n;							\
    234 									\
    235 	__x = (x);							\
    236 	__n = (n);							\
    237 									\
    238 	/* If it will wrap around, sync to the end of the ring. */	\
    239 	if ((__x + __n) > EMAC_NTXDESC) {				\
    240 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    241 		    EMAC_CDTXOFF(__x), sizeof(struct mal_descriptor) *	\
    242 		    (EMAC_NTXDESC - __x), (ops));			\
    243 		__n -= (EMAC_NTXDESC - __x);				\
    244 		__x = 0;						\
    245 	}								\
    246 									\
    247 	/* Now sync whatever is left. */				\
    248 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    249 	    EMAC_CDTXOFF(__x), sizeof(struct mal_descriptor) * __n, (ops)); \
    250 } while (/*CONSTCOND*/0)
    251 
    252 #define	EMAC_CDRXSYNC(sc, x, ops)					\
    253 do {									\
    254 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    255 	    EMAC_CDRXOFF((x)), sizeof(struct mal_descriptor), (ops));	\
    256 } while (/*CONSTCOND*/0)
    257 
    258 #define	EMAC_INIT_RXDESC(sc, x)						\
    259 do {									\
    260 	struct emac_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    261 	struct mal_descriptor *__rxd = &(sc)->sc_rxdescs[(x)];		\
    262 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    263 									\
    264 	/*								\
    265 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    266 	 * so that the payload after the Ethernet header is aligned	\
    267 	 * to a 4-byte boundary.					\
    268 	 */								\
    269 	__m->m_data = __m->m_ext.ext_buf + 2;				\
    270 									\
    271 	__rxd->md_data = __rxs->rxs_dmamap->dm_segs[0].ds_addr + 2;	\
    272 	__rxd->md_data_len = __m->m_ext.ext_size - 2;			\
    273 	__rxd->md_stat_ctrl = MAL_RX_EMPTY | MAL_RX_INTERRUPT |		\
    274 	    /* Set wrap on last descriptor. */				\
    275 	    (((x) == EMAC_NRXDESC - 1) ? MAL_RX_WRAP : 0);		\
    276 	EMAC_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
    277 } while (/*CONSTCOND*/0)
    278 
    279 #define	EMAC_WRITE(sc, reg, val) \
    280 	bus_space_write_stream_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    281 #define	EMAC_READ(sc, reg) \
    282 	bus_space_read_stream_4((sc)->sc_st, (sc)->sc_sh, (reg))
    283 
    284 #define	EMAC_SET_FILTER(aht, crc) \
    285 do {									\
    286 	(aht)[3 - (((crc) >> 26) >> 4)] |= 1 << (((crc) >> 26) & 0xf);	\
    287 } while (/*CONSTCOND*/0)
    288 #define	EMAC_SET_FILTER256(aht, crc) \
    289 do {									\
    290 	(aht)[7 - (((crc) >> 24) >> 5)] |= 1 << (((crc) >> 24) & 0x1f);	\
    291 } while (/*CONSTCOND*/0)
    292 
    293 static int	emac_match(device_t, cfdata_t, void *);
    294 static void	emac_attach(device_t, device_t, void *);
    295 
    296 static int	emac_intr(void *);
    297 static void	emac_shutdown(void *);
    298 
    299 static void	emac_start(struct ifnet *);
    300 static int	emac_ioctl(struct ifnet *, u_long, void *);
    301 static int	emac_init(struct ifnet *);
    302 static void	emac_stop(struct ifnet *, int);
    303 static void	emac_watchdog(struct ifnet *);
    304 
    305 static int	emac_add_rxbuf(struct emac_softc *, int);
    306 static void	emac_rxdrain(struct emac_softc *);
    307 static int	emac_set_filter(struct emac_softc *);
    308 static int	emac_txreap(struct emac_softc *);
    309 
    310 static void	emac_soft_reset(struct emac_softc *);
    311 static void	emac_smart_reset(struct emac_softc *);
    312 
    313 static int	emac_mii_readreg(device_t, int, int, uint16_t *);
    314 static int	emac_mii_writereg(device_t, int, int, uint16_t);
    315 static void	emac_mii_statchg(struct ifnet *);
    316 static uint32_t	emac_mii_wait(struct emac_softc *);
    317 static void	emac_mii_tick(void *);
    318 
    319 int		emac_copy_small = 0;
    320 
    321 CFATTACH_DECL_NEW(emac, sizeof(struct emac_softc),
    322     emac_match, emac_attach, NULL, NULL);
    323 
    324 
    325 static int
    326 emac_match(device_t parent, cfdata_t cf, void *aux)
    327 {
    328 	struct opb_attach_args *oaa = aux;
    329 
    330 	/* match only on-chip ethernet devices */
    331 	if (strcmp(oaa->opb_name, cf->cf_name) == 0)
    332 		return 1;
    333 
    334 	return 0;
    335 }
    336 
    337 static void
    338 emac_attach(device_t parent, device_t self, void *aux)
    339 {
    340 	struct opb_attach_args *oaa = aux;
    341 	struct emac_softc *sc = device_private(self);
    342 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    343 	struct mii_data *mii = &sc->sc_mii;
    344 	const char * xname = device_xname(self);
    345 	bus_dma_segment_t seg;
    346 	int error, i, nseg, opb_freq, opbc, mii_phy = MII_PHY_ANY;
    347 	uint8_t enaddr[ETHER_ADDR_LEN];
    348 
    349 	bus_space_map(oaa->opb_bt, oaa->opb_addr, EMAC_NREG, 0, &sc->sc_sh);
    350 
    351 	sc->sc_dev = self;
    352 	sc->sc_instance = oaa->opb_instance;
    353 	sc->sc_st = oaa->opb_bt;
    354 	sc->sc_dmat = oaa->opb_dmat;
    355 
    356 	callout_init(&sc->sc_callout, 0);
    357 
    358 	aprint_naive("\n");
    359 	aprint_normal(": Ethernet Media Access Controller\n");
    360 
    361 	/* Fetch the Ethernet address. */
    362 	if (! ether_getaddr(self, enaddr)) {
    363 		aprint_error_dev(self, "unable to get mac-address\n");
    364 		return;
    365 	}
    366 	aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(enaddr));
    367 
    368 #if defined(EMAC_ZMII_PHY) || defined(EMAC_RGMII_PHY)
    369 	/* Fetch the MII offset. */
    370 	prop_dictionary_get_uint32(device_properties(self),
    371 	    "mii-phy", &mii_phy);
    372 
    373 #ifdef EMAC_ZMII_PHY
    374 	if (oaa->opb_flags & OPB_FLAGS_EMAC_RMII_ZMII)
    375 		zmii_attach(parent, sc->sc_instance, &sc->sc_rmii_enable,
    376 		    &sc->sc_rmii_disable, &sc->sc_rmii_speed);
    377 #endif
    378 #ifdef EMAC_RGMII_PHY
    379 	if (oaa->opb_flags & OPB_FLAGS_EMAC_RMII_RGMII)
    380 		rgmii_attach(parent, sc->sc_instance, &sc->sc_rmii_enable,
    381 		    &sc->sc_rmii_disable, &sc->sc_rmii_speed);
    382 #endif
    383 #endif
    384 
    385 	/*
    386 	 * Allocate the control data structures, and create and load the
    387 	 * DMA map for it.
    388 	 */
    389 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    390 	    sizeof(struct emac_control_data), 0, 0, &seg, 1, &nseg, 0)) != 0) {
    391 		aprint_error_dev(self,
    392 		    "unable to allocate control data, error = %d\n", error);
    393 		goto fail_0;
    394 	}
    395 
    396 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
    397 	    sizeof(struct emac_control_data), (void **)&sc->sc_control_data,
    398 	    BUS_DMA_COHERENT)) != 0) {
    399 		aprint_error_dev(self,
    400 		    "unable to map control data, error = %d\n", error);
    401 		goto fail_1;
    402 	}
    403 
    404 	if ((error = bus_dmamap_create(sc->sc_dmat,
    405 	    sizeof(struct emac_control_data), 1,
    406 	    sizeof(struct emac_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    407 		aprint_error_dev(self,
    408 		    "unable to create control data DMA map, error = %d\n",
    409 		    error);
    410 		goto fail_2;
    411 	}
    412 
    413 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    414 	    sc->sc_control_data, sizeof(struct emac_control_data), NULL,
    415 	    0)) != 0) {
    416 		aprint_error_dev(self,
    417 		    "unable to load control data DMA map, error = %d\n", error);
    418 		goto fail_3;
    419 	}
    420 
    421 	/*
    422 	 * Create the transmit buffer DMA maps.
    423 	 */
    424 	for (i = 0; i < EMAC_TXQUEUELEN; i++) {
    425 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    426 		    EMAC_NTXSEGS, MCLBYTES, 0, 0,
    427 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    428 			aprint_error_dev(self,
    429 			    "unable to create tx DMA map %d, error = %d\n",
    430 			    i, error);
    431 			goto fail_4;
    432 		}
    433 	}
    434 
    435 	/*
    436 	 * Create the receive buffer DMA maps.
    437 	 */
    438 	for (i = 0; i < EMAC_NRXDESC; i++) {
    439 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    440 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    441 			aprint_error_dev(self,
    442 			    "unable to create rx DMA map %d, error = %d\n",
    443 			    i, error);
    444 			goto fail_5;
    445 		}
    446 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    447 	}
    448 
    449 	/* Soft Reset the EMAC.  The chip to a known state. */
    450 	emac_soft_reset(sc);
    451 
    452 	opb_freq = opb_get_frequency();
    453 	switch (opb_freq) {
    454 	case  33333333: opbc =  STACR_OPBC_33MHZ; break;
    455 	case  50000000: opbc =  STACR_OPBC_50MHZ; break;
    456 	case  66666666: opbc =  STACR_OPBC_66MHZ; break;
    457 	case  83333333: opbc =  STACR_OPBC_83MHZ; break;
    458 	case 100000000: opbc = STACR_OPBC_100MHZ; break;
    459 
    460 	default:
    461 		if (opb_freq > 100000000) {
    462 			opbc = STACR_OPBC_A100MHZ;
    463 			break;
    464 		}
    465 		aprint_error_dev(self, "unsupported OPB frequency %dMHz\n",
    466 		    opb_freq / 1000 / 1000);
    467 		goto fail_5;
    468 	}
    469 	if (oaa->opb_flags & OPB_FLAGS_EMAC_GBE) {
    470 		sc->sc_mr1 =
    471 		    MR1_RFS_GBE(MR1__FS_16KB)	|
    472 		    MR1_TFS_GBE(MR1__FS_16KB)	|
    473 		    MR1_TR0_MULTIPLE		|
    474 		    MR1_OBCI(opbc);
    475 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
    476 
    477 		if (oaa->opb_flags & OPB_FLAGS_EMAC_STACV2) {
    478 			sc->sc_stacr_read = STACR_STAOPC_READ;
    479 			sc->sc_stacr_write = STACR_STAOPC_WRITE;
    480 			sc->sc_stacr_bits = STACR_OC;
    481 			sc->sc_stacr_completed = false;
    482 		} else {
    483 			sc->sc_stacr_read = STACR_READ;
    484 			sc->sc_stacr_write = STACR_WRITE;
    485 			sc->sc_stacr_completed = true;
    486 		}
    487 	} else {
    488 		/*
    489 		 * Set up Mode Register 1 - set receive and transmit FIFOs to
    490 		 * maximum size, allow transmit of multiple packets (only
    491 		 * channel 0 is used).
    492 		 *
    493 		 * XXX: Allow pause packets??
    494 		 */
    495 		sc->sc_mr1 =
    496 		    MR1_RFS(MR1__FS_4KB) |
    497 		    MR1_TFS(MR1__FS_2KB) |
    498 		    MR1_TR0_MULTIPLE;
    499 
    500 		sc->sc_stacr_read = STACR_READ;
    501 		sc->sc_stacr_write = STACR_WRITE;
    502 		sc->sc_stacr_bits = STACR_OPBC(opbc);
    503 		sc->sc_stacr_completed = true;
    504 	}
    505 
    506 	intr_establish_xname(oaa->opb_irq, IST_LEVEL, IPL_NET, emac_intr, sc,
    507 	    device_xname(self));
    508 	mal_intr_establish(sc->sc_instance, sc);
    509 
    510 	if (oaa->opb_flags & OPB_FLAGS_EMAC_HT256)
    511 		sc->sc_htsize = 256;
    512 	else
    513 		sc->sc_htsize = 64;
    514 
    515 	/* Clear all interrupts */
    516 	EMAC_WRITE(sc, EMAC_ISR, ISR_ALL);
    517 
    518 	/*
    519 	 * Initialise the media structures.
    520 	 */
    521 	mii->mii_ifp = ifp;
    522 	mii->mii_readreg = emac_mii_readreg;
    523 	mii->mii_writereg = emac_mii_writereg;
    524 	mii->mii_statchg = emac_mii_statchg;
    525 
    526 	sc->sc_ethercom.ec_mii = mii;
    527 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
    528 	mii_attach(self, mii, 0xffffffff, mii_phy, MII_OFFSET_ANY,
    529 	    MIIF_DOPAUSE);
    530 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    531 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
    532 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
    533 	} else
    534 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    535 
    536 	ifp = &sc->sc_ethercom.ec_if;
    537 	strcpy(ifp->if_xname, xname);
    538 	ifp->if_softc = sc;
    539 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    540 	ifp->if_start = emac_start;
    541 	ifp->if_ioctl = emac_ioctl;
    542 	ifp->if_init = emac_init;
    543 	ifp->if_stop = emac_stop;
    544 	ifp->if_watchdog = emac_watchdog;
    545 	IFQ_SET_READY(&ifp->if_snd);
    546 
    547 	/*
    548 	 * We can support 802.1Q VLAN-sized frames.
    549 	 */
    550 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    551 
    552 	/*
    553 	 * Attach the interface.
    554 	 */
    555 	if_attach(ifp);
    556 	if_deferred_start_init(ifp, NULL);
    557 	ether_ifattach(ifp, enaddr);
    558 
    559 	rnd_attach_source(&sc->rnd_source, xname, RND_TYPE_NET,
    560 	    RND_FLAG_DEFAULT);
    561 
    562 #ifdef EMAC_EVENT_COUNTERS
    563 	/*
    564 	 * Attach the event counters.
    565 	 */
    566 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
    567 	    NULL, xname, "txintr");
    568 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    569 	    NULL, xname, "rxintr");
    570 	evcnt_attach_dynamic(&sc->sc_ev_txde, EVCNT_TYPE_INTR,
    571 	    NULL, xname, "txde");
    572 	evcnt_attach_dynamic(&sc->sc_ev_rxde, EVCNT_TYPE_INTR,
    573 	    NULL, xname, "rxde");
    574 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
    575 	    NULL, xname, "intr");
    576 
    577 	evcnt_attach_dynamic(&sc->sc_ev_txreap, EVCNT_TYPE_MISC,
    578 	    NULL, xname, "txreap");
    579 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
    580 	    NULL, xname, "txsstall");
    581 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
    582 	    NULL, xname, "txdstall");
    583 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
    584 	    NULL, xname, "txdrop");
    585 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
    586 	    NULL, xname, "tu");
    587 #endif /* EMAC_EVENT_COUNTERS */
    588 
    589 	/*
    590 	 * Make sure the interface is shutdown during reboot.
    591 	 */
    592 	sc->sc_sdhook = shutdownhook_establish(emac_shutdown, sc);
    593 	if (sc->sc_sdhook == NULL)
    594 		aprint_error_dev(self,
    595 		    "WARNING: unable to establish shutdown hook\n");
    596 
    597 	return;
    598 
    599 	/*
    600 	 * Free any resources we've allocated during the failed attach
    601 	 * attempt.  Do this in reverse order and fall through.
    602 	 */
    603 fail_5:
    604 	for (i = 0; i < EMAC_NRXDESC; i++) {
    605 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    606 			bus_dmamap_destroy(sc->sc_dmat,
    607 			    sc->sc_rxsoft[i].rxs_dmamap);
    608 	}
    609 fail_4:
    610 	for (i = 0; i < EMAC_TXQUEUELEN; i++) {
    611 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    612 			bus_dmamap_destroy(sc->sc_dmat,
    613 			    sc->sc_txsoft[i].txs_dmamap);
    614 	}
    615 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    616 fail_3:
    617 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    618 fail_2:
    619 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    620 	    sizeof(struct emac_control_data));
    621 fail_1:
    622 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
    623 fail_0:
    624 	return;
    625 }
    626 
    627 /*
    628  * EMAC General interrupt handler
    629  */
    630 static int
    631 emac_intr(void *arg)
    632 {
    633 	struct emac_softc *sc = arg;
    634 	uint32_t status;
    635 
    636 	EMAC_EVCNT_INCR(&sc->sc_ev_intr);
    637 	status = EMAC_READ(sc, EMAC_ISR);
    638 
    639 	/* Clear the interrupt status bits. */
    640 	EMAC_WRITE(sc, EMAC_ISR, status);
    641 
    642 	return 1;
    643 }
    644 
    645 static void
    646 emac_shutdown(void *arg)
    647 {
    648 	struct emac_softc *sc = arg;
    649 
    650 	emac_stop(&sc->sc_ethercom.ec_if, 0);
    651 }
    652 
    653 
    654 /*
    655  * ifnet interface functions
    656  */
    657 
    658 static void
    659 emac_start(struct ifnet *ifp)
    660 {
    661 	struct emac_softc *sc = ifp->if_softc;
    662 	struct mbuf *m0;
    663 	struct emac_txsoft *txs;
    664 	bus_dmamap_t dmamap;
    665 	int error, firsttx, nexttx, lasttx, ofree, seg;
    666 
    667 	lasttx = 0;	/* XXX gcc */
    668 
    669 	if ((ifp->if_flags & IFF_RUNNING) == 0)
    670 		return;
    671 
    672 	/*
    673 	 * Remember the previous number of free descriptors.
    674 	 */
    675 	ofree = sc->sc_txfree;
    676 
    677 	/*
    678 	 * Loop through the send queue, setting up transmit descriptors
    679 	 * until we drain the queue, or use up all available transmit
    680 	 * descriptors.
    681 	 */
    682 	for (;;) {
    683 		/* Grab a packet off the queue. */
    684 		IFQ_POLL(&ifp->if_snd, m0);
    685 		if (m0 == NULL)
    686 			break;
    687 
    688 		/*
    689 		 * Get a work queue entry.  Reclaim used Tx descriptors if
    690 		 * we are running low.
    691 		 */
    692 		if (sc->sc_txsfree < EMAC_TXQUEUE_GC) {
    693 			emac_txreap(sc);
    694 			if (sc->sc_txsfree == 0) {
    695 				EMAC_EVCNT_INCR(&sc->sc_ev_txsstall);
    696 				break;
    697 			}
    698 		}
    699 
    700 		txs = &sc->sc_txsoft[sc->sc_txsnext];
    701 		dmamap = txs->txs_dmamap;
    702 
    703 		/*
    704 		 * Load the DMA map.  If this fails, the packet either
    705 		 * didn't fit in the allotted number of segments, or we
    706 		 * were short on resources.  In this case, we'll copy
    707 		 * and try again.
    708 		 */
    709 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    710 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
    711 		if (error) {
    712 			if (error == EFBIG) {
    713 				EMAC_EVCNT_INCR(&sc->sc_ev_txdrop);
    714 				aprint_error_ifnet(ifp,
    715 				    "Tx packet consumes too many "
    716 				    "DMA segments, dropping...\n");
    717 				    IFQ_DEQUEUE(&ifp->if_snd, m0);
    718 				    m_freem(m0);
    719 				    continue;
    720 			}
    721 			/* Short on resources, just stop for now. */
    722 			break;
    723 		}
    724 
    725 		/*
    726 		 * Ensure we have enough descriptors free to describe
    727 		 * the packet.
    728 		 */
    729 		if (dmamap->dm_nsegs > sc->sc_txfree) {
    730 			/*
    731 			 * Not enough free descriptors to transmit this
    732 			 * packet.  We haven't committed anything yet,
    733 			 * so just unload the DMA map, put the packet
    734 			 * back on the queue, and punt.  Notify the upper
    735 			 * layer that there are not more slots left.
    736 			 *
    737 			 */
    738 			bus_dmamap_unload(sc->sc_dmat, dmamap);
    739 			EMAC_EVCNT_INCR(&sc->sc_ev_txdstall);
    740 			break;
    741 		}
    742 
    743 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    744 
    745 		/*
    746 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    747 		 */
    748 
    749 		/* Sync the DMA map. */
    750 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    751 		    BUS_DMASYNC_PREWRITE);
    752 
    753 		/*
    754 		 * Store a pointer to the packet so that we can free it
    755 		 * later.
    756 		 */
    757 		txs->txs_mbuf = m0;
    758 		txs->txs_firstdesc = sc->sc_txnext;
    759 		txs->txs_ndesc = dmamap->dm_nsegs;
    760 
    761 		/*
    762 		 * Initialize the transmit descriptor.
    763 		 */
    764 		firsttx = sc->sc_txnext;
    765 		for (nexttx = sc->sc_txnext, seg = 0;
    766 		     seg < dmamap->dm_nsegs;
    767 		     seg++, nexttx = EMAC_NEXTTX(nexttx)) {
    768 			struct mal_descriptor *txdesc =
    769 			    &sc->sc_txdescs[nexttx];
    770 
    771 			/*
    772 			 * If this is the first descriptor we're
    773 			 * enqueueing, don't set the TX_READY bit just
    774 			 * yet.  That could cause a race condition.
    775 			 * We'll do it below.
    776 			 */
    777 			txdesc->md_data = dmamap->dm_segs[seg].ds_addr;
    778 			txdesc->md_data_len = dmamap->dm_segs[seg].ds_len;
    779 			txdesc->md_stat_ctrl =
    780 			    (txdesc->md_stat_ctrl & MAL_TX_WRAP) |
    781 			    (nexttx == firsttx ? 0 : MAL_TX_READY) |
    782 			    EMAC_TXC_GFCS | EMAC_TXC_GPAD;
    783 			lasttx = nexttx;
    784 		}
    785 
    786 		/* Set the LAST bit on the last segment. */
    787 		sc->sc_txdescs[lasttx].md_stat_ctrl |= MAL_TX_LAST;
    788 
    789 		/*
    790 		 * Set up last segment descriptor to send an interrupt after
    791 		 * that descriptor is transmitted, and bypass existing Tx
    792 		 * descriptor reaping method (for now...).
    793 		 */
    794 		sc->sc_txdescs[lasttx].md_stat_ctrl |= MAL_TX_INTERRUPT;
    795 
    796 
    797 		txs->txs_lastdesc = lasttx;
    798 
    799 		/* Sync the descriptors we're using. */
    800 		EMAC_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
    801 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    802 
    803 		/*
    804 		 * The entire packet chain is set up.  Give the
    805 		 * first descriptor to the chip now.
    806 		 */
    807 		sc->sc_txdescs[firsttx].md_stat_ctrl |= MAL_TX_READY;
    808 		EMAC_CDTXSYNC(sc, firsttx, 1,
    809 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    810 		/*
    811 		 * Tell the EMAC that a new packet is available.
    812 		 */
    813 		EMAC_WRITE(sc, EMAC_TMR0, TMR0_GNP0 | TMR0_TFAE_2);
    814 
    815 		/* Advance the tx pointer. */
    816 		sc->sc_txfree -= txs->txs_ndesc;
    817 		sc->sc_txnext = nexttx;
    818 
    819 		sc->sc_txsfree--;
    820 		sc->sc_txsnext = EMAC_NEXTTXS(sc->sc_txsnext);
    821 
    822 		/*
    823 		 * Pass the packet to any BPF listeners.
    824 		 */
    825 		bpf_mtap(ifp, m0, BPF_D_OUT);
    826 	}
    827 
    828 	if (sc->sc_txfree != ofree)
    829 		/* Set a watchdog timer in case the chip flakes out. */
    830 		ifp->if_timer = 5;
    831 }
    832 
    833 static int
    834 emac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    835 {
    836 	struct emac_softc *sc = ifp->if_softc;
    837 	int s, error;
    838 
    839 	s = splnet();
    840 
    841 	switch (cmd) {
    842 	case SIOCSIFMTU:
    843 	{
    844 		struct ifreq *ifr = (struct ifreq *)data;
    845 		int maxmtu;
    846 
    847 		if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU)
    848 			maxmtu = EMAC_MAX_MTU;
    849 		else
    850 			maxmtu = ETHERMTU;
    851 
    852 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu)
    853 			error = EINVAL;
    854 		else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
    855 			break;
    856 		else if (ifp->if_flags & IFF_UP)
    857 			error = emac_init(ifp);
    858 		else
    859 			error = 0;
    860 		break;
    861 	}
    862 
    863 	default:
    864 		error = ether_ioctl(ifp, cmd, data);
    865 		if (error == ENETRESET) {
    866 			/*
    867 			 * Multicast list has changed; set the hardware filter
    868 			 * accordingly.
    869 			 */
    870 			if (ifp->if_flags & IFF_RUNNING)
    871 				error = emac_set_filter(sc);
    872 			else
    873 				error = 0;
    874 		}
    875 	}
    876 
    877 	/* try to get more packets going */
    878 	emac_start(ifp);
    879 
    880 	splx(s);
    881 	return error;
    882 }
    883 
    884 static int
    885 emac_init(struct ifnet *ifp)
    886 {
    887 	struct emac_softc *sc = ifp->if_softc;
    888 	struct emac_rxsoft *rxs;
    889 	const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
    890 	int error, i;
    891 
    892 	error = 0;
    893 
    894 	/* Cancel any pending I/O. */
    895 	emac_stop(ifp, 0);
    896 
    897 	/* Reset the chip to a known state. */
    898 	emac_soft_reset(sc);
    899 
    900 	/*
    901 	 * Initialise the transmit descriptor ring.
    902 	 */
    903 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    904 	/* set wrap on last descriptor */
    905 	sc->sc_txdescs[EMAC_NTXDESC - 1].md_stat_ctrl |= MAL_TX_WRAP;
    906 	EMAC_CDTXSYNC(sc, 0, EMAC_NTXDESC,
    907 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    908 	sc->sc_txfree = EMAC_NTXDESC;
    909 	sc->sc_txnext = 0;
    910 
    911 	/*
    912 	 * Initialise the transmit job descriptors.
    913 	 */
    914 	for (i = 0; i < EMAC_TXQUEUELEN; i++)
    915 		sc->sc_txsoft[i].txs_mbuf = NULL;
    916 	sc->sc_txsfree = EMAC_TXQUEUELEN;
    917 	sc->sc_txsnext = 0;
    918 	sc->sc_txsdirty = 0;
    919 
    920 	/*
    921 	 * Initialise the receiver descriptor and receive job
    922 	 * descriptor rings.
    923 	 */
    924 	for (i = 0; i < EMAC_NRXDESC; i++) {
    925 		rxs = &sc->sc_rxsoft[i];
    926 		if (rxs->rxs_mbuf == NULL) {
    927 			if ((error = emac_add_rxbuf(sc, i)) != 0) {
    928 				aprint_error_ifnet(ifp,
    929 				    "unable to allocate or map rx buffer %d,"
    930 				    " error = %d\n",
    931 				    i, error);
    932 				/*
    933 				 * XXX Should attempt to run with fewer receive
    934 				 * XXX buffers instead of just failing.
    935 				 */
    936 				emac_rxdrain(sc);
    937 				goto out;
    938 			}
    939 		} else
    940 			EMAC_INIT_RXDESC(sc, i);
    941 	}
    942 	sc->sc_rxptr = 0;
    943 
    944 	/*
    945 	 * Set the current media.
    946 	 */
    947 	if ((error = ether_mediachange(ifp)) != 0)
    948 		goto out;
    949 
    950 	/*
    951 	 * Load the MAC address.
    952 	 */
    953 	EMAC_WRITE(sc, EMAC_IAHR, enaddr[0] << 8 | enaddr[1]);
    954 	EMAC_WRITE(sc, EMAC_IALR,
    955 	    enaddr[2] << 24 | enaddr[3] << 16 | enaddr[4] << 8 | enaddr[5]);
    956 
    957 	/* Enable the transmit and receive channel on the MAL. */
    958 	error = mal_start(sc->sc_instance,
    959 	    EMAC_CDTXADDR(sc, 0), EMAC_CDRXADDR(sc, 0));
    960 	if (error)
    961 		goto out;
    962 
    963 	sc->sc_mr1 &= ~MR1_JPSM;
    964 	if (ifp->if_mtu > ETHERMTU)
    965 		/* Enable Jumbo Packet Support Mode */
    966 		sc->sc_mr1 |= MR1_JPSM;
    967 
    968 	/* Set fifos, media modes. */
    969 	EMAC_WRITE(sc, EMAC_MR1, sc->sc_mr1);
    970 
    971 	/*
    972 	 * Enable Individual and (possibly) Broadcast Address modes,
    973 	 * runt packets, and strip padding.
    974 	 */
    975 	EMAC_WRITE(sc, EMAC_RMR, RMR_IAE | RMR_RRP | RMR_SP | RMR_TFAE_2 |
    976 	    (ifp->if_flags & IFF_PROMISC ? RMR_PME : 0) |
    977 	    (ifp->if_flags & IFF_BROADCAST ? RMR_BAE : 0));
    978 
    979 	/*
    980 	 * Set multicast filter.
    981 	 */
    982 	emac_set_filter(sc);
    983 
    984 	/*
    985 	 * Set low- and urgent-priority request thresholds.
    986 	 */
    987 	EMAC_WRITE(sc, EMAC_TMR1,
    988 	    ((7 << TMR1_TLR_SHIFT) & TMR1_TLR_MASK) | /* 16 word burst */
    989 	    ((15 << TMR1_TUR_SHIFT) & TMR1_TUR_MASK));
    990 	/*
    991 	 * Set Transmit Request Threshold Register.
    992 	 */
    993 	EMAC_WRITE(sc, EMAC_TRTR, TRTR_256);
    994 
    995 	/*
    996 	 * Set high and low receive watermarks.
    997 	 */
    998 	EMAC_WRITE(sc, EMAC_RWMR,
    999 	    30 << RWMR_RLWM_SHIFT | 64 << RWMR_RLWM_SHIFT);
   1000 
   1001 	/*
   1002 	 * Set frame gap.
   1003 	 */
   1004 	EMAC_WRITE(sc, EMAC_IPGVR, 8);
   1005 
   1006 	/*
   1007 	 * Set interrupt status enable bits for EMAC.
   1008 	 */
   1009 	EMAC_WRITE(sc, EMAC_ISER,
   1010 	    ISR_TXPE |		/* TX Parity Error */
   1011 	    ISR_RXPE |		/* RX Parity Error */
   1012 	    ISR_TXUE |		/* TX Underrun Event */
   1013 	    ISR_RXOE |		/* RX Overrun Event */
   1014 	    ISR_OVR  |		/* Overrun Error */
   1015 	    ISR_PP   |		/* Pause Packet */
   1016 	    ISR_BP   |		/* Bad Packet */
   1017 	    ISR_RP   |		/* Runt Packet */
   1018 	    ISR_SE   |		/* Short Event */
   1019 	    ISR_ALE  |		/* Alignment Error */
   1020 	    ISR_BFCS |		/* Bad FCS */
   1021 	    ISR_PTLE |		/* Packet Too Long Error */
   1022 	    ISR_ORE  |		/* Out of Range Error */
   1023 	    ISR_IRE  |		/* In Range Error */
   1024 	    ISR_SE0  |		/* Signal Quality Error 0 (SQE) */
   1025 	    ISR_TE0  |		/* Transmit Error 0 */
   1026 	    ISR_MOS  |		/* MMA Operation Succeeded */
   1027 	    ISR_MOF);		/* MMA Operation Failed */
   1028 
   1029 	/*
   1030 	 * Enable the transmit and receive channel on the EMAC.
   1031 	 */
   1032 	EMAC_WRITE(sc, EMAC_MR0, MR0_TXE | MR0_RXE);
   1033 
   1034 	/*
   1035 	 * Start the one second MII clock.
   1036 	 */
   1037 	callout_reset(&sc->sc_callout, hz, emac_mii_tick, sc);
   1038 
   1039 	/*
   1040 	 * ... all done!
   1041 	 */
   1042 	ifp->if_flags |= IFF_RUNNING;
   1043 
   1044  out:
   1045 	if (error) {
   1046 		ifp->if_flags &= ~IFF_RUNNING;
   1047 		ifp->if_timer = 0;
   1048 		aprint_error_ifnet(ifp, "interface not running\n");
   1049 	}
   1050 	return error;
   1051 }
   1052 
   1053 static void
   1054 emac_stop(struct ifnet *ifp, int disable)
   1055 {
   1056 	struct emac_softc *sc = ifp->if_softc;
   1057 	struct emac_txsoft *txs;
   1058 	int i;
   1059 
   1060 	/* Stop the one second clock. */
   1061 	callout_stop(&sc->sc_callout);
   1062 
   1063 	/* Down the MII */
   1064 	mii_down(&sc->sc_mii);
   1065 
   1066 	/* Disable interrupts. */
   1067 	EMAC_WRITE(sc, EMAC_ISER, 0);
   1068 
   1069 	/* Disable the receive and transmit channels. */
   1070 	mal_stop(sc->sc_instance);
   1071 
   1072 	/* Disable the transmit enable and receive MACs. */
   1073 	EMAC_WRITE(sc, EMAC_MR0,
   1074 	    EMAC_READ(sc, EMAC_MR0) & ~(MR0_TXE | MR0_RXE));
   1075 
   1076 	/* Release any queued transmit buffers. */
   1077 	for (i = 0; i < EMAC_TXQUEUELEN; i++) {
   1078 		txs = &sc->sc_txsoft[i];
   1079 		if (txs->txs_mbuf != NULL) {
   1080 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1081 			m_freem(txs->txs_mbuf);
   1082 			txs->txs_mbuf = NULL;
   1083 		}
   1084 	}
   1085 
   1086 	if (disable)
   1087 		emac_rxdrain(sc);
   1088 
   1089 	/*
   1090 	 * Mark the interface down and cancel the watchdog timer.
   1091 	 */
   1092 	ifp->if_flags &= ~IFF_RUNNING;
   1093 	ifp->if_timer = 0;
   1094 }
   1095 
   1096 static void
   1097 emac_watchdog(struct ifnet *ifp)
   1098 {
   1099 	struct emac_softc *sc = ifp->if_softc;
   1100 
   1101 	/*
   1102 	 * Since we're not interrupting every packet, sweep
   1103 	 * up before we report an error.
   1104 	 */
   1105 	emac_txreap(sc);
   1106 
   1107 	if (sc->sc_txfree != EMAC_NTXDESC) {
   1108 		aprint_error_ifnet(ifp,
   1109 		    "device timeout (txfree %d txsfree %d txnext %d)\n",
   1110 		    sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
   1111 		if_statinc(ifp, if_oerrors);
   1112 
   1113 		/* Reset the interface. */
   1114 		(void)emac_init(ifp);
   1115 	} else if (ifp->if_flags & IFF_DEBUG)
   1116 		aprint_error_ifnet(ifp, "recovered from device timeout\n");
   1117 
   1118 	/* try to get more packets going */
   1119 	emac_start(ifp);
   1120 }
   1121 
   1122 static int
   1123 emac_add_rxbuf(struct emac_softc *sc, int idx)
   1124 {
   1125 	struct emac_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1126 	struct mbuf *m;
   1127 	int error;
   1128 
   1129 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1130 	if (m == NULL)
   1131 		return ENOBUFS;
   1132 
   1133 	MCLGET(m, M_DONTWAIT);
   1134 	if ((m->m_flags & M_EXT) == 0) {
   1135 		m_freem(m);
   1136 		return ENOBUFS;
   1137 	}
   1138 
   1139 	if (rxs->rxs_mbuf != NULL)
   1140 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1141 
   1142 	rxs->rxs_mbuf = m;
   1143 
   1144 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   1145 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1146 	if (error) {
   1147 		aprint_error_dev(sc->sc_dev,
   1148 		    "can't load rx DMA map %d, error = %d\n", idx, error);
   1149 		panic("emac_add_rxbuf");		/* XXX */
   1150 	}
   1151 
   1152 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1153 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1154 
   1155 	EMAC_INIT_RXDESC(sc, idx);
   1156 
   1157 	return 0;
   1158 }
   1159 
   1160 static void
   1161 emac_rxdrain(struct emac_softc *sc)
   1162 {
   1163 	struct emac_rxsoft *rxs;
   1164 	int i;
   1165 
   1166 	for (i = 0; i < EMAC_NRXDESC; i++) {
   1167 		rxs = &sc->sc_rxsoft[i];
   1168 		if (rxs->rxs_mbuf != NULL) {
   1169 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1170 			m_freem(rxs->rxs_mbuf);
   1171 			rxs->rxs_mbuf = NULL;
   1172 		}
   1173 	}
   1174 }
   1175 
   1176 static int
   1177 emac_set_filter(struct emac_softc *sc)
   1178 {
   1179 	struct ethercom *ec = &sc->sc_ethercom;
   1180 	struct ether_multistep step;
   1181 	struct ether_multi *enm;
   1182 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1183 	uint32_t rmr, crc, mask, tmp, reg, gaht[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   1184 	int regs, cnt = 0, i;
   1185 
   1186 	if (sc->sc_htsize == 256) {
   1187 		reg = EMAC_GAHT256(0);
   1188 		regs = 8;
   1189 	} else {
   1190 		reg = EMAC_GAHT64(0);
   1191 		regs = 4;
   1192 	}
   1193 	mask = (1ULL << (sc->sc_htsize / regs)) - 1;
   1194 
   1195 	rmr = EMAC_READ(sc, EMAC_RMR);
   1196 	rmr &= ~(RMR_PMME | RMR_MAE);
   1197 	ifp->if_flags &= ~IFF_ALLMULTI;
   1198 
   1199 	ETHER_LOCK(ec);
   1200 	ETHER_FIRST_MULTI(step, ec, enm);
   1201 	while (enm != NULL) {
   1202 		if (memcmp(enm->enm_addrlo,
   1203 		    enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
   1204 			/*
   1205 			 * We must listen to a range of multicast addresses.
   1206 			 * For now, just accept all multicasts, rather than
   1207 			 * trying to set only those filter bits needed to match
   1208 			 * the range.  (At this time, the only use of address
   1209 			 * ranges is for IP multicast routing, for which the
   1210 			 * range is big enough to require all bits set.)
   1211 			 */
   1212 			gaht[0] = gaht[1] = gaht[2] = gaht[3] =
   1213 			    gaht[4] = gaht[5] = gaht[6] = gaht[7] = mask;
   1214 			break;
   1215 		}
   1216 
   1217 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1218 
   1219 		if (sc->sc_htsize == 256)
   1220 			EMAC_SET_FILTER256(gaht, crc);
   1221 		else
   1222 			EMAC_SET_FILTER(gaht, crc);
   1223 
   1224 		ETHER_NEXT_MULTI(step, enm);
   1225 		cnt++;
   1226 	}
   1227 	ETHER_UNLOCK(ec);
   1228 
   1229 	for (i = 1, tmp = gaht[0]; i < regs; i++)
   1230 		tmp &= gaht[i];
   1231 	if (tmp == mask) {
   1232 		/* All categories are true. */
   1233 		ifp->if_flags |= IFF_ALLMULTI;
   1234 		rmr |= RMR_PMME;
   1235 	} else if (cnt != 0) {
   1236 		/* Some categories are true. */
   1237 		for (i = 0; i < regs; i++)
   1238 			EMAC_WRITE(sc, reg + (i << 2), gaht[i]);
   1239 		rmr |= RMR_MAE;
   1240 	}
   1241 	EMAC_WRITE(sc, EMAC_RMR, rmr);
   1242 
   1243 	return 0;
   1244 }
   1245 
   1246 /*
   1247  * Reap completed Tx descriptors.
   1248  */
   1249 static int
   1250 emac_txreap(struct emac_softc *sc)
   1251 {
   1252 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1253 	struct emac_txsoft *txs;
   1254 	int handled, i;
   1255 	uint32_t txstat, count;
   1256 
   1257 	EMAC_EVCNT_INCR(&sc->sc_ev_txreap);
   1258 	handled = 0;
   1259 
   1260 	count = 0;
   1261 	/*
   1262 	 * Go through our Tx list and free mbufs for those
   1263 	 * frames that have been transmitted.
   1264 	 */
   1265 	for (i = sc->sc_txsdirty; sc->sc_txsfree != EMAC_TXQUEUELEN;
   1266 	    i = EMAC_NEXTTXS(i), sc->sc_txsfree++) {
   1267 		txs = &sc->sc_txsoft[i];
   1268 
   1269 		EMAC_CDTXSYNC(sc, txs->txs_lastdesc,
   1270 		    txs->txs_dmamap->dm_nsegs,
   1271 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1272 
   1273 		txstat = sc->sc_txdescs[txs->txs_lastdesc].md_stat_ctrl;
   1274 		if (txstat & MAL_TX_READY)
   1275 			break;
   1276 
   1277 		handled = 1;
   1278 
   1279 		/*
   1280 		 * Check for errors and collisions.
   1281 		 */
   1282 		if (txstat & (EMAC_TXS_UR | EMAC_TXS_ED))
   1283 			if_statinc(ifp, if_oerrors);
   1284 
   1285 #ifdef EMAC_EVENT_COUNTERS
   1286 		if (txstat & EMAC_TXS_UR)
   1287 			EMAC_EVCNT_INCR(&sc->sc_ev_tu);
   1288 #endif /* EMAC_EVENT_COUNTERS */
   1289 
   1290 		if (txstat &
   1291 		    (EMAC_TXS_EC | EMAC_TXS_MC | EMAC_TXS_SC | EMAC_TXS_LC)) {
   1292 			if (txstat & EMAC_TXS_EC)
   1293 				if_statadd(ifp, if_collisions, 16);
   1294 			else if (txstat & EMAC_TXS_MC)
   1295 				if_statadd(ifp, if_collisions, 2); /* XXX? */
   1296 			else if (txstat & EMAC_TXS_SC)
   1297 				if_statinc(ifp, if_collisions);
   1298 			if (txstat & EMAC_TXS_LC)
   1299 				if_statinc(ifp, if_collisions);
   1300 		} else
   1301 			if_statinc(ifp, if_opackets);
   1302 
   1303 		if (ifp->if_flags & IFF_DEBUG) {
   1304 			if (txstat & EMAC_TXS_ED)
   1305 				aprint_error_ifnet(ifp, "excessive deferral\n");
   1306 			if (txstat & EMAC_TXS_EC)
   1307 				aprint_error_ifnet(ifp,
   1308 				    "excessive collisions\n");
   1309 		}
   1310 
   1311 		sc->sc_txfree += txs->txs_ndesc;
   1312 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1313 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1314 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1315 		m_freem(txs->txs_mbuf);
   1316 		txs->txs_mbuf = NULL;
   1317 
   1318 		count++;
   1319 	}
   1320 
   1321 	/* Update the dirty transmit buffer pointer. */
   1322 	sc->sc_txsdirty = i;
   1323 
   1324 	/*
   1325 	 * If there are no more pending transmissions, cancel the watchdog
   1326 	 * timer.
   1327 	 */
   1328 	if (sc->sc_txsfree == EMAC_TXQUEUELEN)
   1329 		ifp->if_timer = 0;
   1330 
   1331 	if (count != 0)
   1332 		rnd_add_uint32(&sc->rnd_source, count);
   1333 
   1334 	return handled;
   1335 }
   1336 
   1337 
   1338 /*
   1339  * Reset functions
   1340  */
   1341 
   1342 static void
   1343 emac_soft_reset(struct emac_softc *sc)
   1344 {
   1345 	uint32_t sdr;
   1346 	int t = 0;
   1347 
   1348 	/*
   1349 	 * The PHY must provide a TX Clk in order perform a soft reset the
   1350 	 * EMAC.  If none is present, select the internal clock,
   1351 	 * SDR0_MFR[E0CS, E1CS].  After the soft reset, select the external
   1352 	 * clock.
   1353 	 */
   1354 
   1355 	sdr = mfsdr(DCR_SDR0_MFR);
   1356 	sdr |= SDR0_MFR_ECS(sc->sc_instance);
   1357 	mtsdr(DCR_SDR0_MFR, sdr);
   1358 
   1359 	EMAC_WRITE(sc, EMAC_MR0, MR0_SRST);
   1360 
   1361 	sdr = mfsdr(DCR_SDR0_MFR);
   1362 	sdr &= ~SDR0_MFR_ECS(sc->sc_instance);
   1363 	mtsdr(DCR_SDR0_MFR, sdr);
   1364 
   1365 	delay(5);
   1366 
   1367 	/* wait finish */
   1368 	while (EMAC_READ(sc, EMAC_MR0) & MR0_SRST) {
   1369 		if (++t == 1000000 /* 1sec XXXXX */) {
   1370 			aprint_error_dev(sc->sc_dev, "Soft Reset failed\n");
   1371 			return;
   1372 		}
   1373 		delay(1);
   1374 	}
   1375 }
   1376 
   1377 static void
   1378 emac_smart_reset(struct emac_softc *sc)
   1379 {
   1380 	uint32_t mr0;
   1381 	int t = 0;
   1382 
   1383 	mr0 = EMAC_READ(sc, EMAC_MR0);
   1384 	if (mr0 & (MR0_TXE | MR0_RXE)) {
   1385 		mr0 &= ~(MR0_TXE | MR0_RXE);
   1386 		EMAC_WRITE(sc, EMAC_MR0, mr0);
   1387 
   1388 		/* wait idel state */
   1389 		while ((EMAC_READ(sc, EMAC_MR0) & (MR0_TXI | MR0_RXI)) !=
   1390 		    (MR0_TXI | MR0_RXI)) {
   1391 			if (++t == 1000000 /* 1sec XXXXX */) {
   1392 				aprint_error_dev(sc->sc_dev,
   1393 				    "Smart Reset failed\n");
   1394 				return;
   1395 			}
   1396 			delay(1);
   1397 		}
   1398 	}
   1399 }
   1400 
   1401 
   1402 /*
   1403  * MII related functions
   1404  */
   1405 
   1406 static int
   1407 emac_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   1408 {
   1409 	struct emac_softc *sc = device_private(self);
   1410 	uint32_t sta_reg;
   1411 	int rv;
   1412 
   1413 	if (sc->sc_rmii_enable)
   1414 		sc->sc_rmii_enable(device_parent(self), sc->sc_instance);
   1415 
   1416 	/* wait for PHY data transfer to complete */
   1417 	if ((rv = emac_mii_wait(sc)) != 0)
   1418 		goto fail;
   1419 
   1420 	sta_reg =
   1421 	    sc->sc_stacr_read		|
   1422 	    (reg << STACR_PRA_SHIFT)	|
   1423 	    (phy << STACR_PCDA_SHIFT)	|
   1424 	    sc->sc_stacr_bits;
   1425 	EMAC_WRITE(sc, EMAC_STACR, sta_reg);
   1426 
   1427 	if ((rv = emac_mii_wait(sc)) != 0)
   1428 		goto fail;
   1429 	sta_reg = EMAC_READ(sc, EMAC_STACR);
   1430 
   1431 	if (sta_reg & STACR_PHYE) {
   1432 		rv = -1;
   1433 		goto fail;
   1434 	}
   1435 	*val = sta_reg >> STACR_PHYD_SHIFT;
   1436 
   1437 fail:
   1438 	if (sc->sc_rmii_disable)
   1439 		sc->sc_rmii_disable(device_parent(self), sc->sc_instance);
   1440 	return rv;
   1441 }
   1442 
   1443 static int
   1444 emac_mii_writereg(device_t self, int phy, int reg, uint16_t val)
   1445 {
   1446 	struct emac_softc *sc = device_private(self);
   1447 	uint32_t sta_reg;
   1448 	int rv;
   1449 
   1450 	if (sc->sc_rmii_enable)
   1451 		sc->sc_rmii_enable(device_parent(self), sc->sc_instance);
   1452 
   1453 	/* wait for PHY data transfer to complete */
   1454 	if ((rv = emac_mii_wait(sc)) != 0)
   1455 		goto out;
   1456 
   1457 	sta_reg =
   1458 	    (val << STACR_PHYD_SHIFT)	|
   1459 	    sc->sc_stacr_write		|
   1460 	    (reg << STACR_PRA_SHIFT)	|
   1461 	    (phy << STACR_PCDA_SHIFT)	|
   1462 	    sc->sc_stacr_bits;
   1463 	EMAC_WRITE(sc, EMAC_STACR, sta_reg);
   1464 
   1465 	if ((rv = emac_mii_wait(sc)) != 0)
   1466 		goto out;
   1467 	if (EMAC_READ(sc, EMAC_STACR) & STACR_PHYE) {
   1468 		aprint_error_dev(sc->sc_dev, "MII PHY Error\n");
   1469 		rv = -1;
   1470 	}
   1471 
   1472 out:
   1473 	if (sc->sc_rmii_disable)
   1474 		sc->sc_rmii_disable(device_parent(self), sc->sc_instance);
   1475 
   1476 	return rv;
   1477 }
   1478 
   1479 static void
   1480 emac_mii_statchg(struct ifnet *ifp)
   1481 {
   1482 	struct emac_softc *sc = ifp->if_softc;
   1483 	struct mii_data *mii = &sc->sc_mii;
   1484 
   1485 	/*
   1486 	 * MR1 can only be written immediately after a reset...
   1487 	 */
   1488 	emac_smart_reset(sc);
   1489 
   1490 	sc->sc_mr1 &= ~(MR1_FDE | MR1_ILE | MR1_EIFC | MR1_MF_MASK | MR1_IST);
   1491 	if (mii->mii_media_active & IFM_FDX)
   1492 		sc->sc_mr1 |= (MR1_FDE | MR1_EIFC | MR1_IST);
   1493 	if (mii->mii_media_active & IFM_FLOW)
   1494 		sc->sc_mr1 |= MR1_EIFC;
   1495 	if (mii->mii_media_active & IFM_LOOP)
   1496 		sc->sc_mr1 |= MR1_ILE;
   1497 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1498 	case IFM_1000_T:
   1499 		sc->sc_mr1 |= (MR1_MF_1000MBS | MR1_IST);
   1500 		break;
   1501 
   1502 	case IFM_100_TX:
   1503 		sc->sc_mr1 |= (MR1_MF_100MBS | MR1_IST);
   1504 		break;
   1505 
   1506 	case IFM_10_T:
   1507 		sc->sc_mr1 |= MR1_MF_10MBS;
   1508 		break;
   1509 
   1510 	case IFM_NONE:
   1511 		break;
   1512 
   1513 	default:
   1514 		aprint_error_dev(sc->sc_dev, "unknown sub-type %d\n",
   1515 		    IFM_SUBTYPE(mii->mii_media_active));
   1516 		break;
   1517 	}
   1518 	if (sc->sc_rmii_speed)
   1519 		sc->sc_rmii_speed(device_parent(sc->sc_dev), sc->sc_instance,
   1520 		    IFM_SUBTYPE(mii->mii_media_active));
   1521 
   1522 	EMAC_WRITE(sc, EMAC_MR1, sc->sc_mr1);
   1523 
   1524 	/* Enable TX and RX if already RUNNING */
   1525 	if (ifp->if_flags & IFF_RUNNING)
   1526 		EMAC_WRITE(sc, EMAC_MR0, MR0_TXE | MR0_RXE);
   1527 }
   1528 
   1529 static uint32_t
   1530 emac_mii_wait(struct emac_softc *sc)
   1531 {
   1532 	int i;
   1533 	uint32_t oc;
   1534 
   1535 	/* wait for PHY data transfer to complete */
   1536 	i = 0;
   1537 	oc = EMAC_READ(sc, EMAC_STACR) & STACR_OC;
   1538 	while ((oc == STACR_OC) != sc->sc_stacr_completed) {
   1539 		delay(7);
   1540 		if (i++ > 5) {
   1541 			aprint_error_dev(sc->sc_dev, "MII timed out\n");
   1542 			return ETIMEDOUT;
   1543 		}
   1544 		oc = EMAC_READ(sc, EMAC_STACR) & STACR_OC;
   1545 	}
   1546 	return 0;
   1547 }
   1548 
   1549 static void
   1550 emac_mii_tick(void *arg)
   1551 {
   1552 	struct emac_softc *sc = arg;
   1553 	int s;
   1554 
   1555 	if (!device_is_active(sc->sc_dev))
   1556 		return;
   1557 
   1558 	s = splnet();
   1559 	mii_tick(&sc->sc_mii);
   1560 	splx(s);
   1561 
   1562 	callout_reset(&sc->sc_callout, hz, emac_mii_tick, sc);
   1563 }
   1564 
   1565 int
   1566 emac_txeob_intr(void *arg)
   1567 {
   1568 	struct emac_softc *sc = arg;
   1569 	int handled = 0;
   1570 
   1571 	EMAC_EVCNT_INCR(&sc->sc_ev_txintr);
   1572 	handled |= emac_txreap(sc);
   1573 
   1574 	/* try to get more packets going */
   1575 	if_schedule_deferred_start(&sc->sc_ethercom.ec_if);
   1576 
   1577 	return handled;
   1578 }
   1579 
   1580 int
   1581 emac_rxeob_intr(void *arg)
   1582 {
   1583 	struct emac_softc *sc = arg;
   1584 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1585 	struct emac_rxsoft *rxs;
   1586 	struct mbuf *m;
   1587 	uint32_t rxstat, count;
   1588 	int i, len;
   1589 
   1590 	EMAC_EVCNT_INCR(&sc->sc_ev_rxintr);
   1591 
   1592 	count = 0;
   1593 	for (i = sc->sc_rxptr; ; i = EMAC_NEXTRX(i)) {
   1594 		rxs = &sc->sc_rxsoft[i];
   1595 
   1596 		EMAC_CDRXSYNC(sc, i,
   1597 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1598 
   1599 		rxstat = sc->sc_rxdescs[i].md_stat_ctrl;
   1600 
   1601 		if (rxstat & MAL_RX_EMPTY) {
   1602 			/*
   1603 			 * We have processed all of the receive buffers.
   1604 			 */
   1605 			/* Flush current empty descriptor */
   1606 			EMAC_CDRXSYNC(sc, i,
   1607 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1608 			break;
   1609 		}
   1610 
   1611 		/*
   1612 		 * If an error occurred, update stats, clear the status
   1613 		 * word, and leave the packet buffer in place.  It will
   1614 		 * simply be reused the next time the ring comes around.
   1615 		 */
   1616 		if (rxstat & (EMAC_RXS_OE | EMAC_RXS_BP | EMAC_RXS_SE |
   1617 		    EMAC_RXS_AE | EMAC_RXS_BFCS | EMAC_RXS_PTL | EMAC_RXS_ORE |
   1618 		    EMAC_RXS_IRE)) {
   1619 #define	PRINTERR(bit, str)					\
   1620 			if (rxstat & (bit))			\
   1621 				aprint_error_ifnet(ifp,		\
   1622 				    "receive error: %s\n", str)
   1623 			if_statinc(ifp, if_ierrors);
   1624 			PRINTERR(EMAC_RXS_OE, "overrun error");
   1625 			PRINTERR(EMAC_RXS_BP, "bad packet");
   1626 			PRINTERR(EMAC_RXS_RP, "runt packet");
   1627 			PRINTERR(EMAC_RXS_SE, "short event");
   1628 			PRINTERR(EMAC_RXS_AE, "alignment error");
   1629 			PRINTERR(EMAC_RXS_BFCS, "bad FCS");
   1630 			PRINTERR(EMAC_RXS_PTL, "packet too long");
   1631 			PRINTERR(EMAC_RXS_ORE, "out of range error");
   1632 			PRINTERR(EMAC_RXS_IRE, "in range error");
   1633 #undef PRINTERR
   1634 			EMAC_INIT_RXDESC(sc, i);
   1635 			continue;
   1636 		}
   1637 
   1638 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1639 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1640 
   1641 		/*
   1642 		 * No errors; receive the packet.  Note, the 405GP emac
   1643 		 * includes the CRC with every packet.
   1644 		 */
   1645 		len = sc->sc_rxdescs[i].md_data_len - ETHER_CRC_LEN;
   1646 
   1647 		/*
   1648 		 * If the packet is small enough to fit in a
   1649 		 * single header mbuf, allocate one and copy
   1650 		 * the data into it.  This greatly reduces
   1651 		 * memory consumption when we receive lots
   1652 		 * of small packets.
   1653 		 *
   1654 		 * Otherwise, we add a new buffer to the receive
   1655 		 * chain.  If this fails, we drop the packet and
   1656 		 * recycle the old buffer.
   1657 		 */
   1658 		if (emac_copy_small != 0 && len <= MHLEN) {
   1659 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1660 			if (m == NULL)
   1661 				goto dropit;
   1662 			memcpy(mtod(m, void *),
   1663 			    mtod(rxs->rxs_mbuf, void *), len);
   1664 			EMAC_INIT_RXDESC(sc, i);
   1665 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1666 			    rxs->rxs_dmamap->dm_mapsize,
   1667 			    BUS_DMASYNC_PREREAD);
   1668 		} else {
   1669 			m = rxs->rxs_mbuf;
   1670 			if (emac_add_rxbuf(sc, i) != 0) {
   1671  dropit:
   1672 				if_statinc(ifp, if_ierrors);
   1673 				EMAC_INIT_RXDESC(sc, i);
   1674 				bus_dmamap_sync(sc->sc_dmat,
   1675 				    rxs->rxs_dmamap, 0,
   1676 				    rxs->rxs_dmamap->dm_mapsize,
   1677 				    BUS_DMASYNC_PREREAD);
   1678 				continue;
   1679 			}
   1680 		}
   1681 
   1682 		m_set_rcvif(m, ifp);
   1683 		m->m_pkthdr.len = m->m_len = len;
   1684 
   1685 		/* Pass it on. */
   1686 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1687 
   1688 		count++;
   1689 	}
   1690 
   1691 	/* Update the receive pointer. */
   1692 	sc->sc_rxptr = i;
   1693 
   1694 	if (count != 0)
   1695 		rnd_add_uint32(&sc->rnd_source, count);
   1696 
   1697 	return 1;
   1698 }
   1699 
   1700 int
   1701 emac_txde_intr(void *arg)
   1702 {
   1703 	struct emac_softc *sc = arg;
   1704 
   1705 	EMAC_EVCNT_INCR(&sc->sc_ev_txde);
   1706 	aprint_error_dev(sc->sc_dev, "emac_txde_intr\n");
   1707 	return 1;
   1708 }
   1709 
   1710 int
   1711 emac_rxde_intr(void *arg)
   1712 {
   1713 	struct emac_softc *sc = arg;
   1714 	int i;
   1715 
   1716 	EMAC_EVCNT_INCR(&sc->sc_ev_rxde);
   1717 	aprint_error_dev(sc->sc_dev, "emac_rxde_intr\n");
   1718 	/*
   1719 	 * XXX!
   1720 	 * This is a bit drastic; we just drop all descriptors that aren't
   1721 	 * "clean".  We should probably send any that are up the stack.
   1722 	 */
   1723 	for (i = 0; i < EMAC_NRXDESC; i++) {
   1724 		EMAC_CDRXSYNC(sc, i,
   1725 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1726 
   1727 		if (sc->sc_rxdescs[i].md_data_len != MCLBYTES)
   1728 			EMAC_INIT_RXDESC(sc, i);
   1729 	}
   1730 
   1731 	return 1;
   1732 }
   1733